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Boolean powers
by

P. Ribenboim (Kingston, Ontario)

This paper is devoted to a systematic presentation of the construction
of Boolean powers, which have been used by several authors ([5], [1],
[3], [6]) in various problems. Tt was our first task to give a rather general
definition for the Boolean power and to show how several kinds of strue-
tures are inherited by the Boolean power.

Our only application has been to establish a natural isomorphism
between the category of Boolean algebras and a certain category of lattice
ordered abelian groups.

Tt is quite apparent that the study began in the present; paper should
be pursued in several different directions.

1. Let B be a Boolean algebra, and F a filter of B (¥ C B).

Tet G be a set with a distingnished point 0. Let & be an ideal of
subsets of @. .

‘We shall make the following hypothesis:

(H) If 8¢, if (@s)ses is any family of elements of B, indexed by 8,
then \/ x, exisis in B.
ges

For example, if B is an a-complete Boolean algebra, where 3 (@) < «,
then for any ideal F this hypothesis is satisfied.

Similarly, the hypothesis holds also when &= % is the ideal of all
finite subsets of G-

DeFiNmrioN 1. Let X =BX (@, % be the set of all elements
@ = (T,)geq € BY such that: 'F

(1) my e F,

(2) if g1, fo€ Gy g1 F 0z, then @y, Axy, =0,

(3) supp(#) = {g < G| 4, # 0} <3,

(4) y\E/ng= 1 (last element of B).
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X is called the Boolean power of G over B (relative to F,F) (%).

More generally, let us assume that B is a Boolean lattice, that is,
o distributive lattice with first element 0, such that for every # ¢ B the
principal ideal Id(x) = {b ¢ B| 0 <b <&} is a Boolean algebra.

Clearly, B = L%,Id(s). Let Fo= {u A | u eF}, so it is a filter of the

Boolean algebra 1d(s). If s <t then Id(s) CId(t) and Fs= {u A s| u e Fy}.

I Xi= X (¢,%), L= X (&, 7), there exists a natural mapping
14(), Ft Td(s). F's

at: X;—~X,, namely ni(w) = y where y, == 2, A s (for every g ¢ @). There
exists also a mnatural mapping s X,—X;, namely Lé(y) = & Where
Tp= 1oV & (with svs* =1, s As*=0), &=y, for g 5* 0; 50 2 ¢ F; and
7 ¢ X;. We have o) o b equal to the identity mapping of X,, hence i is
surjective, while & is injective. Moreover, if ¢ <? < u are elements in F,
then ¥ = o ¢, i is the identity, and also & = &' o i, ¢§ is the identity.

‘We may consider the inverse limit X = limX,. Let w;: X—X; be

the canonical mapping, hence xs is also surjective; let ;2 Xs—X be the
mapping defined by the family of mappings i (for s< 1), then oty
is the identity mapping, so ¢ is also injective.

DEFINITION 2. With above notations, we say that X is the Boolean
power of @ over B (relative to &, F) and we write again X = ;<F(G’ ).

Before proceeding, we want to illustrate this concept with a few
examples.

Bxampie 1. Let I be a set, let B= B(I)=F (Boolean algebra
of subsets of I) let @ be any set with a distinguished point 0 € &, § = B(@F)
(set of subsets of @). Then there is a natural bijection between X and &
In fact, given # = (%,)yeq ¢ X and given ¢ e I there exists one and only
one element ge@ such that 7ex, (by properties (2), (4)). We define
& I->@ by letting £(4) = ¢ when 7 ex,. The mapping X6 defined
by 2—¢, is a bijection.

In fact, if & # y, there exists g ¢ @ such that z, 5= y,, so there exists
i eI such that ieay, 44y, (or vice-versa), hence £(i) =g, n(¢) # g. On
the other hand, given & I—-@, let w;= {iel| £(4)=g}, then
2= (B)gea € X and £ is clearly the image of z.

ExawpiE 2. Let I be a set, B= $(I), let F be the filter of cofinite
subsets of I, let @ be a set with a distinguished point 0, § = B(&). Then
there is a natural bijection between X and the “direct sum” of i (I)
copies of @, that is the set of mappings &: I-> @ such that supp(£) is finite.

) O] We remark that, for this definition, we need only the fact that B is a distributive
lattice, with first and last element. However, if 2 ¢« X then x4, ¢ L has complement \/ 2

s s - - . ;é
in B, so there is no loss of generality in replacing B by the largest Boolean algebra.q c;';]-
tained in B.

©
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ExAMPLE 3. If B=F = B(I), @ as before, if ¥ is the ideal of finite
subsets of G, then there is & natural bijection between X and the set of
mappings & I—>@ such that £(I) is finite.

ExAMPLE 4. If B=F = $(I), it G = R (real numbers) if F is the
ideal generated by all intervals (—«, +- a) then there is a natural bijection
from X to the set of bounded mappings from I to R.

ExAvpLE 5. If B= B(R), if F is the filter generated by the com-
plements of the intervals (—n, +n) (for every integer n), if =R and ¥
as in example 4, then there is a natural bijection from X to the set of all
bounded mappings from R to R, vanishing outside some closed interval.

Remark. It is possible to consider a more general construction
than the Boolean power, in the following situation. Let (G4):cr be a family
of sets. Let B be a Boolean algebra and X = X (I, J), where J is an ideal

B,B

of subsets of I, and the hypothesis (H) is satisfied for B, J.

For every z « X, we define the set ¥, in the following manner. If &
is the disjoint union of the sets Gy (for ¢ « I), we let ¥, be the subset of
X (&, ) (where ¥ is an ideal subsets of @, and hypothesis (H) is satisfied
B,B

for B, %) consisting of all élements (y,);e¢ such that:
(1) if g,he@, g*=h then y, Ayr= 0,
(2) for every i eI, suppi(y) = {g < @l % # 0} ¢ %
(8) for every i el, =; =g¥ﬁy,.

For example, let B = B(I), 3= B(I), let © = (i)ier e such thabt
@; = {i} for every iel. If § = B(G) there exists a bijection from Y.

onto [] G;.
iel

‘We shall not try to explore the properties satisfied by this more
general construction.

In order to compare Boolean powers defined for different pairs
(By, F1), (Bs, Fy), where B, B, are Boolean lattices, and Fy, F; are filters,
we define the following conecepts.

A morphism a: (By, Fy)—>(B,, F,) is a mapping a: B,—~B, such
that a(F,) CF,, o preserves the Boolean operations and a(B) is cofinal
in B, (in particular, if B, is a Boolean algebra, then B, is a Boolean algebra,
a(l) =1).

If B, is a Boolean algebra, a: (B, Fy)—(B;, F;) a morphism, if @

is & set, and ¥ an ideal of subsets of @, if X; = X (&, ), Xo= X (&, ),
B1,Fy Ba,F'a

then « induces a mapping a,: X;—X,, which is so defined: if # = (#)geq € X

then a, () = y, Where y, = a(z,) for every geG.
More generally, if B,, B, are Boolean lattices, for every s e By, the
restriction of a to Id(s) is a morphism as: (Id(s), (Fl)s)—_>(1d(a(s)) , (Fz)a(a))’
16*
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hence it induces (as),: Xi,s~>Xaa (Where these Booléan powers cor-
respond to the above pairs). Since X;=1imX;,, X,=1limXpuy (be-

cause a(B,) is cofinal in B,), then there is a natural mapping a,: X, X,,
which is defined as the inverse limit of the mappings as.

If a: (Biy Fy)—>(By, Fa)y f: (B, Fo)—>(Bs, Fy) are morphisms, then
B o e is also a morphism, and (8 ¢ a), = B, © a,. If a is injective, then a,
is also injective. If there exists a morphism g: (B,, Fy)-—>(By, F}), such
that a o § is the identity, then o, splits (that is a, o §, is the identity of X,).

However, it is not true in general that if o is surjective then gso
is a, too.

We shall also deal with pairs (G, ¥), where ¥ is an ideal of subsets
of @. A morphism B: (Gy, &) (G, F.) is & mapping f: G;—@G, such that
B(0) =10, B(%) C %. In similar way, we define ,8: X,—~X,, by letting
L) =1y, where y, =ﬂ(}})/ x;, for every g e Gh; in particular, if g ¢ f(Gy)

=g

then y,= 0 (we note also that since supp(#) ¢ ¥, the supremum exists).

