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vy Dipnoty Vitony Vitntly Vitntsy -y Viten—1. Continuing in this way, we
arrive at the vertex v;ygm = 951, from which we proceed to vj—n, v;_p41, ...

., ¥j—z. The path P thus far contains all vertices of D with the exception
of »; so that D contains the ares v;_2v; and »;9;. Conversely, suppose v;v;
is an arc of D and j—i =1 (modn). We then construct a path P’ which
begins as follows: ¥4, ¥y Vit1y -ry Vic1y Vitny Vit1y Vitay vooy Vigno1, Viton.
We then continue as before until we reach the final vertex of the
type it which is not thus far on P’. The next vertices of P’ would
then be Ditiny Virg—n—1, Vittt—tmy -oy Vitin—y. SiDCR j # i4-(141) n-1,
the vertex of P’ following :im—1 necessarily defines an outer transitive
cycle of length less than n-+2, and this is a contradiction. Because v,v,
obviously belongs to D, we have 1—p =1 (mod=n), or there exists an
integer % such that p = nk. If for each ¢, 1<i<n, we let Vi=
= {v5] § = ¢ (modn)}, D is seen to be the digraph D(n, k). This completes
the proof.

Rach randomly hamiltonian graph may be considered a randomly
hamiltonian digraph (obtained by replacing each edge by a symmetric
pair of arcs), but among the randomly hamiltonian digraphs with p
vertices, only 8y, K,, and D(2,p/2) are (ordinary) graphs. Thus, we
obtain as a corollary the result presented in [1].

CoROLLARY. A graph is randomly hamailtonian if and only if it is a cycle,
a complele graph, or a regular complete bipartite graph.
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Extended operations and relations on the class
of ordinal numbers

by
Arthur L. Rubin and Jean E. Rubin (Lafayeite, Ind.)

§ 1. Introduction. This is intended as a sequel to the paper An
extended arithmetic of ordinal numbers by John Doner and Alfred Tarski.
Thus, our notation is the same as theirs. For the sake of convenience we
shall repeat several of their definitions. When referring to a theorem,
lemma, ete. in the Doner—Tarski paper we shall prefix the numeral by the
symbol “D-T.

Lower case greek letters a«, S, y, ... represent ordinal numbers and
the class of all ordinal numbers is denoted by Q.

DerINITION 1. For each y€Q, 0, is a binary operation from QxQ
to 2 such that for all a,f e,

) a0, = a+p, if y=0;

(i) a0,8= |J [(a0,n)0pa], if y>1.
n<pi<y

DrrFINITION 2. For each y e, R, and L, are relations such that

(i) By, L, C X Q5

(if) For all a,f e
aR,p iff
oL,p iff

(HL3)(5 # 0 and 00,6 = B),
()5 # 0 and 80,a=B).

(For y= 0,1, R, and L, have been deseribed in Rubin [3].)

Our results include the following: If A = {a: o R, §} for some f,y € Q,
B>0,and @ # XC A then | J X ¢ A. If y is a limit ordinal and Q"= £
~{0}, then <Q', R,> is a complete lattice. Moreover, for y & limit ordinal
we have obtained necessary and sufficient conditions for O, to be com-
mutative and associative. Also, for a, 8, y 2 we have obtained necessary
and sufficient conditions on o’ such that a0, = a'0,8.

We shall assume the traditional arithmetic of ordinal mumbers.
(Sierpitiski [5] is an excellent reference.) We frequently use the following

well-known result.
15%
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LEMMA 3. For each aeQ, a#0, there is a unique new, n 0,
unique ordinal numbers gy, Gy, ..., Gn SUCh that ay> a3 > ... > an, and
unique natural numbers a; %0, = 0,1,2,...,n such that
(%) a = %00+ ...+ 0, .

The form (¥) will be called the normal form of a, and e, is called the
degree of a. See for example, Sierpiniski [5], pp. 319-323 for a proof of
Lemma 3. ’

Main numbers also play an important roll in what follows, so that
even at the risk of being redundant, we shall restate their definition and
some of their properties.

