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Generalized group cohomology*

by
Morton E. Harris (Chicago, IIl.)

Introduction

A permutation representation (@, X) of a group G will consist of

a non-empty set X with G acting on the left such that (0o)® = g¢(ow)
for all p, 0 ¢ @ and all # ¢ X and such that ez = 2 for all # ¢ X where ¢
denotes the identity element of @.

When (@, X) is a finite permutation representation (i.e., when X

i a finite set)-a cohomology theory is defined and investigated in a series
of papers by Snapper ([9], [10], [11], [12], [13]). The results of [13] are
an application of this cohomology theory to the study of Frobenius

groups.
When the finite permutation representation (@, X) is fixed point

free (i.e., oz = o for w ¢ X and o ¢ @ implies ¢ = ¢) then this cohomology
theory is just the ordinary cohomology theory for finite groups.

This cohomology theory of (finite) permutation representations is

a generalization to not necessarily transitive permutation representa-
tions of the cohomology theory of [1].

These cohomology theories of permutation representations are defined

by means of a “standard complex”. The cohomeology theory of [1] has
been investigated in terms of relative homological algebra in [5].

TUsing recent developments in relative homological algebra, we in-

vestigate the cohomology theory of finite permutation representations
of [9], [10], [11], [12] and [13]. This investigation generalizes that of [5]
and the well known homological algebraic foundations of the ordinary
cohomology theory of finite groups.

Our investigation will permit straightforward (standard categorical)

derivations of all of the results of [9] and [10], some. generalizations of
these results, some new results, as well as generalizations to not necessarily

* This research was supported in part by the National Science Foundation Grants

NSF-GP5276 and NSF-GP6539. The author wishes to express his gratitude to Professor
Ernst Snapper for his advice and suggestions.
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transitive permutation representations of the results of [11]. In fact,
most of the results of [3], Chapter XIT will be generalized to this theory
of cohomology of permutation representations. Thus the cohomology
theory of permutation representations (which includes the ordinary
cohomology theory) has been put into an axiomatic framework which
elucidates the entire theory.

However, in this paper we will only present the relative homological
algebraic background, the results of [9] in this setting and some new
results. In a future paper entitled Cup product, duality and periodicity
for generalized group cohomology we shall complete the above mentioned
program.

In Chapter I of this paper we describe the relative homological algebra
background, explain its connection with permutation representations,
and interpret the @|K-regular and G|K-special modules of [91.

In Chapter IT, we define a general cohomology theory and quote [9]
to show its existence in two cases. When the (finite) permutation Tepresen-
tation (&, X) is fixed point free then the cohomology theory is just the
ordinary group cohomology theory and the axiomatizations become the
absolute homological and relative Z-split homological axiomatizations,
a3 they should be.

These relative homological algebra axiomatizations are used, in the
final sections of this chapter, to study the passage to a quotient group
and to study the relations with a subgroup.

In Chapter III, the connection between the cohomology theory of
Permutation representations and the relative deriveds of the functor Homg
is studied. Finally, we indicate how the spectral sequences of [9], Chap-
ters 2 and 3 are consequences.

For any group K, we shall denote the category of left K -modules.
by xC and for any 4 « G, we shall let AX = {a ¢ 4| ka = a for all & e K}
The category of Abelian groups will be denoted by Ab and Z will denote
the rational integers. If Z is considered as a module over a group, it will
always be considered to have trivial group action.

1. Foundations

§1. The relative homological algebra background. Let
$ = {H} be an arbitrary collection of subgroups of the group @. For
each H ¢ §, we have the “forgetful” functor Ty: ¢€—>5€ and the functor
8g: gC—6C defined by Sg{B)= Z [61®&B. Asobserved in [4], Chapter ITI,.
§ 4, Ty is the adjoint of 8z. Moreover, if the class of all split exact se-
quences (as defined in [4], pp. 3-4) of zC is denoted by &(H), then, by [4],
Chapter II, Theorem 3.1 &($) = IQSTE(&,(H)} 18 a projective class in oG