Moreover, if y: (Gy, &) >(Gs, &) is another morphism, then y o8
is also a morphism and ,(y o B) = .y o 8.

Let us consider the following special case: B, = I, = $(1,), B=F,
= $(I,) where I, I, are sets, let « be a complete homomorphism of B,
to B,.

Then e induces a mapping o*: I,—I;, as follows: given i e I,, the
set {b ¢B;| a(b)> 4} is an ultrafilter of By; if () b= then @ = a(0Q)

a(b)ai

=a({)b)= [\ a(b)»i, impossible; hence the above intersection is

ab)3i  aB)3i
a set consisting of only one point which is defined to be a*(:).

%et @*: @">G@" be the mapping such that a*(@) = g o a* for every
pe@

If 6;: X,~>G", 0,; X,—~G™ are the natural bijections indicated in
example 1, then 6, o a, = G* o 6;, as it is easy to verify.

Similarly, let B=F = B(I), let § be a morphism from (G4, %) to
(Gyy &) where §; = B(Gy), &= B(G).

'}L‘hen B induces a mapping §: G G2, namely f{p) = f o ¢ for every
pel.

It'~ 0: Xy—>Gf , B2 X,—@% are the natural bijections of example 1,
then f o6, = 6, + 8.

2. Following the idea in example 1, we shall now indicate a repre-
sentation of the Boolean power X.

Let B be a Boolean Iattice; we recall Stone’s representation theorem.
Let U* be the set of ultrafilters of B; for every filter H of B, let o(H)
={U ¢U* HCU}, in particular, if H is the principal filter of = € B,
namely H = Fi(z) = {y ¢ B| y > «}, we write o(z) = o(H).

icm°®
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We define a topology on U* by stating that {o(H)| H is a filter
of B} is the collection of closed sets of U*. Equivalently, for every U e W,
a fundamental system of neighborhoods is given by {N.(U)| z¢ U},
where N (U)= {U' eW*"| 2 U’}. With this topology <U’* becomes

“a Hausdorff, locally compact and totally disconnected spaee. For every

x ¢ B, the set ¢(#) is an open and compact subset of W*. The mapping
g: B—>0C(U*) (set of open and compact subsets of U*) is an isomorphism
of Boolean lattices:

elzvy)=e@ nely), ol@ry)=re®) oy,
hence if
yYvVy' =a,yAy =0
then
ey vel)=c@, o nol¥)=0;

moreover 6 is an injection and maps B onto OC(W*).

Conversely, if 8§ is a Hausdorff, locally compact, totally disconnected
space, then OC(8) = B is a Boolean lattice, there is a homeomorphism
between the topological space U™ of ultrafilters of B and the given space 8,
and o(B)= 0C(S).

Actually, in the above theorem it is enough to consider a subset U
of A.*, which separates elements of B: if @,y e B, © 5y, there exists
U € °U> such that either 2 e U, y¢ U or ye U, v ¢ U.

Thus, if B = $(I), for a set I, then U may be taken to be the set
of principal ultrafilters of B, which is in ome-to-one correspondence
with I.

We shall make use of the following easy result: _

(a) If F,F are filters of the Boolean algebra B, if FVF' =B, ¥~ F'= {1},
then there exists x € B such that F = Fi(x), F' = Fi(a').

The proof is straightforward (see Hermes [4]).

‘We may prove:

TuroREM 1. Let B be a Boolean algebra (with last element 1). There
exists a natural bijection 0 from X = XF(G’, %o) onto the set F of all functions
& UG such that: >

(1)  &(TU) 4s finite, »

(2) & is continuous,

(3 NUCF

{U)=0

Proof. Let o= (€;)yeq € X, we shall define &= 6(z): W—G. From
1=\ @, supp(x) e ¥, (ideal of finite subsets of @), it follows by Stone’s
ge€supp (x)

representation theorem, that W= g(1)= |J o(x). Moreover, if g, # g,
. gesupp(z)
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then @ = 0(0) = p(#, A @) = 0(®@s) ~ 0(%p). Thus, for every TeW
there exists exactly one element ge @ such that U ep(ay), that is
z, ¢ U. We denote this element by gv and define &(U) = gy for every
Uoe U,

Since supp(z) € §, then & assumes only finitely many distinet values.”

Also, & is continuous, because given any Ue W, let U’ e Ng(T),
where u; ¢ U, that is £(U) = ¢; then u, ¢ U, s0 §(U')=g.

‘We have @, e U for every U e U such that £&(U) = 0. On the other
hand, if Ee(t@ OU and t = @, then o(t) D o(a,), hence there exists U e U

such that U e (%), U ¢ o(t), that is @, ¢ U, t¢ U; however, from z,¢ U
it follows that £(U) = 0, hence by hypothesis t ¢ U, which is a contradie-
tion. Therefore « Q U = Fi(x,) CF, since z, ¢ F, by hypothesis.

=0

‘We show that 6 is an injection. If @ s y, there exists g ¢ @ such that
@, # Yy Since U separates points, there exists U e U such that 2, ¢ U,
yg ¢ U (or vice-versa), hence £(U) = g, n(U) # g (where 6(z) = &, 0(y) = 7).

Now, we prove that 6 is surjective. Let &: W-—>@ be a mapping
satisfying the above conditions (1), (2), (3). For every ge@ let
Uy = {U e W| &(U)= g}, thus W is the union of finitely many pairwise
disjoint sets Uy, and Uy = O if and only if g € £(W).

Let H, :uQm,U’ when g e £(W).

We show that Uy,={Ue¢W| UDHy}. Clearly if UeQy, then
UDH,. Conversely, let U W, HD H, and assume that &(U) # g. By
continuity of &, there exists 2z e U such that if ze U’ €W then £(U')
= £(U) +# g; thus z¢V for every V €Uy, hence 2’ ¢V for every V e Uy,
80 2' eV QL, V =H,CU, and therefore 0 = z A 2’ ¢ U, which is impossible.

For every geé(W), let Hy= (| U. We have Hy= () H; (this
HOy#0 hii‘\l:)
g

being a finite intersection). Now, if U € U then &(U) =gor §(U)=h # ¢,
and then UD H, or UD H;D Hy, so that in any case, UDH,~ Hy,
showing that H, ~ H;= {1}, because U separates points. Moreover,
HyH;= B, because if the filter H,vH, is different from B, then it is
contained in some ultrafilter U; since Hy, C U then &(U)=g; on the
other hand, since H;C U, and Hj is a finite intersection, then H,C U
for some % # g, 8o &(U) = h 5 ¢, which is a contradiction. -

By (a), for every g e £(U), there exists an element x, ¢ B such that
H, =LFi(w,,). If g ¢ £(W), we put z, = 0.

et &= (0;)geq and let us prove that z ¢ X. By hypothesi i

="H, =e(Q 0Ugli’, 80 Ty e B ! v =8 S

I ¢,0¢G and x, A, +0, there exists UeW such that
Tgy A Tgy € U: hence Hﬂ = Fi(zy,) _C_ Uy Hy, = Fi(zg,) g Uy 80 g1 = E(U) = s

e ©
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Since £(W) is finite, then supp(z) is finite. Finally, if t> V
g esupp(a)
then
te N\ (N O)=T={1}
Uel

gesupp(x) UeUsy

(because U separates points), so \ = 1.
gesupp(z)

Moreover, 6(z) = &, because if U e, we have 0(z)(U)= gu (the
only element of ¢ such that U contains a,,), while £(U) = g if and only
faoelU. R

Now we shall generalize the preceding result to the case where B
is a Boolean lattice which is not assumed to have last element.

THEOREM 2. Let B be a Boolean lattice (without last element). There
exists a natural bijection 6 from X = X (@, %o) onto the set & of all functions
B,F

& W—G such that:

(1) & is finite-valued on every open and compact subset of W,

(2) £ s continuous,

(3) for every seB, (| UsCFs (where Us={uns| ue U}).
=0

Proof. For every seF, Id(s)={zecG 0 <w<s} is a Boolean
algebra with last element s, Fo= {u A s| v eF} is a filter in Id(s). Let
X, = X (@, %)

Td(s), Fs
If s <t are elements in F, let mh: X;—>X, be the mapping already
considered before definition 2, so that X = lim X,.

