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On countable multiple point compactifications *
by
A. K. Steiner and E. F. Steiner (Ames, Iowa)

Throughout this paper a space X always denotes a Tychonoff space
and X a Hausdorff compactification of it. The Stone—Cech compac-
tification will be denoted by fX. Countable will mean countably infinite.

In [4], Magill characterizes those spaces X which possess finite com-
pactifications (i.e. |X —X| is finite) and in [3], those which possess coun-
table compactifications (i.e. | X —X| is countable). A much wider class
of compactifications consists of those having & finite or countable number
of multiple points as defined by Njastad, [6].

In Section 1 of this paper we show that every non pseudocompact
space has countable multiple point compactifications. It then follows
that although the Ruclidean n-spaces do not admit countable com-
pactifieations (cf. [5]) they do have countable multiple point compactif-
jcations. Section 1 will also provide examples of spaces X such that
|X —X| is infinite yet X does not possess a countable multiple point
compactification. These examples are obtained by using the fact that
for any space ¥, there exists a space X such that X —X =77
(cf. [2], p. 133).

Recent work (cf. [1], [3], [6], [7], [8]) has shown that many com-
pactifications are of the Wallman-type (henceforth called Wallman
compactifications) as defined by Frink [1]. In [6], Nijastad shows that if
the set of multiple points in X is contained in some subset of X —X which
is normally and zero-dimensionally embedded in X, then X is a Wallman
compactification. It follows that all finite multiple point compactifica-
tions are Wallman. The authors, in & previous work [8], have shown that
every countable compactification is Wallman. The purpose of Section 2
is to generalize this by showing that all countable multiple point com-
pactifications are Wallman. Since there are examples where the countable
set of multiple points is not contained in any subset of X —X which is
normally and zero-dimensionally embedded in X, this does not follow
from the theorem of Njastad.

* Research supported by the National Science Foundation, Grant GP 6529.
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1. Let f be a continuous mapping of X onto the compactification x
which is the identity on X. }f f () consists of more than one point, ¥ is
called a multiple point of X.
A space is pseudocompact if every continuous real-valued function
on it is bounded. It is not difficult to see that X is pseudocompact if and
only if every nonempty zero-set in X meets X.

THEOREM 1. Every space which is not pseudocompact has a countable
mulliple point compactification.

Proof. Suppose X is not pseudocompa.ct Then there is a nonempty
zero-set Z C pX which misses X and |Z| > 2° ([2], p. 132).

Since Z is an infinite Hausdorff space, there is a countable discrete
subset 4 = {®, 2, ..} CZ.

Let D be a decomposition of X whose members are 4 —A, the
DPAITS {Zan—1, Ton}y # = 1,2, ..., and all sets {z} for ¢ X — A.

We will show that D is an upper semi-continuous decomposition,
of X. Let O be an open set containing {Lwn-i, #.}. Since A is discrete,
there is an open set Un, n=1,2, .., such that {z,} = U, ~ 4. Thus,
letting

V= (Umm1v Uzn) n X —(L—A)} 0,

we see that V is a saturated open set and {¥sn—1, Zen} CV C 0.

If A —A C 0, where 0O is open, then O contains all but a finite number
of elements of A, If infinitely many points of 4 are in X —O0, a limit
point of 4 would also be in X —0O since X —O0 is compact. Letting

V= 0—({tan| Ton—1 ¢ 0} © {&an_1| 224 ¢ O})

we see that V is a saturated open set and 4—ACV CO.

Finally, if s« X —A4 and {#} C 0, O open, there is an open set 14
containing @ such that Vo d=@. Thus {&}CV~0CO and VA~ O
is a saturated open set.

Thus the quotient space of the decomposition D is a Hausdorff com-
pactification of X which possesses a countable number of multiple points.

Thus we see that the Euclidean n-spaces and many other common
spaces possess countable multiple point compactifications. We will now
show that this is not always the case, no matter how large |fX —X| may be.

LeMMA 1. Every space X such that |X —X| is infinite has a countable
multiple point compactification if and only if every compactification ¥~ of
every infinite space Y allows a decomposition D satisfying:

(i) D is upper semi-continuous,
(i) if y e Y- then {y}e D,
(iii) the number of sets in D having more than one element is countable.

©
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Proof. First we notice that any decomposition of X whose quotient
is a compactification of X must be an upper semi-continuous decomposition,
in which the single points of X are elements. Hence the decomposition
is determined Dby its restriction to X —X. It is upper semi-continuous if
it is upper semi-continuous on clpx(fX —X).