DerFINITION 4. (i) If O is a binary operation from 2 xQ to 2 then
8> o is a main number of O if and only if for all a,f <4, aOf < 4.

(il) M(0) denotes the class of all main numbers of O.

(iii) Xf 9 is a limit ordinal

M,= [\ M(0,).
<y

The main numbers of O, are its fixed points. Thatis, d is 2 main number
of 0, if and only if >3 and a0,6 =4 for all a, 2 <o < § (D-T 46).
In the case that y > 2, we have that for all o, 2< a< 4, § e M(0,) if
and only if ¢0,6= 6 (D-T 47). Thus, for example, the main numbers
of 0, (addition) are positive powers of w; the main numbers of 0, (multi-
plication) are all ordinals of the form «®", 5 € 2; and the main numbers
of 0, (essentially exponentiation) are » and the epsilon numbers.

LevmA 5. If 6 « M(0,) then 6 is a positive power of w.

Proof: D-T 43 (ii), D-T 52 (i), and D-T 57.

LevmmA 6. (i) If y=1 then 20q2[w(l+95)] is the n-th successive
element of M (Og,) = M (Osp1a).

(i) If y=>1 and a>2 then aOya[w(l+n)] is the 5-th successive
element of M (0s,) = M (Osy11) emceeding a.

(i) If y = \Jy # 0 then 20,(341) = 30,(2-+n) is the n-th successive

element of M,.

(iv) If y= Uy # 0 and a >3 then a0,(2+n) is-the n-th successive
element of M, exceeding a.

Proof. Part (i) follows from D-T 49 (ii); (i) from D-T 48 (ii);
(i) from D-T 37 and D-T 55; and (iv) from D-T 5d4.

Levya 7. o0,8 is a limit ordinal if any one of the following conditions
hold,

() y>w, a,>2, and a= =2 does not hold.
() 2<y<w, a=2 and > o.
(i) 3<y<ow, e 0, and f > 2.

icm°®
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Proof. Part (i) is the same as D-T 34. Part (ii) follows from D-T 33
(iif) and D-T 48 (ii) if 8 is a limit ordinal. If 8 is not a limit ordinal, use
D-T 9 to reduce it to the case where 8 is a limit ordinal.
To prove (iii) note that if § is infinite (iii) follows from (ii). If g is
finite use D-T 9 to reduce it to (ii).

§ 2. The equation «0,f=0a0,8. If < B and a>1 then it
follows from D-T 4 (ii) that «0,8 < «0,p’. However, we do not have
strict monotonicity in the first argument of 0,. For example, n+w =
foralln e w;n-o= wforallnew,n # 0;infact 0,0 = wforallsa, y € w,
n # 0 because w is a main number of O, for all y ¢ w (D-T 2 (iv)). It does
follow from D-T 6 that if ¢ < o’ then a0, < ¢'0,8. It is the purpose
of this section to determine for which values of o', 0,8 = o0, .

First we give some negative results—values of a, g, y, and o for
which equality does not hold.

THEOREM 8. If 2<a<a’, |UB#B, and \Jy #y then
a0, <d0,p.
Proof. D-T 11.

The cases in which a< 2, a’ <2, f < 2 are trivial (see D-T 2) so
we shall omit them.
Our next two results hold for all y > 1.

THROREM 9. If y 21, f= B #0, and 3<a<d < o then
a0,8=1a"0,f.
Proof. D-T 29.
TEEOREM 10. If y=1, =B #0 and
ay # 0 1is the normal form of a, then
a0, = w*0,8.

Prootf. If y=1, 2, or 3, the theorem follows from the traditional
arithmetic of ordinal numbers. (See for example Rubin [4], § 9.1.)

If a = w, the theorem clearly holds. If a > w* then by Lemma 5,
there are no main numbers between w® and a. Consequently, if y = 2{42
for some £ > 1, the theorem follows from Lemma 6 (ii); and if y = {Jy # 0,
use Lemma 6 (iv) to get the desired result.

Suppose y = 2{+1 for some { > 2. Then, by D-T 33 (iii),

a0,B = aOyaf .