Tor every s € B, let U, be the set of ultrafilters of the Boolean algebra
Id(s), with its Stone topology. Then s = {Us| U ¢ U}, where
Us = {u A | we U}. In fact, given V ¢ Us let U be the filter of B generated
by V, thus s e U % B, Us= U n1d(s) is a filter of Id(s), containing V
hence equal to V. If U’ is any filter of B such that Us= U n1d(s),
then U'= U (ifteU’ then tAseUs=UnTd(s) hence te U, and
conversely); hence U is an ultrafilter of B, for if U’ is an ultrafilter of B,
U'DU, then Us= U ~nTd(s)= U nId(s)=7V, s0 U’ = U. Conversely,
if UeUW then U, is an ultrafilter of Id(s), as one sees easily.

Thus, the mapping A Ws—W, (V)= U, where Us=7V, is well
defined (as we have seen) and an injection. Moreover, the topology on U
i induced by the topology on U, through the natural injection 4. Also,
if s < t, there is a natural injection e Ue—Uy, defined by AT = T
for U e Ws; clearly, 4 o A= A, and if s <t <<w then 4 o 2 = 3%, A3 being
the identity mapping.

Let it @%->G@"™ Dbe defined by Ho)=9o A for every g: Uz—>@.
Then, if s <t <, we have iy = % o if', and 7; is the identity mapping.
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Let & be the set of mappings ¢: Us—G satisfying properties (1),
(2), (8) of theorem 1 (with respect to the Boolean algebra Id(s)). '
Next, we show that the following diagram is commutative (for s <t
in F):
33 b qu
b LN L
In fta.ct, let o= (%)eq e Xy, 80 @, <t for every ge@. Then, if
&y = Os{ma(m)} = O5((%5 A $)peq), We have £(U,) = g if and only if o, A s € U,
(for every U € Us). On the other hand, if & = 6i(x) then &(U;) = ¢ if and
only if @, ¢ U; (for U ¢ W) and therefore [A4(£)](T,) = 55(}.2( Uo)) = &(Ty).
Thus, if U e W, from a, <t it follows that @g € U; if and only if @4 A s € Us,
showing the commutativity of the diagram.
§1‘.nce 0s(X5) = Fs, 0s(X:) = F¢, then }.f,(.’ﬂ) C Fs. We may therefore
consider the inverse limits lim &, Iim Y. Since C &V for every seF,

pa—

it follows that lim %, C lim ™, Moreover, @ = lim g,

In fact, it s < B e define Gs G by [(e)](Ts) = @(U) where
UeW, pe @Y, thus A(p) = ¢ o 4, and therefore I o i;= i, when s<t.
On the other hand, if J is a set, If g -G is a mapping (for every
§ € B), sucp that if s <t then g, = 44 o us, we define u: %G ag follows:
].f heX, if UeU we put u(h)(U)= us(h)(Us) (and this definition is
](;l&eie]njifng '.of 8eB); then Asopu= u, for every seB. Therefore

Bo, every element of ¥ =lim¥, is a mapping from U into G since

bz X5 C @ for every s ¢ B, by the commutativity 6, ) — X o 6;
it follows that there exist,a" 6: X—>F such that 8 o m = 15 o 6 (for every
s € B), where ms: X—X,, 4: F—F, are the canonical mappings.
Moreover, since each mapping 6, is a bijection, the same holds for 6.
‘We describe now the properties of the mappings belonging to F; precisely.
we show that & is the set of mappings from U to & satisfying conditions (1)’
(2), (8) of the statement of the theorem. ’
Let £ = 0(z) ¢ ¥, let C be an open and compact subset of Us; by
Stone’s theorem, there exists s « B such that C= g(s) = {Ue U s e’ U}
Now 6(2)(e(s)) = 0(2) (Al Un)) = (6(2) o Ae)(Us) = [1u(6())}(T)
= [8s(ms{2))] (Us) and this set is finite, by theorem 1.
Also, £ = 6(2) is continuous, because if V e W, if t €
is continuous at ¥V (by theorem 1), so there exists s ;Vz su;]:., tltl];.:nifeg(zt(gz )
then [Bufm())](T:) = [6:(me())] (Ve), hence 8(z)(T) = () (V). ’

e ©
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We show that 6(x) satisfies property (3). Let s ¢ B, let u « B be such
that if 6(z)(0) =0 then % e Us.

Then # A s is such that if 6s(ns(#))(Us) = 0 then 6(z)(T) =10 so
weUs hence u A s e Fs and u «F (since (3) is satisfied by hypothesis by
O5(7s(®)) € Fs).

Conversely, let & U-—G be a mapping satisfying conditions (1),
(2), (3). We shall show that, for every s B, the mapping Ts(8): Us—>G
satisties (1), (2), (3) of theorem 1; so As(£) e F5 and there exists a unique
element 2% ¢ X; such that As(&) = 0Os(z%). Also, if s <t then 6s(af) = L(E)
= J(i8) = F(6u(a")) = Os(nk(a") hence a°= wi(a’). Thus, there exists
zeX such that ms(z)=a® for every seB. Then if se U, 6(2)(U)
= 7(6(@) (Us) = [Bs{msl))] (Ts) = 6a(@) (Ts) = Ks(§)(TU) = £(V),  that
is, £e&F.

So, we have only to prove that 1,(§) satisties eonditions (1), (2), (3)
of theorem 1. Bub these are automatically verified in virtue of the hypo-
thesis on & as one may check without any difficulty.

We may obtain another representation theorem, under broader
hypothesis:

THEOREM 3. Let G be a set 3 (G) = a, let B be a a-complete Boolean
algebra, F a filter of B, & an ideal of subsets of G; let X :B><17‘(G’ ). There

ewists a natural injection 6 from X into the set F of all functions &, defined
in some open and dense subset O of WU (topological space of ultrafiliers of B),
with values in @, such that:

(1) & is continuous
@ [ UCF.
HU)=0

Moreover, if ¥ = B(Q), then 6 i a bijection (in the following sense:
every & F is the restriction of a function 0(x), where & e X).

Proof. Since this result is analogous to theorem 1, we shall only
sketch the main points of the proof.
Let o= (B)geae X, olm)=1{UcW g5e U}, 0= Ugg(wg). Since
ge

supp () is not necessarily finite, we cannot conclude in general that

1=\ @, implies that W = (1) is equal to O,. However O, is an open
ge@

set in U (since each o(w,) is open). Moreover, Oz is dense; in fact, given

any Ve and any fundamental neighborhood NAV) = {U «W| U2z},

where z ¢V, from z=2 Al=2 A (V 25) = \/_(2 A @), there exists ge &
geq ge@

such that 2 A @, # 0; let U e be such that z Amy e U, then ze U, 80
U €Oz N(V).

Ag in theorem 1, we define 6(w) = & 0,—~@ by letting EU)=¢g
when z; ¢ U (g is unique with this property).
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It follows from the above-mentioned proof, that & is continuous,
()} UCF and 6 is an injection.
HDY=0
We proceed now to prove that 6 is surjective, when ¥ = B(G). Let
£: ©—>@ be a continuous mapping, where O is a dense and open subset
of U, and G has the discrete topology. For every g ¢ &, the set E{gh
is an open and closed subset of O, that is, the intersection with © of an
open and closed subset of AW; therefore, there exists an element @, ¢ B
such that & ({g}) = o(2s) ~ 0. Also, =, is uniquely defined, because if
ygeB, o(ys) " O =g(xg) n O, and if x, # y, then for example there
exists UeW such that ay;¢ U, y,¢ U; thus y,e U. Congider the
neighbourhood N, .y(U); by density of O, there exists V e Ny ay)(U) n O,
hence w, Ay eV, 80 a5¢eV, yy ¢V and therefore g(y,) ~ O #= p(xy) N 0,
a contradiction.
Let # = (%4)yeq. We shall show that z e X.
I UecO and £(U)=0 then U e & (0) = g(ws) ~ O 80 %, € U. From
the hypothesis, we have z,¢ (| UCT.
§U)~0

If g,0¢G, ¢y Gy then oy A2, =0. In fact, if x, A xy, #0,
th?re exists U e such that wy, Az,eU; by density of O, there
exists VeO n Ny g, (U) 80 V€0, @, €V, @4eV hence VeOn gz,
V€0 g(zg,), thus £(V) = g,, §(V) = g,, and g, = g,.