&
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and the &($)-projective objects are all retracts (direect summands) of
all direct sums of the form:

® (Z[G1®xn(zB)) where uBesC.
HeH

imi 7: gC—>gC given by Su(B)
Similarly, for each H e, the functor Sp: gC—¢
= HomH(,Z [@1, B) is the adjoint of Tg. If §(H) _d]enotes t_he ela-ss. of .a;]l
cosplit coexact sequences of 5C, then 8%(H) = QﬁTH (SD(H )) is an injective

class in ¢C and the injective objects are all retracts of all direet prod-
uets of the form:

H Homg(Z[G], gB) where gBexnC.

He$H
Also, &(9) and &(H) are complementary classes (i.ef., th.ey both contain
the same sequences which are unlimited in both d];rectlons.).

The short exact sequences of &($H) and 8%(%H) comprise the same
class P($). These are the short exact sequences E of ?Q: such that lTH(E';
is split exact for all H ¢ §. It is obvious that P(9) is a proper c a.s:ix 0
short exact sequences in ¢ in the sense of [7], Chapter XTI, § 4. Smcﬁ
&(%) has enough projectives, it follows that the class P($) has enoug

jectives and similarly for injectives.
Pm]eI(:ftsf), %, are collections of subgroups of & such that for1 every H < t;é
there exists an e @ and a K €$,, such tha.t H C zK«~*, then wri e
$ < $,. This relation is clearly a qua:siaorden.ng. If both 53 < $H, an
$:< 9, then we write $ =~ $; this is an equivalence relation.

The following lemma is straightforward: )

Levuma 1.1.1. If K, H are subgroups of the groupAG such that H C xKa;
for some @ < @, then if B: A—~B—C is a sequence i f;(E‘ such that TK(;'Z
is split ewact in xC, then Tg(H) is split exact in uC and similarly for a cospli
coenact sequence.

Thus if $ < §;, then &($;) C &($), &($:) C &(H) and P(H,) CP(H)
with equality for 21l three inclusions if $ = 9. ) hal

There is yet another cliss of short exact sequences Wh.l(lh we 8 :
need. Let H be a subgroup of G and let Z denote t.he abelian grouplci
rational integers with trivial H-action. Then applying ‘[4], Oha.ﬁter . é
Proposition 5.1, the sequences of zC Whi(‘:h are exact in Ab' W ((;n e
functor Homg(Z, %) is applied form a prp]ectly(? class i}(‘H) n; H ——V?H}
projective objects all free abelian groups with tnwal 1H -‘&01310.11. 9 = i
is a collection of subgroups of &, then F(9H) =HO§TH (F(H)) is & projec

class in 4C with projectives being all retracts of all direct sums of the
form:

® (2[61@x (=B)

He
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where zB ¢ 5C is a free abelian group with trivial H-action. A sequence
A—B-( in &€ is in §($) if and only if the sequence A% —+BZ_, oF ig
exact in Ab for all H e H.

Let @(H) denote the short exact sequences of F($H). We claim that
Q(9) is a proper class. For, a short exact sequence H: 0->A->B— (-0
of ¢C is in Q($) if and only if Tg(B) e F(H) for all H € $. But the short
exact sequences of F(H) form a proper class in zC, as is well known
(see [7], p. 371, Exercise 6). Hence, Q ($) is a proper class in &C. Moreover,
we have &($H) CF(H) and P(H)CQ(H).

For example, if G ¢$, then P($) is the class of all split exact se-
quences of 8. If § consists only of the identity subgroup, then P(%)
is the class of Z-split short exact sequences of ¢& and Q(9H) is the class
of all short exact sequences of .

§2. The relationship with permutation representations.
As before, $ denotes any collection of subgroups of @; let A denote the
set of all such $. Let B denote the class of all permutation representa-
tions (¢, X) of @ Consider the mapping f: B such that f(&, X))
is the set of all subgroups of @ which fix a point of X. Clearly, f maps B
onto the set of all § e which are closed under conjugation. Moreover,
if X is finite, then f((@, X)) is a finite set of subgroups of finite index
in @ which is closed under conjugation. Conversely, given any such set
of subgroups § then there exists a finite permutation representation
(¢, X) such that (@, X)) = §.