It follows from elementary properties of ordinal numbers that since f
is a limit ordinal ef = w=f. If { = {41 then by Lemma 6 (ii),

(%)

a = W™yt ... 0"y,

a Oy w®f = w® Oy w™f .
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Tt £=|JL #0 then by Lemma 6 (iv), equation (%) also holds. Thus
in either case,

a0,B= w*O0yw™f= w0, [D-T 33 (iii)] .

We now consider the case that |y 7 y. It follows from Theorem 8,
that in this case we need only consider the case that # is a limit ordinal.

TEEOREM 11. If y= 2041 for some [ >2, f={Jf %0 and 2< a
< o then

a0, = w08 iff
Proof. Suppose y = 2{+41 for some (>

wfp=4p.
2. Then by D-T 33 (iii),
aO,,ﬁ = (10-_1,;(1[3 = aOg;ﬂ
and
00,8 = w0ywf.

Since there is just one main number which is larger that « and not
larger than o (namely o itself) and since 1—|~,8 B, using Lemma 6 (ii)
or Lemma 6 (iv), we obtain

Q)Oz;a)ﬂ = CLOZ;-COﬂ .
Therefore,
a0,f= w0, iff aO0xf=a0xwp
itf  wp=pg [D-T4(ii)].

THEOREM 12. If y = 20+1 for some £ =2, f= JB#0, and a>1

then
00,8 = w0, iff wf=4. .

Proof. The proof is similar to the proof of Theorem 11, but theve

are a few more details to worry about. By D-T 33 (iii) we have

1) o @0, = w0z w°p
and
(2) (l.)“+607ﬂ = otd Ozgwwo’g .

It is clear from (1), (2) and the monotonicity laws (D-T 4 and D-T 6)
that if w’f # p then equality does not hold. So suppose W’ =B,

We note that there are at most «** main numbers of M(0,)
exceeding w® and not exceeding w*+s,

Case 1. {= | J{ 5 0. In this case it follows from Lemms 6 (iv)
and the fact that

(3) a)a+d+wa+aﬁ —_ wn-Hﬂ ,
that
(4’) w“J""Oz; wa+6ﬁ = &’“02; (D‘H'Gﬂ .

©
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Case 2. {={¢"+1 and a > w. Then

{1+ wmtof) = watop

Thus (4) also holds in this case because of (3) and Lemma 6 (ii).

Case 8. {={"+1and 1<a<ow Let a=14qa where 0 <a’ < o.
Then

o1+ 0% +9f) = wotog |

If 6 > o then a’4- 6 = o} 6 and the proof proceeds as in Case 2. Suppose
1 <8 < . Sinee B is a limit ordinal there exist ordinal numbers & and 7,
&> 0 such that g = w¥(y+1). Thus, if £ > o then

¥ = getag

and the proof proceeds as in Case 2. Suppose then, that 1 <
In this case w’f s B contradicting our assumption.

Thus in all 3 cases (4) holds. Therefore, it follows from (1)
that if w’8 = B then

a b, §< w.

(2) and (4)

00,8 = 00,8 .

Before proceeding it is convenient at this point to introduce some
notation. It follows from D-T 2 (ii) that for each a>1, y>1 and 8
there is exactly one B such that

a0, <6< a0, (f+1).

We denote this unique § by ¢.,(8). Thus,
DeriNtTIoN 13. If e =21, y = 1,

(1) %,7(5) =f M a0,8<5<al,(f+1).
(i) @6)=p iff 30,8<5<30,(8+1)
LEMMAl-i If a=3, =2, and y= |y =0 then
a0,f = (60,p5,(a)) 0,8 for all =3
(In the case 6 = 3 we get,

a0, = (3 quJ?(a)) 0,8.)
Proof. By the definition of g;,(a) we have
00,@s(a) < a< 50,,(<p,5,y(a)+1) .

It follows from Lemmsa 6 (iv) that there are no main numbers of O,
between. 60, ¢s,(a) and a. Thus the lemma follows from Lemma 6 (iv).