Let b =ﬂ\£/Gmg; if b 1, there exists U WU such that b ¢ U, hence

b' € U. By the density of O there exists W e n Ny(U), so b’ e W. On

the other hand, let g= £(W), hence W e & *({g}) = o(2,) C o(b), thus
beW and 0= b A b’ ¢ W, which is impossible. B
This shows that & = \#,)g¢q € X (under the hypothesis that § = B(@)).
Next, we prove that £ is the restriction of 6(x). For this, we note that
6(z) is defined on the open and dense set O;= | Jo(ay), and O C O,
geG -

(because if ) .U'eO and &(U)=g¢ then Ueplxy)0Co(zg)C0s)
Now, by definition, we have 6(x)(U)=g if and only if @, ¢ U, that is
U €95 ~o{my); hence if T e~ g(z,) then £&(U)=g. B

3. We shall define a natural topology on X =;<F(G, ), even without

assuming any (non-diserete) topology on & or B.
- An e}ement ¢<B is said to be compact if the following property is
satisfied: if (81):e7 is any family of elements of B, if \/ ¢; exists and ¢ < \/ &
A o iel i
then there exists a finite subset I, of I such that ¢ < V si. “

iely

(b) The set C of compact elements of B is an ideal.

e ©
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Proof. We have 0 ¢ €. If ¢, ¢, € C, if (8:)ier is a family of elements
of B, such that \/Is; exists and ¢;ve, < \/ 8;, then there exist finite sets
ie iel

I,C1I, I,CTI such that ¢, < V 85 6, <V 8¢, hence cve, <V sa
iely i

iely iel1Uly

Hd<eceCifd< .\/Ist,a.ndifd*issuchthat aAva*=c,d A& =0,
then ¢= dvd* < (\/ ) vd*, hence by hypothesis there exists a finite
iel
gubset I, of I, such that ¢ << (V si)vd* and therefore

1€ly

d=oNA<[(Y s)vaINd=(Vs)nd< Y 5. W

1€ly
We shall require the following result on Boolean algebras:

(¢) Let B be a Boolean algebra, with last element 1. Then the Sollowing
statements are equivalent:

(1) B is finite;
(2) 1€ C and B is 8,-complete;
(3) the ascending chain condition holds for elements of B;

(4) the descending chain condition holds for elements of B.

Proof. It is obvious that (1)—(2) and (3)--(4). We show that
(2)—~(3). Let (an)s be an infinite inereasing chain of elements of B. Since B
i3 8y-complete, there exists be B, b= Vlam‘ From 1 =bvd' = (Vlan)vb’
and the hypothesis that 1 is compact, it follows that there exists m such
that 1= anVvd’, hence b= b A (anVd’) =D A am = am, thus @, = om for
every m > m.

Finally, we prove that (4)--(1). By known result (see [4]), the
distributive lattice B, with descending chain condition has the following
property: every element of B may be written uniquely as the supremum
of finitely many irreducible elements; in particular 1= b;V...vbm. Since B
is a Boolean algebrs, an irreducible element is an atom; if beB is any
atom then by < 1= bV...vbm hence b, = bi (for some 4); thus B has only
finitely many atoms b, ..., bm, which generate B, so B is finite. m

We define a topology on X as follows. For every @ ¢ X & fundamental
systems of neighborhoods of & is the collection {N(#)| ¢eC}, where
No(z) = {y € X| nely) = melw)} (we recall that m: XX, is the canonical
mapping, and if B has last element 1, then mo(%) = 7a(@) = (T A O)gea)-

Tt i¢ straightforward to check that this defines indeed a topology
on X.
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If 0 is the only compact element, then the topology is such that X
is the only neighborhood of any # e X.

(@)  If G has at least 2 elements then the following statements are equivaleni:
(1) the topology on X is discrete;
(2) () for every s ¢ F there ewists ¢ € C such that Fs C Fi(a*), where
a=c¢As aha*=0, ava* =3,
() for every w ¢ X there ewisis s e B such that m; (ns(w)) = {w}.

Proof. (1)—(2). Let us assume that («) is not satisfied, so there
exists s ¢ F' such that for every ¢ e ¢ we have Fs _;C_ Fi(a*). Let d e F, be
such that a* < d A s, henceif b= (dAs)va= (dve) As,wehave a < b < s,

We define elements a#, y% ¢ X; (y* depends on ¢) as follows:

sy=5,2=0,a,=0 and yi=0, yi=>0", yi=0
(where g # 0, and he@, h s g, h # 0) and where b Ab* =0, bvb* = s.
Then o, y” are distinet elements in X, and #3(s°) = 73(y°). Let @ = 1(a®) R
¥ = 1(y*) be elements in X, so 2 s y (because  is injective).

Then y € No(z) for every ¢ e €, where y is defined as above, for the
element ¢. In fact, m(y) = n5"° om0 tgve ot (¥°) = 5" ® o 2" (y®) thus

(mel®))o = [(F)oVs*I A= (bVs*) Ao= avs*= (¢ AS)VS* = cA(sVe) = ¢,
(mel®))e= )y Ao=Db* Ao=(b* As) he=Db* ha=0,
(m)a=0 for hw£g,h£0,
and similarly
(me@)o = ¢, (ml@))g=0, (mal@))a=0 for hg, ho0.

Thus, the topology of X is mot discrete.

Now, if X is discrete, for every o X there exists ¢ e ¢ such that
Ne(w) = {z}; taking s = ¢, if ¥ X is such that ml(y) = 75(x), then y e Ny(z)
= {o} and this proves (p).

(2)—>(1). Given z¢ X, by () there exists s ¢ B such that (ol )
= {#}. By («), there exists ¢ e ¢ such that F; CFi(a*) where a=¢ A

3
aAa*=0, ava*=s. ,

W? s};}ow that‘ it y" e X, and #3(y°) = #5(s") then y° =4°. In fact,
from zy, 90 e s CFi(6*) we have ajva = yfva=s; by hypothesis YA a

= @ A a for every g ¢ @, in particular ¥ A @ = o A a. By distributivity,
we deduce that y = af, hence necessarily b= \/yi= V @5 (it is the
g#0 g0

relative complement of 5= y§ in s) and b < a. Therefore  Va — YpVa=a
and by distributivity, y; = 2; (for every ge @)

©
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Now, let us consider the neighborhood Ne(@). If y € No(#), let y& = ms(y),
2 = my(x). From nly) = m(z) we deduce that #3(y") = n&(ms(¥)) = 7a(y)
= mia(®) = wa(me(w)) = ng(#”) hence y*=2". Thus y=o. |

If B has last element, condition (2) (B) above is automatically satisfied
(with s = 1), while condition (2) («) becomes: («,) there ewisis ¢ € C such
that F C Fi{c).

If B is finite, then 1 ¢ ¢ and F CFi(0), so the topology is discrete.

(e) If G has at least 2 elements, if B is a complete Boolean algebra, then
the following statements are equivalent:
(1) X s a Hausdorff space;
(2) X is a T,y-space;
(3) if \/Gc = a then F CFi(a’).
CE€

Proof. Clearly, (1)—>(2). Now, if a= V¢ let us assume that
ceC

F _¢_ Fi(a'), so there exists s e F, s ¢ Fi(a'), hence sva+ 1. Let 2 = (#n)rea
9 = (Yn)nea be defined by @, = 1, @y = 0, o = 0, and y, = sva, yg = (sva)’,
yp=0(for g2 0and allh e @, h 5 g, b # 0). Then x,y < X, since sva ¢ F,
and @ # 9. ’

We have z,Ac=2¢, YAc=(sVa)Ac=0¢, TgAc=0, YgAc
= (sva) Ac=28 Aa’ Ac=0,andalsoas A c=0=yn Ac. Thusz e Ney),
y € No(x) for every ¢ e 0, showing that X is not a T,-space.