Thus, any decomposition D of el;x(fX —X) satisfying (i), (ii), and (iii),
where ¥ = X —X, determines a decomposition of fX whose quotient
is a countable multlple point compactification of X.

Conversely, let ¥ be any compactification of ¥, and let W(w.) be
the set of all ordinals less than o,, where o, is the smallest ordinal of
cardinal 8,. Suppose |¥| < %5 where § is a nonlimit ordinal > 0.

I Z=FxW(ws), then BZ =T xW(ws+1) ([2], p.138). Let
X = BZ— (¥ x {wp}). Since ZCXCpZ, we have that X = pZ and
pX —~X = ¥ x {wg}. The closure of ¥ x {w} in X is ¥ x {wp). If X has
a countable multiple point compactification, it is determined by an upper
gemi-continuous decomposition of AX which induces on ¥ x {ws} (con-
sequently, on ¥) a decomposition satisfying conditions (i), (ii); and (iii).

‘We remark that this lemma allows us to consider all compaetifications
when looking for examples instead of restricting our attention to Stone—
Cech compactifications. But more important, the non-singleton sets of
the decomposition considered ocenr in ¥ rather than in Y-7.

LeMMA 2. If X ds an infinite discrete space, pX does not allow a de-
composition satisfying (i), (i) and (iii) of Lemma 1.

Proof. Suppose that D is a decomposition of X satisfying con-
ditions (ii) and (iii). By the axiom of choice, there is a set UCX which
contains exactly one element from each non-singleton set in ©. Since U
is open and closed in X, it follows that clyx U is open. From (iii), U is infinite,
hence not compact, so there is a ¥ € clax U ~ (X —X). From (ii), {y} ¢ D.
(Clearly, no open subset of clpx U is saturated; thus D fails to be upper
semi-continuous.

From Lemmas 1 and 2 we obtain:

THEOREM 2. There are spaces X, with |X—X| infinite, which do
not admit coundtable multiple point compactifications.

In particular, if N is the set of integers with the discrete topology,
the pseudocompact space )

X = BN X W (o, +1) —(¥ x {,})
hag no countable multiple point compactification.

2. In [1], Frink generalized Wallman’s method of eompactﬁieatioxi
Dy using & normal base of closed sets instead of the family of all closed
sets. Tf the normal base can be chosen from the zero-sets of continuous
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real-valued functions, the compactification is called a Z-compaectification
(cf. [8])-

We will now show that every countable multiple point compactification
is Wallman. A family & of sets in X has the trace property with respect
to X if for Fie T,

N i=1,..
N i=1,..

A simple criterion for X to be a Wallman compactification is that there
exist a base for closed sets in Y which has the trace property with respect
to X. This is shown in [7] and can be deduced from a theorem of Nji-
stad ([6], p- 271).

TEROREM 3. If X is a countable maltiple point compactification
of X, then 4t is Wallman.

Proof. Let M denote the countable set of multiple points. Let Z(X)
be the family of all zero-sets in X and let f be the quotient map from X
onto X. The family

3={ZCRX| ZeZ(X) and ' [Z]= clx 7}

,n}# O
implies that
s X #G.

is closed under finite unions and finite intersections, since
Gl,ngl a) Clﬁxzz = legx(zl [a) Zg) .

It has the trace property with respect to X since the closures in X of
zero-sety in X have the trace property with respect to X.

We will now show that J is a base for the closed sets in X. Let H
be & closed subset of X not containing . There is a continuous real-valued
funetion h on X vanishing on H, with h(2) = 1. Let + be a real number,
0<r< 1, which is not in the at most countable set A[M]. The set

{yeX[ hy)<r} is a zero-set in X s0 Z=Tn~ X is in Z(X). If

={yeX| hy)<r}, then VA X CZ, 50 VCTCZCT. Also, it yedZ,
then My)=7rs0 y¢ M. Thus ¢Z ~n M =@, HCVCZ and 2 ¢ Z.

The only remaining thing to show is that Z ¢ 3. Suppose p «f4(Z) —
—elpx Z. Then f(p) e M and f(p) e Z. Thus f(p) ¢V and p e f'[V], which
is open. But since VA XCZ and VA X =f'[V]1n X, we see that
P eclxf [V1C olyxZ. This contradiction proves that Z e J.

In [8], the authors have shown that if a countable multiple point
compactification is Wallman, then it is a Z-compactification. Thus we
have

CorOLLARY. Every countable multiple point compactification is o Z - com-
pactification.

Actually this is also obvious from the proof of the theorem, since
the traces of the members of J on X are zero-sets in X.
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