Levwa 15. If a=2, f= JB#0 and y=2{+2 for some [=>1
then

a0,B = (00,p5,(a)) 0,8  for all 53
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(In the case 6 = 3 we get
a0, = (307‘777(‘1)) 0,8.)
Proof. The proof is the same as the proof of Lemma 14, using
Lemma 6 (ii) instead of Lemma 6 (iv).

Before considering the general solution of the equation with y a limit
ordinal there is one annoying special case to consider.

THEOREM 16. If y= Jy # 0 and 2 < < w then
20,8 <30,8.

Proof. If f=2 then 20,8=4 (D-T2(ii)), and 30,8¢M,
(Lemma 6 (iii)). If B > 2 then there is a p’ ¢ w such that § =3+44". By
D-T 37,

20,6 =30,(2+4")
<30,(3+6)
=30,8.

THEOREM 17. If y= {Jy # 0, 2<a< ¢, o’ < B < o and either

az3and f =2, or a=2 and B > w, then the following three conditions
are equivalent:

1 a0,f = a'0,f;
(@) pla)+B = gla’)+F;

(8)  The ordinal number of (X,<) 4s less than w® where

[D-T 4 (if)]

X={oeM,: a<po<a}.
Proof. I a=2 and #> o then it follows from D-T 37 that
a0,8=30,8.
Therefore, we can assume a >3 and f > 2.
Let 6= p(a) and 8’ = ¢,(a’). Then by Lemma 14,

20,8 = (30,5)0,8
@0, = (30,80,8.
Let f=14-p" and use D-T 27 (i), thereby obtaining,
40,8 =30,(3+4),
@' 0,8=30,(8+p).
Thus the equivalence of (1) and (2) follows from D-T 4 (ii).
To prove the equivalence of (3), let 4 be the ordinal number of

(X,<) where X={peM,: a<g<a}, and let g= 24 B". Then it
follows from Lemma 6 (iv) that

@'0,8 = a0,(24+2+5") .

and
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Thus, a0, = o'0,4 if and only if A+ 5" = . The latter equation holds
if and only if 1< of.

Next, we consider the case where y is even but not a limit ordinal.
THEOREM 18. If y = 2{+2 for some =1, =B #0, o®<§
< o1, and 2 < a < o then the following three conditions are equivalent
(1) a0, = a'0,8;
(2) e fa)+ 8= e (a')+ B;
(3)  The ordinal number of X , <) s less than o where
X={peM(Oy): a<p<a}.

Proof. The proof is similar to the proof of Theorem 17 using
Lemma 15, D-T 32 (i) and Lemma 6 (ii) instead of Lemma 14, D-T 27
and Lemma 6 (iv) respectively.

Thus, theorems 8—12, 16-18 give necessary and sufficient conditions
for the equation

a0, = a' 0,8

to hold for y > 3. If y =0, O, is addition and necessary and sufficient
conditions for equality are easy to obtain when a, o’ and f are all written

* in normalform. If 1 < y < 3 then it follows from Theorem 8 that if g = |_J

then equality does not hold and it follows from Theorem 10 that it is
sufficient to consider values of a and o’ which are either finite or powers
of o. Using these results and traditional properties of ordinal numbers
it is an easy matter to determine whether or not «0,f = o'0,f for
y=1,2,3. We leave the details to the interested reader.

§ 3. The commutative and associative laws for 0,, where
y= |y # 0. In this section we shall give necessary and sufficient con-
ditions for the commutative and associative laws to hold for 0, when y
is @ limit ordinal.

TEROREM 19. If y= Uy % 0 and §> 2 then 20,8 = 0,2 if and
only if =3 or B = p+1 for some ¢ e M(0,).

Proof. If =3 then D-T 37 implies that 20,8 = 0,2. Suppose
f = o-+1 for some pe M(0,). Then

20,8 =20,(e+1)

=(20,0)0,2 [D-T 27]
= 00,2 [D-T 46] -
= 40,2 [D-T 26] .