Finally, (3)->(1). In fact, let @,y ¢ X, © 7 y. Then from x,,y, ¢ F
C Fi(a'), we have z,va = y,va=1. Hence x; < ¥0 %g = @ < @, and also

o

Yy < @, 50 BV a = Yva = aforevery g e, g = 0. Thus, (#; A a)g 7 (Yg A d)g,
otherwise, by distributivity, @, = y, for every g « @, against the hypothesis.
Since a = \/ ¢ and B is a complete Boolean algebra, then ; A a

ceC

= \/c(w, AC), Yg ha= \/g(yg A ¢), hence there exists g ¢ G and ¢ e ¢ such
ce ce
that @y A ¢ % yg A ¢. It follows that Ne(#) ~ Ne{y) =@ and therefore X
is a Hausdorff space. m
‘We shall now consider the effect of a morphism a: (By, Fy)—(B;, Fs)
(between pairs of Boolean Ilattices and filters) on the topology of
X, = X (&, §) and X=X (G; 5

B,y By, Fa

() If a: B,—B, is an injective complete homomorphism from Boolean
lattices, if 0., Cp are respectively their ideals of compact elements,
then a—Y0,) C C;.

Proof. Let a ¢ B, be such that a(a) e Cy. If a <V b (where (bi)ier
1el

is a family of elements in B;) then a(a) < a(V/ b)) = \/Ia(b1), and since a(a)
iel i€
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is compact, there exists a finite subset I, of I, such that a(a) < V a(by)

i€l
= a(V Bi). Sinece a is monic then o < V by, proving that ac¢C;,. m
i€lp iely
(g) With above notations let a« be an injective complete homomorphism
such that a(By) n Oy is cofinal in O,; then the topology on X, is the
inverse tmage by a, of the topology on X,.

Proof. Let zeX,, ¢ eC,, hence there exists ¢ ¢B; such that
a<a(e); by (£), 6eC. Then: N(®)= o;i'(Ne(oy(@)). In fact, if
Yy G‘Ncl(m)’ then ”ﬂ(cﬂ(a*(?/)) = (acx)*(”cj.(y)) = (acl)*(ﬂcl(w)) = ”ﬂ(ﬂl)(a*(w))7 80

0,(y) € No,(a,(z)). The converse is analogous: if me,(0, (%)) = mis(au(@)) then

Traten)|2(¥)) = f:i”"nc,(a*(y)) = 0 10,0, (®)) = Mooy, (@)); since o is monic

then a, is monic and so is (a), 00, s0 we conclude just as above. B

In particular, if B, is a subalgebra of B, and B;~ 0, is cofinal in C,,
then X, has the topology induced by that of X,.

As an illustration, if we consider example 1, where B = F = $(I),
%= B(@), then the mapping 0: X—G' iy a homeomorphism from X
(with its topology) to @ (with the product topology of discrete spaces
equal to G). Similar results hold in examples 2, 3, since the topology is
now the one induced by the topology on X.

4. Let us assume that @ is a topological space. We shall define
a topology on X = X (@, ¥).
BF
First, we consider the case where B is a Boolean algebra. Given
zeX, and ceC (compact elements of B) then c=c¢Al=c¢cA (V Ty}
= V ¢ A &g).

We show that only finitely many of the elements ¢ A @, (for ¢ e G}
are different from 0. In fact, since ¢ is compact, there exist elements

1y ooy m € G such that ¢ Azy 0 and ¢= \7(0/\90,,,), Now, if g ¢
i=1

(for all i=1,...,m) then ¢ Aay=(c A zy) A(F/cAw,,J: \17(0Awg/\g¢)=0.
=1 i=1

For every g, we consider a neighborhood Vi of ¢ in G.
We define:

n
Nc;Vm..,'Vm(m) = {y € Xl Ty AC'= i\/l(fl/}w A ¢) where each h{j € V,’} .

Then, the collection of sets Ny, . y.(x) so defined constitutes
a fondamental system of neighborhoods of « for a topology on X.

(If 0 is the only compaet element of B, then X is the only neigh-
borhood of each element z e X).

In fact, # € Nop,,...7u(®).

©
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Let b,c¢ be compact elements, let b= \"7 (b Awg), c= \n/ (¢ A ony),
=1 =1

let V: be a neighborhood of g:, and W; a neighborhood of %; in G (for
every t =1,...,m, j=1,...,n); then Nyvery,..m 1 #al®) C Nowy,.. 7a(@)
€W 150005 Wn(m)
ni
Finally, if y € Noyw,,...wn(®) and @, A ¢c=\ (yny A ¢) where hyeV;
=1

(for every j), there exists a neighborhood W;; of hi; such that Wi C Vi
hence Newy(y) C New(@)-
If B is a Boolean lattice (without last element), X = lim X; (s ¢ B)

is endowed with the topology which is the inverse limit of the topologies
defined on each X;, (we note that nh: X;—X, is a continuous mapping,
for s <1).

In the particular case where @ is discrete, the topology of X coincides
with that defined in the preceding section.

We shall not make use of the topology on X, therefore we do not
investigate any of its properties.

5. We assume now that @ is an ordered set (by a relation <) with
a distinguished element 0. Let § be any ideal of subsets of G.

Let B be a Boolean algebra, F a filter of B.

‘We define a relation < on X = >< (@, %), as follows: if &,yeX

then # <y whenever , < \/ yy for every g € G (we note that the above
supremum has a sense, by the usual hypothesis on &, B).
(h)  The relation < is an order relation on X.

Proof. Clearly # < 2. Let 2,y,2¢X be such that 2 <y, y<=2.
Then, for every ¢, h ¢ G we have:

w,,\Vyh,yh<Vzk,thenmg\ (Veze)y=V 2.
1 h<k o<k

Finally, we assume that # <y, y <o and we show that z=1y.
If b e G then 25 < V yk, hence @ = @ A thyk) h}g/k(mh A Yg). Simi-
<

larly, if g e @ then gy, < V @1, hence
Yo= VN o Aw) =NV @ Ayu)} AYd=V V (@ A Y AYg) = % A Yy
o<l o<h h<k p<h <k

80 Yy < Wy Simﬂarly, 2y <Yy, hence @y =y, for every geG. @

Tf ¢ has at least two elements, if F' = B, for every g # 0 let j5: B>X
be defined by x(b) = (Tn)nee Where @, =0b', 5, =">b, o= 0 for every
h+#g, b #0.
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Similarly, let ¢: G—X be defined by o(g) =
oy = 0 for every h # g.

Then each y, (for g % 0), and g are injective mappings.

Moreover, if @ is ordered, then p and y, (for g> 0) preserve the
order.

In the case where B is a Boolean lattice, then with previous notations
X = lim X, and since each set X, is ordered and the mappings b XX

(Tn)nee Where @y, =1,

are clearly order-preserving, then there exists an order relation on X,
such that each mapping =s: X->X; is order-preserving.

‘We shall now assume that @ is a lattice. Let & be a compatible ideal
of subsets of @, that is, if Jl, JyeF then Jivdy= {g;Veel gredy, g edy} e d
and similarly Jy Ady={g1 A ga| hedy, aedu} e &

(1) If B is a Boolean algebra, if G is a lattice with first element 0 and if
is & compatible ideal of subsets of G, then it is possible to define opera-
tions v, A in X, so that X becomes a lattice with first element. If G is
distributive, the same holds for X. Moreover, if 0 < g then y;: B—>X
and ¢: G—X are lattice-homomorphisms.

Proof. Let z,y ¢ X. We define #vy = 2, by putting 2z = \/ (wn A Yr)

for every g« ¢ (we note that the abo ‘e supremum exists, by the hypo-
thesis on %, B). 0

Similarly,” we define @ Ay =t¢, by -letting &, = \/ (a4 A yy) for
every geG. Hhkee

‘We check with no difficulty (using the hypothesm that ¥ is a com-
patible ideal of subsets of G) that avy =z, @ Ay =1t belong to X,

The commutativity and associativity of the operations v, A is imme-
diately verified. Similarly ave =2, 2 A = 2.

