Atomic compactness and graph theory
by
Walter Taylor (Boulder, Colo.)

The aim of this paper is to answer in the negative a question of My-
cielski (see [9], Problem 484): iy every atomic compact algebra a retract
of a compact topological algebra? This question has been answered in
the affirmative by T.0f [8] in the case of Abelian groups, and by We-
glorz [14] in the case of linear spaces and the case of Boolean algebras.
Our example will be a graph, but we will also show how to convert it to
an example of an algebra which answers Myecielski’s question in the
negative.

1. Preliminaries. For background -in the theory of models and
application of the theory of ultraproducts to the theory of models, the
reader is referred to [2], [7], and [12].

Our source of definitions in topology is [1]. Notice in particular
that a compact topologieal space is assumed to be Hausdorff, except
in §8.

Our definition of atomic compactness will be the same as in [14], to
which we refer the reader for definition of satisfaction of a set of formulas
with constants. Briefly, a structure U= (4, R:) is atomic compact if
and only if every set of atomic formulas with constants in A which is
finitely satisfiable in %, is satisfiable in A

A compact topological structure is a’pair (3, T, where A = <A, Bier
is a relational structure, and G is a compact (Hausdorff) topology on 4,
such that for every t e T, the n(f)-ary relation R; is a closed subset of A"
in the product topology.

By a graph we mean a relational structure (A, R> where RC A is
antireflexive and symmetrie. A circuit of length k in A is a k-tuple of
distinet elements of A, each related to the next, and the lagt related
$0 the first. A set B C 4 is called independent iff B ~ B* = @. The chromaitic
number of A is the least cardinaln such that A is the union of n independ-
ent subsets. See [11] or [13] for further explanation of these ideas.

We will let L denote the first-order predicate language with no con-
stants, no function symbols, and one two-place relational symbol, E.
(B will also stand for the binary relation of whatever graph we are de-
seribing.) Given a graph &, we will let Lg denote the language L augmented
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by the addition of one constant ¢, for each g ¢ @. If U is any graph with
a fixed embedding i: G— U, then U can be supplied with an Lg structure
by letting each constant ¢, stand for i(g) in U. U=7T (resp. U =¢xV)
will mean that U and V are elementarily equivalent as L-structures
(resp. as Lg-structures.) U =4V will mean that U and V are isomorphic
as Lg-structures.

2. Topological compactness and chromatic number.

THEOREM 2.1. Suppose the graph A is a compact topological structure.
Then A has finite chromatic number.

Proof. We are given that R, the binary relation of the graph 4 is
a closed subset of A? in the product topology. Suppose A has infinite
chromatic number. Then let J denote the (proper) ideal of subsets of 4
of finite chromatic number. Let & be an ultrafilter on 4 extending the
filter of complements of members of 3. Thus

(2.1) (VE e F)(Ha e K) (b € K)({a, b> ¢ R) .

Since A is compact, F converges to some he A. (See [1].) If Uy and U,
are neighborhoods of h, then U, ~ U, e F, and so taking U, ~ U, as K
in '(2.1), we have {(a,d) e R~ (U, x U,). Since E is closed, <k, L) ¢ R,
which is a contradiction, since B is antireflexive. Q.E.D.

CorOLLARY 2.2. Suppose the graph G is a retract of a compact topological

structure. Then G has finite chromatic number.

. Proof. Let § denote the binary relation of the graph G. We are
given a compact topological structure <4, T, and we are given homo-
morphisms (see [14], p. 291) p and ¢

<G, 8> 4, T

thare e 1 i8 t‘he identity map on @. Clearly, since p is a homomorphism,
T is a,ntlre.ﬂexwe. Next we let R denote the relation which is the union
of T and its converse, namely:

(Va e 4)(Vbed)(<a,by e R iff (<a,bye T or b, ayeT)).

Clearly <A, R} iy a compact topological graph which has @ as a sub-
graph. By Theorem 2.1, & is thus a subgraph of a graph of finite chromatic
number, and hence & has finite chromatic number. Q.E.D.

3. Elementary extensions of i
) graphs. Througl -
tion ¢ and H will stand for graphs. P nehont this e

DEF]NITI()N 3.1, Let gE(;¢ The valence Of. is the T lndlhty Of
he set {M. <9; ’M) E‘R}‘ ’ o

icm

©
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DEFINITION 3.2. If ACG, and BC @, then A and B will be said
to Dbe wunrelated iff no element of A is related to any element of B.

THEOREM 3.3. Suppose G = H. If G has a finite number of circuils

of length &, then H has the same number of cireusts of length k.
Proof. Obvious.