Conversely, suppose 20,8 = $0,2.
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Case 1. 2< f< w. There is a p’e¢w such that f= 344 Thus,
20,8=20,(3+8
=30,(24p4"). [D-T 37]
Also, it follows from D-T 26 that
$0,2=30,2.

Therefore, if 20,6 = $0,2 then p'= 0 so f=3.
Case 2. f = w. In this case it follows from D-T 37 that
20,8=30,8.
Moreover, by Lemma 14,
80,2 = (30,¢,(p)) 0,2
= 30)’(%(/3)‘1‘1) .

Thus, if 20,8 = 0,2 then f = ¢,(8)+1. It remains to be shown that
®(B) e M(0,).
It follows from the monotonicity law D-T 7 and Definition 13 that

#(B) < 30,9,(8) < @ (B)+1 .
By D-T 34, 30,¢,(8) is a limit ordinal, so we must have

#(B) = 30,9,(B) .
Consequently, D-T 47 implies ¢,(8) « M(0,).

[D-T 27]

To extend the preceding result to a > 3, it is convenient first to prove
3 lemma.

Lmvua 20. If y= Uy #0, a>3, and o) > 2 then a < guy(f)
€ M(0,) if and only if B = @u,(B)+ A for some A< a0, @a.(B).

Proof. Let 6= q,,(B) and suppose f= -+ for some A< a0,6.
Then by Definition 13,

0,8 < 6+2 < a0,(841).
By D-T'7, < a0,8. If < a0,8 then sinee a0, e M, C M(0,),
0+ (a0,6) = a0,6.
Since 1 < a0,48, we obtain
6+2< a0,

which is & contradiction. Hence, § = a0,4. Therefore,

s it follows from
D-T 5 (ii) and D-T 47 that

a<de M(0,).

©
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Conversely, suppose a < § € M(0,). Then

a0,(8+1) = (a0,6)0,2 [D-T 27]
=50,2 [D-T 47]
>6-9 [D-T 8]
=545.

Therefore, by D-T 47 and Definition 13,
00,0 =06<B<8+6.

This implies that there is a 1< 6= a0,6 such that f= 641, which
completes the proof of the lemma.

TEEOREM 21. If y= (Jy #0, 3<a<f, and a=1-1+d then the
following conditions are equivalent

(1) a0,p = 0,05
(2) B = pay(B)+0a’;
(3) B =o4a - for some p such that a < o ¢ M(0,).

Proof. By Lemma 14,
BOya= (a Ov%,r(ﬁ)) Oya

= a0y(puy(B)+a). [D-T 27]

Therefore, by D-T 4 (ii), 0,8 = $0,a if and only if f = g.,(f)+ ¢,
which proves the equivalence of (1) and (2).

By hypothesis, 3 < a < . Therefore, if (2) holds it follows from
Definition 13 that @.,(f) > 2. Moreover, by D-T 5 (ii), o' < a0,p,,(8).
Thus, Lemma 20 applies and we obtain (2) implies (3).

Suppose (3) holds. Then

a0yf = a0,(0+d)
— (0,0)0ya
=00,a.

[D-T 27]
[D-T 47]

On the other hand since o' < a< p, and there are no main numbers
between ¢ and g¢-a', it follows from Lemma 6 (iv) that

BO,a= (¢+a)0,a= 0ya.

Therefore, (3) implies (1) and the proof is complete.
Thus, we have shown that y= |y # 0, 2<,a<§, and a=1+a’
then a0, = f0,a if and only if either

e=2 and f=3
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or
B=o+d

The next theorem describes necessary and sufficient conditions
for O, to be associative, if y is a limit ordinal.

TEEOREM 22. If y={Jy %0 and a,B,0 > 2 then
(20,$)0,6 = a0,(80,0)
if and only if f<deM(O,)
Proof. Let 6 =1+¢'. Then by D-T 27,

(20,8)0,6 = a0,(f+0) .

for some ¢ such that a < g e M(0,).

Thus, by D-T 4 (ii),

(a0,$)0,6 = a0,(80,0)
if and only if
(%) B+ =80,8.
‘ If < éeM(0,) then it follows from D-T 47 and elementary prop-
erties of ordinal arithmetic that
B+6=p0,6=28.
So (%) holds.