And the absorption laws can be equally easily proved; for example:

V (mh A& A Ym)

leviernl=V_ [wh/\{ W _(@Agmil= N

=g LAm=
h\q{]ﬂ]\)ﬂ/ﬁk(ma A Ym)
for every ge@.

=V VvV (wz./\ym)é

hVEk=g hAm=k

=8 A(V Ym) =24,
me@

This shows that X is a lattice. Tts first element is 2z = (2,),c¢ Where
2y=1, 2, =0 for every g # 0. In fact, 2ve = u, 2 A @ = 2 for every z ¢ X.

If & is distributive, it is straightforward to verify the same property
for X.

The last assertions are immediate consequences of the definitions. m

(1)~ The operations v, A are the supremum and infimuwm defined by the
order relation on X which is induced by ihe order relation on G.

icm®
Proof. Let < be the order relation on X defined in (h) by the order

relation on G: g <h if and only if gvh =k (or equivalently g A h=g).

‘We shall prove that if »,y ¢ X then o < avy, ¥y <wvy, and if z¢ X,

<2 Y <z then avy <z
Clearly, @ < vy, because if g ¢ G then

Viever=V (V (@ Ayn)= V(@A)
g<h g<h lym=h meG

=@ AV gm) = % .
meG
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Similarly y < #vy. Now we assume the o <z and y <z, that is

T <V 2ny Yo <<V 25 then -
9<h g<h
@vyde= V @mAyn) < V UV a) AV )]
lvm=g lvm=g I<h m<k

=V V Vinna=Vz,
lym=g I<h m<k 9<7
showing that svy <
A similar proof holds for the infimum. m

(k) If B is a Boolean algebra, F = B, if @ is a Boolean algebra, if § is
an ideal of subsets of G, c:.patible with v, A and such that if 8 €
then {g'| ge 8} e, then X-is also a Boolean algebra.

Proof. Let 1¢@ be its last element, let e = (g)eq be defined by
e,=1, ¢y =0 for every g # 1. Then ¢ is the last element of X.

For every z ¢ X, let 'y = (¥,)eq¢ be defined by y, = xy (where g’
is the complement of g in @).

Then y ¢ X and vy = ¢, A y = 0, as one may verify immediately.
By (i) it follows that X is a Boolean algebra. m

It is immediate to verify that if B =¥ = $(I), § = B(G), if 0 is the
natural bijection from X onto GI, then z < y if and only if () < 6(y)
(in the pointwise order of @), while # Ay=2 (wvy==2) if and only if

6(z) A B(y) = 6(2) (6(x)VO(y) = 0(2)).

Thus, if @ is totally ordered, in general X will not be totally ordered.

In the more general case where B is a Boolean lattice, and G & lattice
(resp. distributive lattice) the usual technique allows us to define X a8
a lattice, (respectively distributive lattice) namely X = lim X,.

8eB

6. Let @ be endowed with a binary operation + such that 0+g
=g+0=4.

Let B be a Boolean algebra, ' a filter of B. Let § be a compatible ideal
of subsets of G, that is if J,, J, ¢ & then J;+J, = {g1+ gal §1 € J1y G2 € J2} € &

Fundamenta Mathematicae, T. LXV " 17
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()  With the above hypothesis, X has an operation, still denoted -+, such
that if the operation in G is commutative (respectively associative),
the same holds for the operation in X. If @ is a group (resp. abelian
group), then X is also a group (resp. abelian group).

Proof. If z,y ¢ X, let 2-+y = 2z be defined by 2, = \k/ (@n A yx) for

=g

every g e @.

Since F is compatible then z = (2,),e@ belongs to X.

The properties of the operation 4+ in X are the same as those for 4
in @, and the proof is a straightforward verification (actually, the same
ag in (i)). )

The zero element of X is 2= (2;)ge@, Where 2z, = 0 for g 3£ 0, 2, = 1.

If @ is a group, then the symmetric of 2 is 2’ = (#))gee Where 2, = 2.,
for every g ¢ G; this may be readily computed. m

(m) If Gis aring (resp. commutative ring) the same holds for X, provided
the ideal & of subsets of G is also compatible with respect to the multi-
plication of G.

Proof. We let #-y =2, where z,= \/ (s A yz) for every geG.
k=g

By the hypothesis on , we have z e X.

Then the multiplication on X has the same properties as that of G.

If1 is the unit element of &, then e = (g);eq, €, =1, ¢, = 0 for g # 1,
is the unit element of X.

The distributive laws may be verified by a straightforward com-
putation. m

(n)  Let A be a ring and G a lefi-A-module. Let § be an ideal of subsets
of G compatible with the operation -+ on @, and such that if 8 ¢,
aeA then a-8={a-g| geS} ¥ Then X is also a lefi-A-module.

Proof. i zeX, aecd, we define a-w=y, where y= (y,)

Y=V o
ah=g

We leave to the reader the task of verifying that y ¢ X and that,
with this sealar multiplication, X becomes a left A-module. m

Let us note that g: G—X preserves, in each case, the operations:
e(g:+g) = e(g)+e(gs) 0{(g1-92) = 0(g1)-e(gs)y ela-g) = a-o(g).

If B is a Boolean lattice, all the definitions may be easily generalized.

It is also clear that in the situation of example 1, 6 preserves the
operations.

Now, let G be an ordered additive group, with zero element 0, and let
Gi={geG g=0}

(0) If B is a Boolean algebra, if § is an ideal of subsets of @, compatible
with the operation -, then X is am ordered additive group.

geGy
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Proof. We have already defined an order relation and an operation
of addition on X. Our task will be to show that the addition and the
order are corapatible.

Let X4 = {# ¢ X| 2> 0}. Then z ¢ X, if and only if , = 0 for every
g € G such that g 0 (we recall that the zero element of X, now denoted
also by 0, is defined as the element with ‘components 0,=1, 0j=0
for every g #0).

Then X.+X,.C X, (easy to check), and also X, n (—X;)= {0},
z+Xi—2C X, for every v e X.

Infact, if , —2 ¢ X4 then ;= 0 for every ge@, =0, also 2_,=0
for every ¢ &= 0, hence 2, = 0 for every g # 0, and so &, = 1, hence z= 0.

If y e X4 then

(@ty—al=V V [mry)rosl=V ¥ (@-xAt1).
Now, if § 2= 0 then y; = 0, hence the only terms to be considered are those
with j> 0, s0 g = h-+k =j > 0; that is, if g0 then (z+y—a)y=20,
proving that s+ X, —2CX,. B

By the same procedure, if @ is an ordered ring, if ¥ is an ideal of
subsets of @, compatible with the operations, if B is a Boolean algebra,
then X is also an ordered ring.

Similar statements may be made for the case where @ is an f-ring,
or @ is an ordered module over an ordered ring 4 (with appropriate hy-
pothesis on F).

The above facts may be at once generalized for the situation where B
is a Boolean lattice without last element.

7. Now we shall apply some of the foregoing ideas to establish
a relationship between Boolean algebras and certain ordered abelian
additive groups.

We begin recalling some definitions and facts from the theory of
ordered abelian additive groups (see [7], [9])-

Tf X is a lattice ordered abelian additive group, then it is a distribu-
tive lattice.

Let Xy —{zeX| >0} If weX, let D@)={yeX|yAro= 0}.
‘We define @ = y (for &, ¥ « X..) when D(x) = D(y); the equivalence class
containing « is denoted by % and called the carrier of @. The seb C(X)
of carriers of elements @ ¢ Xy, is ordered as follows: Z<§ whenever
D(®) D D(y); then C(X) satisfies the following properties:

(1) C(X) is a distributive lattice with first element 0= {0}; xvy =TV,
TAY=FAT;

(2) G(X) is disjoinctive: if %,7eC(X), 7 <7, then there exists
ZeC(X), 0£2<7 such that A7 = 0.