THEOREM 3.4. Suppose each element of G has finite valence. Then if B
is an elementary extension of &, B =2¢ @ v B, where @ and B are unrelated.

Proof. Obvious.

THEOREM 3.5. Suppose each element of G has finile valence, and @
has only finitely many circuits of length k for each k=3,4... Then if B
is an elementary exiension of &, B =¢ G v T, where @ and T are unrelated,
and T is a tree, i.e. T has no circuits.

Proof. By Theorems 3.3 and 3.4.

TupoREM 3.6. If G is as in Theorem 3.3, then G is a retract of each
of its elementary ewtensions.

Proof. If ¥ is an elementary extension, then by Theorem 3.5,
E =g Gu T, where G and T are unrelated, and so we need only define
the retraction on 7. But since T is a tree, T' has chromatic number 2
(see [11]), and so T may be mapped homomorphically onto any two
related elements of G. Q.E.D.

4. The main result. We will use the following result of Weglorz
([14], Theorem 2.3):

THEOREM 4.1. A relational structure U is atomic compact iff A is
a retract of every elementary extension of .

COROLLARY 4.2. Suppose each element of the graph G has finite valence
and @ has only finitely many circuits of length k for each k=3, 4... Then @
is atomic compact.

Proof. By Theorems 3.6 and 4.1.

Tn order to construet our example, we will use the following theorem
of Erdos. (See [4].)

TaEoREM 4.3. Let k and m be natural numbers. Then there is a finite
graph with chromatic number = m, and with no circuits of length < k.

Remark 4.4. The proof of Theorem 4.3 in [4] does not involve an
explicit construction, but rather is probabilistic. in nature. Graphs of
high chromatic number and no cireuits of length < 6 are explicitly con-
structed in [3] and [6]. Also see §7 of this paper.

DEFINITION 4.5. For >3, @, denotes an arbitrary (but fixed)
finite graph of chromatic pumber > n having no circuits of length < .

DEFINITION 4.6. Let @ be the graph G, v G, v G ..., Where each
two distinet G's are unrelated.
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THROREM 4.7. G is alomic compact but nol a relract of a compact
topological structure. An algebra with such properties also exists.

Proof. Clearly @ has infinite chromatic number, and hence by
Corollary 2.2, @ is not a retract of a compact topological structure. But
clearly G satisfies the hypothesis of Corollary 4.2, and so @ is atomie
compact. If we wish an algebra, we define G* to be @G with two
new elements, 0 and 1, adjoined, and we define the binary operation
F: GFx G as
0 i g, h>¢R,

1 if <_(], 7L> elR.
Then the algebra <G*,F) is atomic compact but not a retract of any
compact topological algebra (or structure). Q.E.D.

ProerEM 4.8. Does there ewist an atomic compact semigroup which
is not & relract of a compact topological semigroup (or structure)?

Fig, )= {

5. Elementary extensions of G.

TuEOREM 5.1. Let H be a graph of chromalic number k. Then H has
a subgraph of chromatic number T each of whose elements has valence
=>k—1.

Proof. Obvious. (See Theorem 14.3.1 of [11]).

DepINIrioN 5.2. The graph @ is defined as in Definition 4.6, with
the further stipulation that each element of @, have valence > n—1.

DermNiTIoN 5.3. A graph (or tree) is said to be infinitely bmnching
iff each of ifis elements has infinite valence.

COoROLLARY 5.4, If B is an elementary extension of @, then B S2¢ G u T,
where G and T are unrelated, and T is an infinitely branching tree.

Proof. Theorem 3.5 and Definition 5.2,

The aim of this section is to prove the converse of Corollary 5.4
(see Theorem 5.8).

LEm 5.5. Any non-principal ultrapower of a countably infinite set
over & countably infinite index set has cardinality 2. A non-principal
ullraproduct of finite seis over a countably infinite indes set has cardinality
2% or is finite.

Proof. Theorem 6.3 and Corollary 6.6 of [7].

Lievva 5.6. Let 8 and T be trees with the same number of components
and the same valence at each element of each. Then S = 7.

) THEOREM §.7: Lot H= G v Ty, where G and T, are wnrelated, and T,
1; c:} countable, infinitely branching tree. Then B is an elementary extension
0 .

Proof. Let D be a ?on-pri.neipal ultrafilter on a countably infinite
set I. By Corollary 5.4, /D ~¢ @ u 8, where § is an infinitely branching
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tree. Clearly, by Lemma 5.5, § has valence 2% at each element, and 8
has 2% components. A similar ecalculation shows that

(Go ) D=aGu s,

where each element of 8 has valence 2 and S’ has 2% components.
Thus by Lemma 5.6,

¢|D 22 (G o 1D,

and so G =¢@ v T,. QE.D.