Converse{y, suppose (%) holds. Then one of 8 or § must be larger
than 2. (For 1f B=48=2 then §+6' =3 and by D-T 2 (iii), 0,6 = 4.)
It § > 2 then it follows from D-T 54 that 0,6 ¢ M, If6>2and p=2
then
- $0,6=230,8' [D-T 37]

eM,. [D-T b4]
Thus, $+6" e M, C M(0y). So f-+-8 is a power of . This implies

B<8 =0beM(0,)
and ‘

B+0 =5=p0,05.

Then using D-T 47, we obtain

that 6 € M(0,) th i
ot the there - (0,) thus completing the proof

§ 4. Properties of B, and L,. The first fow
how @ is ordered by R, when y is a lintit ordinal.
THEOREM 23. If ¢ = |Jy % 0 fhen:
(i) If >3 then {f: aR, B} = {a} U {B €M, > a)
(ii) If a=2 then {f: aR,p} = {2, oM, .

theorems describe

icm
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(iii) If B #0, 4 and B ¢ M, then {a: aR, B} = {1, B}.

(iv) If =4 then {a: aBR,f} = {1, 2, 4}.

(v) If Be M, then {a: aR,f}={a: 1< a< B}

Proof. Part (i) follows from D-T 2 (ii) and D-T 54; (ii) follows
from D-T 2, D-T 37 and D-T 54; and (ili)~(v) follow from (i), (ii) and
elementary properties of O,.

THEOREM 24. If y= |y 20 and Q' = Q~{0} then (@', R,> is
a complete lattice. (That is, a lattice in which each subset of Q' has an R,-least
upper bound and an R,-greatest lower bound.)

Proof. R, is reflexive because of D-T 2 (ii); anti-symmetriec D-T 5 (i)
and D-T 7; and transitive, D-T 27.

Suppose B # X C L and X is & set. Then | JX e and JX is
the <-least upper bound of X. Let # be an element of 3, larger than (J X.
(It follows from D-T 39 that there is an element of M, with the required
property.) Then it follows from Theorem 23 (v) that g is an R,-upper
bound of X and that the smallest R,-upper bound is the E,-least upper
bound. :

Suppose again that @ # X C£’. 1 is an R,-lower bound of X. More-
over, it follows from Theorem 23 (iii)~(v) that the set of E,-lower bounds
of X is an intersection of closed sets and is therefore closed. Therefore,
X has an R,-greatest lower bound. This completes the proof.

In the case that y # |y the explicit description of {a: aR,f} and
{8: aR,B} is rather complicated and not very instruetive. However, we
did obtain some results for the case that y is not a limit ordinal, the most
important of which is that {a: aR,f} is & closed set for all § and y.

THEOREM 25. If A= {a: aR,B} and @ == X C A then | X ¢ A.

Proof. Suppose 4 = {a: aR,f} and @ # X CA. If X is finite the
theorem is trivial, thus, let ms suppose X is infinite. Let

X = {0, xeB}

where BC Q, B is infinite, and o, < &, if # < #,. Therefore, for each
% € B there is a 8, € 2, 6, # 0, such that

2,0,0,=f. «
Consequently, it follows from the monotonicity laws, that if 2 < %,
8., > 6,,. Thus the &’s form a decreasing sequence, Oy > Oy = oo > Ouy = 0y
with # € w. Let

X' ={aeX: a0,0=f}.

Then | J X = {J X’'. We need only consider the case where X’ is infinite
and show that (J X'R,p. Leb

i=UJX".
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Gase 1. y= |Jy # 0. By Theorem 23 (iii)—(v), 4 is closed for
each f e, 50 Oed.

It follows from Theorem 8, that if y 7 | J y then 6 is a limit ordinal,
otherwise X’ would not be infinite.

Case 2. y= 2042 for some ¢ >1. Suppose that w*<< < @1,
By Theorem 18, if a, a’ ¢ X', a < o, then there are less than «* elements
in the set

Yoo ={0e M(0x): a<p<a'}.

