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Then
Mg = U {Bsay.oaqt §=1,2, 0,01, a; €}

is & locally finite closed collection of X x ¥. Thus [J 4G is a o-locally
finite closed covering of X x ¥ refining S. By Lemma 4.9 X x ¥ is
countably paracompact and the proof is completed.

4.11. Remark. Almost all propositions about X-spaces are also true
if we replace X-spaces with X(m)-spaces. The following are such ones:
Theorems 1.8, 3.2, 3.6, 3.9, 3.13 and Corollaries 1.8, 1.19.
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A generalized contraction principle
by
R. E. Chandler (Raleigh, N. C)

Various versions and generalizations of the Banach contraction
mapping theorem ([1], p. 160) have been given. For only two of many
examples see [4], p. 43, 50 (where an application is given by solving
the Volterra type integral equation) and [2] (where an application is
given to analytic mappings of a compact connected set in the complex
plane into itself.) We discuss a general definition of contraction mapping
here for which we can prove the necessary result that a contraction mapping
of a complete metric space into itself has a unique fixed point. In order
to make this definition it is convenient to work with uniform spaces
having a countable symmetric base rather than metric spaces although,
of course, the two are equivalent.

See Kelley ([3], Chapter 6) for the necessary terminology and results.
Tn what follows Z will denote the integers and 4 the diagonal of
X xX (4= {=,o)reX}).

DerNrTIoN. Let (X, U) be a uniform space. A mapping f: XX
is u-contracting provided there is & collection of symmetric sets {Vaulnez,
cofinal in U, (with respect to the ordering U > U, if and only if U, C U,)
which satisfy

Q) ViCVvy it i<j, (\Va=4, UVe=XxZX,
nezZ nez

(ii) for each n ¢ Z there is an integer p{(n) >0 such that {p(n)|n € Z}
is bounded and Va—pwmy © Vipm C Vn,

(i) if (#,9) € Va then (f(2),F(¥)) ¢ Va-s-

Lena 1. If f: XX is u-contracting then [ has at most one fized
point.

Proof. Suppose f(#) = » and y # . Let n be the least integer for
which (2, %) € Va. (n exists since M Va=4 and |JVs= X xX.) Then
(#,y) €Vn 50 (f(w),f(y)) € Va1. If 4 =f(y) we would have (2,%) € Vo,
a contradiction.

LEyma 2. If f: XX is u-coniracting then so is any iterate, f¥, of f.

Proof. The sequence of ¥, which demonstrates that f is u-contracting
will suffice.
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Lemma 3. If f: XX is u-contracting then f is uniformly continuous.
Proof. Define f; I XXX XX by fulw,y) = (Fla), F(w) -
V) D Ve so that  fi'(Va)eW.
TEEOREM. Let f: XX be u-aontmcting where (X, W) is a complete
uniform space. Then there is exactly one e X for which f(2) = x,.

Proof. Let p= max{p(n)| # Z) and let & be an arbitrary point
of X. Let g denote the pth iterate of f. Rename, if necessary, the V, so
that (z, g(#)) € Vo. Then

(g(w)1 f‘("’)) eVop, (gz('ﬁ)’ .(.’3(-'5)) €V _spy .oy (gn(w)v, .(]m'H(m)) eVonpy ey

Thus ey (g7F9(@), 9¥H0H(3)) € Vet -

(g7(@), gv9%2(@)) € Vnp © Vigtayp® - © Vprg—1n © V—tit i «
Now V—tnrgw CV-tnse-np 80 thatb

V-tntg—1p ° V-torgp C Vetnta-1p © Votntg—1p C V—(utg—2p -
Consequently, we see that

Vorp o Vetntam e oo o Votntg-11p ° Vetotap CVnp © Vg S Viniip
Bjor each U e ‘IL there is an N such that if (n—1)p > N then Va1 CU
gince {Fulnez is cofinal in W. Thus, if » > N/p+1 and ¢ = 0, we have
(g™), g7+ (@) € V—(n-1p C U. Therefore, {g"(w)}n-1 is a Cauchy sequence
in (X, W). Let o= limg"(z). Since g is uniformly continuous we have
g(ag) = g(lim g¥(x)) = Um g+ (w) = @, and 50 z,is a fixed point of 9. However,

9(f (@) = flg (@) = fl) .

Thus, f(2,) is also a fixed point of g. We conclude that f(z,) = w,.

COB.OLL.ABY 1. [Banach.] If f: X—X, where X is a complete meiric
space (metric &) and d(f(2), f(y)) < ed(z,y) for some ae[0,1) and all
z,y e X, then f has a unique fived point.

Proof. If a =0 then f i3 a constant mappi i
) ! i pping and so has a unique
fixed point. If a5 0 then in X X X define V, = {(z, 9)| d(x, y) < a-"}
neZ. Then {Vy}lncz shows that f is u-contracting. ’

COBOILAR‘Y 2. [Kolmogoroff-Fomin.] Suppose f: X—+X, (X,WU)
a wmplete uniform space, and suppose some iterate of f, say f% is u-con-
tracting. Then | has a unique fized point. ’

Proof. By the theorem f* has a unique fixed point, say «,. Then
P (@) = F(7*(@0)) = fla0)

and so f(x,) is a fixed point of f% Thus, f(x
. = m,. If =
would have f%(y) =y and again, y = wo.’ W= I fly) =y then we

©
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COROLLARY 3. Suppose f,g: XX, (X, W) a complete uniform space
and suppose f(g(®)) = g{f(@)) for all @ ¢ X. If either f or g is w-contracting,
then f and g have a common fixed point.

Proof. Suppose f is «-contracting. Then f has a unique fixed point,
say . Then f(g (wo)) = g(f(mo)) = g(u,) whence g(zo) = 2.

From the proof of the theorem it is clear that the definition of
u-contracting is slightly more stringent than actually necessary. In
particular, the requirement that for each n e Z there is a p{n) >0 such
that Va—pm © Va-ptm C Va can be relaxed to state that for each n less
than some integer N there is a p(n) > 0 such that Vopim © Va-piny C Voo
Algo, for a given f: XX we do not need that UZV,n = X x X. Rather,

n

we need that for some x e X there is an m e Z for which (z, f(@)) €Vn.
COROLLARY 4. [Bdelstein.] If f: X=X is (e, a)-uniformly locally

contractive (d(f(m),f(y)) < ad(z,y) when d{z,y) <e, ae[0,1), and € > 0)

where (X, d) is a complete metric space and if for each (#,y) ¢ X X X there

is an integer m > 0 such that d{f*(x), ")) <&, then f has a unigue fimed
Ppoint.
Proof. Define

Vew={(z,9)] dlz,y) <ae}, n=0,1, 2y e

V= {(l‘, I (fn(m),f"(y)) eV}, n=1,2,
(If « =0 define

Vo= {(z, ¥l d(z,y) < &}

and

and

Vo= {9l d(‘”:?])<82—n}7 n=1,2,.).
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