I7*
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If # i3 an arbitrary element of X, we define its positive and negative
parts as follows: @y = xv0, 2_ = (—a) A 0; by definition Z=72z, vz_,
The lattice ordered abelian group X is said to be totally decomposable
whenever the following property is satisfied: for every ae C(X), z ¢ X,
there exist elements @, #¥ ¢ X, such that o= 2.+ 2%, Z, <@, ZXA a=0.
It follows that the elements x,, #; are uniquely defined by =, .
If X is totally decomposable then C(X) is a Boolean lattice.
We shall also use the following result, which is easy to prove, or
may be found in [7]:
(p) Let C be any Boolean algebra. If ay, ..., ar € C there exist elements
Biy ey Bs € C such that BiA ;=0 (for i ) and a;= \/ By for
all i=1, ... e
Let B be any Boolean algebra, let F = B, let Z be the ordered abelian

additive group of integers, let ¥, be the ideal of finite subsets of Z.
Let X =B>§r (Z, %), thus X depends only on B, hence we shall denote

it by B*. By (h), B* is an ordered abelian additive group (actually, it
is also a ring, but we shall regard it as a group only).

Explicitly, if « = (@n)uezy ¥ = (Yn)nez, then <y if and only if
T, <n¥mym for every n ¢ Z, and this is equivalent to the following con-

dition: if m < n then ym A #, = 0 (because if this holds then @, < (\/ ¥m)’
=”¥ ¥m; the converse is immediate). e
m

If z=2vy where »,yeXy, if k=max{neZ| @y 0} then
%= Ao 2 is the relative complement of 2, in (2yv@;) A (¥oVyy), 2, is
the relative complement of (zver) A (yovyy) in (v vay) A (YoVYLVY2),
and so on (hence 2y, = 0).

Similarly, if f= @ Ay, then tx = @5 A yx, te—y i the relative comple-
ment of @z A yr I (@%V@x-1) A (Y2 VYr—1), tr—s I8 the relative complement;
9i (mkv_mk_x) A (YaVYr—) I (@EVBr-aVBrz) A (YxVYr-1VYr_s), and 50 on;
in particular, { = #,Vy,. Thus # Ay = 0 if and only if TyVYy = 1.

The characteristic mapping y: B—~BY is defined as follows: z(b)
= (@n)nez where @, = b, ,= b’ (thus y = %1, a8 defined before).

(@) gisan injwti:ve.laﬂiee homomorphism such that y(0) is the zero element
of B*, x(b) is idempotent for every b ¢ B and 20+ 2 () =1 (unit
of the ring B*).

Proof. The proof consists on a series of straightforward verifica-
tions. &

We shall now consider the carriers of the group B*
the following useful fact:

(r) If @,y eBf then =75 if and only if gy— Yo

. First, we note

& ) '
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Proof. Indeed, = % is equivalent to the fact that s Az=0 if
and only if ¥ Az=0 (where 2z eB%), that is, x,vz =1 if and only if
YoV2Z, = 1; this means that zy=y,. ® ¢

(s) The lattice C(B*) of carriers of B* 4s a Boolean algebra and
@: B—~C(B*¥*), defined by ¢(b) = x(b), is an isomorphism.
Proof. We have g(bvo)=z(bve)=z(d)Vvz(e)=720)vi(d)
= @(b)V @(c), and similarly, ¢(b A 0) = ¢(b) Ap(c), ¢(0) = £(0) = 0.
@ is injective, because if b # ¢ then, for example b < ¢, hence b’ ¢'.
We have y(¢) A x(c) =0, while x(¢') A z(b) =_x{¢" A D) 5 0 (since y is
injective). Hence D(x(e)) = D(x(d)), s0 @(e) = x(e) # x(b) = @(b).
The mapping ¢ is also surjective. In fact, given a e C(B¥), let x ¢ B}

such that %= a. Then (@)= y{m) = o, because (x(z)}o= (%)’ = y,

80 by (r), we have y(%) =% = a.
Thus, ¢(1) is the last element of G(B¥), which is a Boolean algebra. m
It follows that v = y o =1t C(B*)—B% is an injective lattice homo-

morphism such that p(a) = a, for every a < C(B*), since y(a) = g T C)]

=glg™a)) = a

Explicitly, if aeC(B*), if #eBi is such that %= q, then y(a)
= ylp~(@)) = x(zi) because ¢(z)= x(e) =% as it was shown in (r);
actually, this shows also directly that y(a) independent of the choice
of @ such that = a. Moreover:

(t) B* ‘is generated (as an additive group) by v (C(B*)).
Proof. Let &= (#z)n e X+. We shall show that o= Dn-y(p(zs)
n
= >'n-y(®s) (this sum is finite, that is #» = 0 except for a finite number
n

of integers n, and since @ ¢ X, then a, =0 for # < 0).
Indeed, for every m > 0, we have ny(wn) = (Yi)m Where y” = ay,

y™ = @, ¥ = 0 for every meZ, m # 0, m % n.
Then,

y= 2 a@) = Gnln  Whete o= /\ gh=(\ an' = 2,
=2 A (A Tn) =2 A(V &) = @y A (@VB1) = &,
m>1 m>1
Yo=2{ AW A (A &) =22 AV Zm) = B A (%V %3) = @
m>2 m+2,0
gimilarly ym = zm for every m, showing that z = D ny(ws), belonging
therefore to the abelian group generated by v(C(B*)). For a general
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element ¢ X, we write # = &4 —_ where =V 0, v_= (—2)Vv0;
then z,, - are in the above subgroup, and so is @ too. m
p

(u) B* is a completely decomposable latlice ordered abelian group.

Proof. Let » e Bf, let « « C(B*). We have to show that there exist
elements @,, 4% ¢ BY such that o = 2,44, T <@, 27 Aa=0.

In fact, by (s) there exists a ¢ B such that ¢ = 2(a). Let &y = (Tan)nez,
Where T, = 0 for 1 < 0, Ty = &' Vi, Tan = & A @y, for o > 0; then w, e BY.
Moreover %, < o, that is D (2,) D Dy ()); indeed, if y ¢ B* then y A y(a) =0
if and only if y,va’ = 1; this implies y,v(a'Va,) =1 hence y A &, =0.

Clearly 2, < «. Let a} = 2 —, ¢ B¥, thus o3, = 0 forn < 0,43, = avu,,
= a' A @, for n>0. Then a7 A z(a) =0 (because x4 va’ = 1), hence
Aa=0. 1

Summarizing, we have shown:

" TerorEM 4. If B is a Boolean algebra, if X = B*, then:
(1) X s a completely decomposable lattice ordered abelian group;
(2) C(X) has a last element (hence it is a Boolean algebra);

(3)  there ewists am injective lattice homomorphism y: C(X)—X such

that yp(a) = a for every a e C(X);
(4) X is generated by y(C(v)).
Moreover, the Boolean algebras B, C(X) are isomorphic. ®
Conversely:

THEOREM 5. Let X be an abelian growp satisfying conditions (1)-(4)
of the above theorem. Then there ewists a lattide-group-isomorphism
A X—>C(X)* such that A(w) = x(Z) for every ¢ X.

Proof.

x —L.ex*
v
v
C(X)— —cle(X)*¥)
By (p) given a finite set {ay, ..., ar} of elements of C(X) there exists a finite
set {1, ..., Bs} of pairwise disjoint elements of C(X) such that a;= V Bi
(for every i =1,..,7). s

Then {a;) =h!a}u(,81) and the elements y(B;) (j=1,...,7) are pair-

wise disjoint. Hence for every n ¢ Z, we have

e = n( V p(87) = n(pj; 2(8)) = X ny(fy) .

<oy

@
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Ttz e X,y e X, by (4) we may write s = Jna(a)p(a), y = 2 nay)p(a);

where a; € C(X), 7(®), a(y) € Z, and the elements a; are pairwise disjoint.
Then

ovy =D, [Ma(®) Vra(y)]-9las)

i=1
r

BAY = D, [Ma(®) Aay)) w(as),

w_i_ Y= 2 [’ﬂa‘(w) + na{(y)] s ((11') *
G=1

Tn fact, since the elements y(a;) are pairwise disjoint, the same holds
for their multiples nq(®)y(as:), hence

o=V ma@) 9@, Y=V ma(®)p(a)

and so VY, ® AY, v+y are given by the above formulae. .
Now, we define the mapping i: X—C(X)* as follows: if

o= nafw) plad,

1=1

let A(%) = (¥n)nez, where if n#0 then z,= \ oeC(X) and

nm(a:)zﬂ

o=V @) €C(X). Clearly @, A &m= 0 when % #m and \/zm,. =1,

n¥#0 ne
80 A(w) e C(X)*. .