Therefore, if 0 ¢ X' then each of the sets Y5, a ¢ X’ has at least w*
elements. Since § = | J X', this implies 0 ¢ M (Oy). Also, it follows from
Lemma 6 (i) that f « M(Oy). Clearly 6 < p. If § = B then 00,1=§ so
Bed If 0<p, then by Lemma 6 (ii) there exist ordinal numbers 3
and 7', 9 < 7' such that

0=20,0(1+7)
and

f=20,0(1+7").
Since # < 7', there is a & > 0 such that
nt+E=1n".
Thus,

' f=20,0(149+¢
=20,[0(141)4 wf]
=[20,0(1+7)]0,0f  [D-T32 (i)]
= 00,0 .

Therefore, 6 R,8 and 6 < A.

Case 3. y=2,+1 for some ¢ such that | JZ=¢ 0. Since o is
& limit ordinal there is an # such that

d=w(l+n).

Suppose § ¢ X', If all the elements of X’ are finite ordinals then 6 = w
and for each ae X', a> 2,
f=a0,0

= a0 ab [D-T 33 (iii)]
a0z w(141n)

= w0gw(l+yn) [Lemma 6 (iv)]

=w00,(2+9). [D-T 33 (iii)]
This implies that 6 4.

Il
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If X’ contains an infinite ordinal and 6 ¢ X’ then X’ contains an
infinite number of infinite ordinals. So we might as well assume that
all elements of X’ are infinite.

If 6 ¢ X', then it follows from Theorem 10 that either § is a limit
of elements of X' each of which has the same degree or each of which is
a non-zero power of w. If the former alternative occurs then

0 = i, %=1
where
f=w0,0, d=ow(l+t+y).
Then
B = @Oyt (147)  [D-T 33 (iii)]

= w1 Oy (1+4-7) [Lemma 6 (iv)]

= @*10,(24 7). [D-T 33 (iii)]
Consequently, 6R,f.

Now suppose
' = limw* = °
xeC
where

B= 0,6, for each xeC.
If x e ¢ then x» < o so there is a »' > 0 such that
o= xtx.

Since & is a limit ordinal, there is & x> 1 and an 7’ such that

6= e*(n'+1).
Now, we have

B = w*0,8
= @Oy w+#(n’+1) .  [D-T 33 (iii)]

Suppose o > x-+pu. Then, since o=« »' there must be a %'’ such that
%% e C and

%tu'' = utp,
which implies
(1) ® =,
But, %+ %" ¢ C, s0

B = w*t¥"0,6.
Therefore, by Theorem 12, o*'é= 4, or equival.lently, W' = . Th1i
latter equation implies »”’ < u which contradiets (1). Thus, we mus

have
’ c<ntp.
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This implies there is a o such that
oto' =x+tu.

Now we have
B = 0Oyt (y'+1) .
I ‘
B = w05t (5’ +1)
= w’0,[14+ 0 (n'+1)] [D-T 33 (iii)]
then 0R,p. Otherwise, it follows from Theorem 17 that w® ¢ Mz and the
proof follows along the same lines as the end of the proof of case 2, using
Lemma 6 (iv) instead of Lemma 6 (ii).

Case 4. y= 2043 for some { > 1. If { > o or X’ contains an in-
finite ordinal number the proof is similar to the proof of case 3, using
Lemma 6 (ii) instead of Lemma 6 (iv) and Theorem 18 instead of Theo-
rem 17. If { < w and X’ C o the proof is modified as follows.

First, we have as before that 8 is a limit ordinal so there is an # such

that d = w(1+#). Also, since X' is an infinite subset of w, § = » and
for each ae X', a2,

f=1a0,0
== a02§+2a5
= a02;+2w(1—|-'r)) .

If =0 then since a, (€ o, it follows from Definition 1 that B=w

%

[D-T 33 (iii)]

= 0.

If % > 0 then gince w € M (0y) for all finite ¢, it follows from Lemma 6
(it), that

B= wOgis0n
= 00,(1+7).

Thus, in either case §e 4.