TuworeM 5.8. (Converse to Corollavy 5.4.) Suppose BH= Gu T,
where G and T are unrelated, and T is an infinitely branching tree. Then B
is an elementary emtension of @.

Proof. Since the language L¢ is countable, we may apply the Skolem—
Liwenheim Theorem (see e.g. [2] or [12]) to yield a countable Lg-structure
A such that

A=g@ul.

Reasoning similar to that of Corollary 5.4 shows that 4 must be of the
form G v T,, where T, is as in Theorem 5.7. Thus,
S G=¢(@oT)=cAd.

Thus @ =¢ (¢ u T). QE.D.

6. Further applications of the graphs G Considering an
ultraproduct of the graphs Gy, n =1, 2, ..., We can easily see the following
two theorems:

TrEoREM 6.1. The theory of graphs of chromatic number 2 is not
finitely axiomatizable.

THEOREM 6.2. The theory of infinitely branching trees is not finitely
aztomatizable. . .

Tinally we make a somewhat different application of Theorem 4.3
(of Brdds.) We will let H, be a graph of chromatic number exactly & and
having mo circuits of length < n. An ultraproduct of the H,'s has no
circuits, and hence

TEEOREM 6.3. The class of graphs of chromatic number & (3 < k§ No)
is not elementary.

7. Alternate construction. Theorem 4.7 remains true if the
graph @ is replaced by a graph H = HyvH;u H;v ...y Where.eac'h H,
(n=3,5,7,..) has chromatic number > #, and has no 0(.1&' circuits of
length < n. Such graphs H, are constructed in a manner similar tf) that
given by Erdés in [5]. The graph Hy isa finite subset of the unit b:i\,]l
in %-dimensional Buclidean space. Two elements of H, are related iff
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their distance exceeds 2 —e. It is easy to check that one obtains the desired
properties of Hy if ¢ is small and & is large. It is clear that no odd circuits
are added to any elementary extension of H, and so any elementary
extension of H is of the form H v K, where H and K are unrelated, and X
contains no odd circuits. Thus Theorems 3.6 and 4.7 are true for the
graph H. I do not know how to extend the ideas of § 5 to the graph H.

8. Atomic compaciness defined topologically. Although we
see that it is not possible to characterize atomic compact structures
as retracts of compact topological structures, it is possible to characterize
atomic compactness in terms of a certain (non-Hausdorff) topology. In
this section we will be given a relational structure U = <4 y Bdter,
and we will let L be the first-order language corresponding to 9.

DerINITION 8.1. Let E denote the set of all formulas in the language L
with one free variable and of the form

(Hay) (Hg) oo (Hom) (ay A @y A v A i)

where m and 7 are natural numbers and the a; are atomic formulas with
constants in 4.

DEFINITIO%\I 8.2. Let P denote the set of all positive formulas in the
language L, with one free variable, and with constants in A.

DerinrTioN 8.3. Let G be the topology on 4 which has the subbase
of closed sets:

{{fred: Al=D2)}: P A},

The following theorem is a corollary of a theorem of Myecielski and
Ryll-Nardzewski ([10], Theorem 3):

TaeorREM 8.4. The following are equivalent:

(i) A ds atomic compact.

.(ii) Let X2 be any set ‘of formulas from B, all having the same free
'c.;ar‘;[zble Ty« If every finite subset of X is satisfiable in A, then X is satisfiable
m .

. CoroLLARY 8.5. U is alomic compact iff the topological space (4, G
8 compact.

Proof. Theorem 8.4 and the Alexander Subbase Theorem.

T]:EEORTTQM 8.6. If A is atomic compact and W « P, then the set {wed:
U= ¥(x)} 15 closed in the topology G.

Proof. We may take ¥ to be of the form
(Qz%)m(@n?]n) (€1V ...V Cm) 5

where each ; is or V, and where each ¢; is a conjunction of atomic
formulas. The proof is by induction on the number of appearances of V

©
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in the formula ¥. If V does not appear, our set is a finite union of subbasic
closed sets and hence closed. Now suppose there i3 at least one appear-
ance of V, i.e. ¥(z) has the form

(Fy) (FYs) ... (Ays) (V2)D (2, 25 Y1y ooy Yo)

where @ has fewer appearances of V than does ¥. Now we let F stand
for an arbitrary finite subset of A. Since ¥ is atomic compact, it is clear
that ¥(a) is true in U iff every possible sentence of the form

(Fyy) ... (Hys)bé\Fds(a; Dy Yry ey Ys)

is true in 2. Clearly then, by induction, our given set is an intersection
of closed sets, and hence closed. Q.E.D.
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