1 is injective, because if A(x) = 0, that is = 1, 2, = 0 for n # 0,
then n,(w) = 0 for every a; and since y is injective then z = 0.

Given any element (yn)nez € C{(X)¥, let = Z,;an:(yn), 50 & ¢ X (since

ke

y» = 0 except at most for a finite number of integers); since the elements yn

are pairwise disjoint, the same holds for the elements v(ya), hence i(x)

= (@n)nez is such that if » %0 then == \ Ym = pn, and g = (n\ﬁom,,)
m=n

=(V ya)' = -
n#0

Finally A(zvy) = (@) VA(Y), Al Ay) = A(@) A A(Y), X(W%]-lgll) = A(2)+
if 2= = ;, while
+A(y). For example, if 2 = zvy then 2, nu‘(m)vnmma”au
= = i) A
(@vil,=, Y (@rvd =V [V a)n( Y %)
— ) = a; = %y

= ‘
Y k=n ng@=hmg )=k Pgy{) g W)=

(noting that if @ # o then « A ¢ =0).
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To conclude the proof, we need only to show that (@) = %(%), that
> o .. < —_— 'T IR r
is my= (y(@))e; but if w= Zlna,y)(a,-) then = i\/l‘lp(a;) =V a=a;,

hence (y (%)}, = 2§ = z, showing the stated commutativity of mappings. m

Now we shall use the language of the theory of categories to express
the above results more precisely.

Let B be the category of Boolean algebras, with lattice-homomor-
phisms preserving the first and last element and whose images are sub-
lattices.

Let ® be the category whose objects are the abelian groups satisfying
conditions (1)—(4) of Theorem 4. The morphisms #: X — ¥ in the category
are the lattice-group-homomorphisms with the following properties:

(1) if % = 7, then 7(®,) = 5(w,), 80 7 preserves the carriers and in-
duces a lattice-homomorphism 7: C(X)~C(Y), by defining (%) = 5(z).

(2) if ¢ is the last carrier of X then 7(e) is the last carrier of Y.
(BYyren=n1n-yx.
It is easy to check that ® is indeed a category.

(v)  We define a covariant funcior B~>G by associating with every B ¢ B
the group B* ¢ ®, and with every morphism p: B,—B, the mapping
u*: BY —Bf, defined by u*((@n)n) = (4(Zadn).
) Proof. Clearly u*((#s)s) ¢ Bf. It is also immediate to verify u®
is a lattice-group-homomorphism.
It Z,=3 then (s)o=(m)o hence (u*(z)))o= p((z)) = p((:)o)
= (I‘#(mz))o hence u*(m,) = u*(w,).
I s the last carrier of BY, then s = (1) hence u¥(e) = u*(y(1))
= p*{y(1)) = x(1) which is the last carrier of Bf.
Now, we show that yg, o u¥ = u* o yp,.
Let o € C(BY), oy = %, where ¢ ¢ Bf. Then

v5,(8* (02)) = 95,(s* (@) = {1 (20))
= lB:(.“(mo)') = (1 B(@0), p{m,)’, 0, ) .

2By

B, B, “C(BY)

l la - J"

B Bl e
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On the other hand, u*(pz,(a)) = u* (¥5,(@)) = p* (15,(%0)) = p*(--r, 80, 53,0, -..)
= (oery p{%0), u(@), 0, ...). This shows the commutativity of the mappings,
proving that u* is a morphism in the category G.

Since (v o w)¥ = »* o u*, where », x are morphisms in B, then we
have a covariant functor B—-G. B

(w) For every Boolean algebra B the isomorphism ¢: B-~C(B¥), defined
in (8), is natural.

Proof. Let B;, B, be Boolean algebras, let u: B,—B, be & morphism.
We have to show that u* o g, = @g, o u, which is clear from the definitions:

BF gz (0)) = p*(x(0)) = w*(x(®)) = (oo, p(b"), u(2), 0, ..)

= 2(4(®)) = pa,(u(d) - m

(x) For every abelian group X  © the isomorphism i: X->C(X)*, defined
in theorem 5, is natural.

Proof. Let X;, X,e®, let 7: X;—~X, be a morphism. We have
to show that 7* o Ax, = Ax, o 7.
If » ¢ X,, by hypothesis and (p), we may write @ = D apxy(a), where

the elements a such that n, 7% 0 are pairwise disjoint. Then
n(0) = X nanlpz(@) = Xneyxi(a) -

By definition Ax,(n(x)) = ¥ ¢ C(X,)* is such that if n 5 0 then y, = V 7(a)
Ng=n
=7%(V a). On the other hand, if Ax,(w)=71, then for n # 0 we have
Ng=n .
tn=\ o« hence 7*(t) = (7(ta))s, 50 necessarily #* o ix,=dx, o7. W
n‘ﬁeo

The above results may be also expressed by saying that the functor
B->C(B*) is naturally equivalent to identity functor of B, and X ~>C(X)*
is naturally equivalent to the identity functor of ®.

In the same way, we see that the functors B—B* and X->C(X)
are inverse isomorphisms between the categories B, ©.

References

[1] S. Baleerzyk, On Groups of functions defined on Boolean Algebras, Fund.
Math. 50 (1962), pp. 347-367.

[2] &. Birkhoff, Lattice theory. A. M. S. Coll. Publ. 1948.

[3] A. L. Foster, Functional completeness in the small, Math., Ann. 143 (1961),
DD. 29-58.


GUEST


268 P. Ribenboim im“

[4] H. Hermes, Einfiilhrung in die Verbandstheorie, Springer 1955.

[5] J. Lio§, Linear equations and pure subgroups, Bull. Acad. Polon. Sci. 7 (1859),
pp. 13-18.

(6] B. H. Neumann and S. Yamamuro, Boolean powers of simple groups,
J. Australian M. 8. 5 (1965), pp. 315-324.

[7] P. Ribenboim, Sur quelques constructions de groupes réticulés et 1équivalence
Jogique entre Vaffinement de filires et d’ordres, Summa Brasil Math. 4 (1958), pp. 65-89.

[8] — Fonctions modulo antifiltres, Math. Z. 77 (1961), pp. 195-206.

[9] — Théorie des groupes ordomnés, Univ. Naoc. del Sur, Bahfa Blanca 1963.

Regu par la Rédaction le 17. 6. 1967

Generalized group cohomology*

by
Morton E. Harris (Chicago, IIl.)

Introduction

A permutation representation (@, X) of a group G will consist of

a non-empty set X with G acting on the left such that (0o)® = g¢(ow)
for all p, 0 ¢ @ and all # ¢ X and such that ez = 2 for all # ¢ X where ¢
denotes the identity element of @.

When (@, X) is a finite permutation representation (i.e., when X

i a finite set)-a cohomology theory is defined and investigated in a series
of papers by Snapper ([9], [10], [11], [12], [13]). The results of [13] are
an application of this cohomology theory to the study of Frobenius

groups.
When the finite permutation representation (@, X) is fixed point

free (i.e., oz = o for w ¢ X and o ¢ @ implies ¢ = ¢) then this cohomology
theory is just the ordinary cohomology theory for finite groups.

This cohomology theory of (finite) permutation representations is

a generalization to not necessarily transitive permutation representa-
tions of the cohomology theory of [1].

These cohomology theories of permutation representations are defined

by means of a “standard complex”. The cohomeology theory of [1] has
been investigated in terms of relative homological algebra in [5].

TUsing recent developments in relative homological algebra, we in-

vestigate the cohomology theory of finite permutation representations
of [9], [10], [11], [12] and [13]. This investigation generalizes that of [5]
and the well known homological algebraic foundations of the ordinary
cohomology theory of finite groups.

Our investigation will permit straightforward (standard categorical)

derivations of all of the results of [9] and [10], some. generalizations of
these results, some new results, as well as generalizations to not necessarily
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