The proof of the theorem for the remaining cases,y = 0,1, 2,3, isan
exercise in the traditional arithmetie of ordinal numbers. We leave the
details for the interested reader. (For y = 1, 2, see Carruth [2].)

Before stating the results for T, it is convenient to introduce some
notation.

DerFinrTiON 26, If
0 3 3 = wldy+ ...} wind,

is the normal form of 8, then for each m yém € w such that 0 <
and 0 < en < dn,

[D-T 33 (iii)]

m<n

Ts(M; €m) ot wPmey g, L w’nd, |

icm
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LevyaA 27. If
0 # 0 = o%dy+ ...+ wdd,
is the normal f&rm of 0 then aLyé if and only if there exist m, em ¢ w such
that 0 <m <0, 0 < en < dn and
o= Ts(M, €m) .

Proof. The lemma follows from elementary properties of ordinal
arithmetie.

THEOREM 28. If y = |,5= 0 then

(i) {B: 2L,B} = {2,4} v {f: (HE[E=>2, =230, and 1L}
= {2,4} v {B: (HLO)[B is the smallesi element of M,
exceeding 61}
(i) If a>0 then
(8: 2+aL,B} = {2+a} v {B: (EHB=30,& and (1+a)Lyél}.
= {24 a} v {f: (HS)[B is the ath successive ele-
ment of M, exceeding 81}
(iii) If p# 0,4 and B ¢ M, then {a: oL, f} = {1, }.
(iv) If g =4 then {a: aL,p} = {1, 2, 4}.
(v) If BeM, then B=30,6 for some 6=2 and
{a: (L+a)L, 8} = {8} v {a: aLod).
Proof. To prove (i) we have 2L, if and only if there is 2 6 > 0 such
that, 80,2 = f. It 6 =1, p =2 and if 6 = 2, f = 4. Suppose 6 > 3. Then,
by Lemma 6 (iv), f is the smallest element of I, exceeding d. By Lemma 14,
B=60,2
= (3 07%(5)) 0,2

= 307/(%(5) +1) .

Thus, part (i) is true. )

The proof of (ii) is similax. The proofs of (iii) and (iv) follow from (i)
and (ii). To prove (v) use Lemma 14 and D-T 27.

Theorem 24 does not hold if R, is replaced by “L,”, but we do
have the following result for L.

TrEorEM 29. If y= Uy # 0 and a < o then 1+a and 1+ o' have
an L,-upper bound if and only if aLyo’ or (1+a)L,d'.

Proof. The proof follows from Theorem 28 (v).

Tt is clear that 1 is an L,-lower bound for every subset of Q= Q
~{0}, if y > 0 (D-T 2 (ii)). Since the set of all L,-lower bounds of an

16
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ordinal number is finite (D-T 14), it follows that every non-empty sub-
class of ' has an L,-greatest lower bound.

It is also clear that L, is reflexive and anti-symmetric for all y and
that L, is transitive for y = 0, 1, 2, 3. But we know that L,, for example,
is not transitive. We do not know whether or not I, is transitive even
when y is a limit ordinal. Our results for R, and L, are incomplete and
it is probable that much more could be learned about these relations
by additional study.

Our bibliography just includes those books and articles explicitly
referred to in the paper. Additional references may be found in the bibli-
ography of the Doner-Tarski paper [1].

242 A. L. Rubin and J. E. Rubin

Bibliography

[1] J. Doner, and A. Tarski, An extended arithmetic of ordinal numbers, Fund.
Math. 65 (1969) p. 95-127.

[21 P. W. Carruth, Roots and factors of ordinals, Proc. Amer. Math. Soec.
1 (1950), pp. 470-480.

[3]1 J. E. Rubin, Several relations on the class of ordinal numbers, Zeitschr. f. math.
Logik md Grundlagen d. Math. 9 (1963), pp- 351-357.

[4] — Set Theory for the Mathematician, San Francisco 1967.

[5] W. Sierpifski, Oardinal and Ordinal Numbers, Warszawa 1958,

Begu par la Rédaction le 11. 5. 1968


GUEST