To say that a permutation representation (@, X) is fixed point free
is equivalent to saying that f((¢, X)) = § consists of just the identity
subgroup. Also, X has an element fixed by every element of @ if and
only if & <f{(&, X)).

§3. G|K-regnlar and G|K-special modules. For any sub-
group K of @ of finite index, the notion of & @K -regular G-module has

been defined in [9], § 11. It is easy to see that (when K is of finite index)
this is equivalent to:

“

Dermvrrion 1.3.1. If K is any subgroup of @, then a G-module A
is said to be G|EK -regular if A is isomorphie in € to a module of the form.
Z[@®x B for some B ¢ (.

Thus, the G|H-regular modules for H €9 have been mentioned
in § 1.

PrOPOSITION 1.3.1 Let L be a subgroup of K; then any @|L-regular
module is G|K -regular.

Proof. Z[GF1Q1B =~ Z[F]1®x(Z[K]®LB) in 4C.
This implies [9], Proposition 11.1.

&
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For the rest of this section, we shall assume that § o~ $* where $*
consists of only one subgroup K. .

LEvMA 1.3.1 A € g is §(9)-projeciive if and only if the G-mappmg
ag(d): Z[A1®@xA—~A as defined in [4], p. 27 has o G-coretﬁacmo’n.

Proof. Assume that A is §($)-projective. Since TK(A)»TK(.A)-W
is in &(K), the proof of [4], Chapter IT, Theorem 2.1 may be. a.pp.hed. to
demonstrate that ax(A4) has & @-coretraction. The reverse implication
has already been mentioned.

Dually we have: '

TEMMA 1.8.2. 4 € o€ is 8(H)-injective if and only if the G—mapp.'mg
de(d): A—>Homg(Z[G], A) as defined in [4], p. 27 has a G-r?tmotww,.

Tor the rest of this section we shall further assume that K is a sub-
group of @ of finite index.

Let G = 0 #; K be the corresponding left coset decomposition of &
i1

where @, ..., @ 1§ a left coset representative choice. As usual, foi any A ¢ o€
) . . 0 — | d -s
the trace mapping Sgx: A¥ 5 A% iy defined by Sgx(a) g x;e and 1

independent of the K-coset representative choice. If A,BegC a.ndfif
Homz(4, B) is viewed as a left G-module in the usual way, then for

g &
w e Homz (4 , B) = Homg (4, B), (Saix(w)) () =i§,1m;u(w,~ o) forall a e A.

Using this trace mapping, we define, as in [9], §10: o

Drprvrion 1.3.2. A G-module A is said to be G|K-special if there
exists & K-homomorphism u: A—>A such that Segx(u)=1la. ‘

Under these hypotheses on $ (i.e. § = H* where $* consists only
of one subgroup K of finite index in &): .

THEOREM 1.3.1. For any A € o€, the following are equivalent:

1) A is G|K-special.

2) A s &(9)-projective.

3) A is &(9)-injective. .

The following five lemmas provide a proof of this theorem:

Levva 1.3.3. If BexC, then the G-modules Z[@)®xB and
Homgz(Z[@], B) are G-isomorphic.

Proof. Let G@= O ;K be as above. It is easily seen that the G-mapping
=l

g: Homg(Z[#], B)~Z[¢1®xB given by ﬂ(f)=i;21wc®xf(w7) for

feHomg(Z[G], B) has an inverse in <. : .
Levva 1.3.4. If A € 6C, then Z[GI®x4 is G|K - special.
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Proof. Let G= | )oK where m — 1; then
=1

Z[¢] = g (#:Z[K)) gg Z[K] - as a right K-module .

Let #: Z[@]—Z[K] denote the projection onto the first component.
It is easy to see that = is & homomorphism in zC and viewing n: Z ]
—Z[#], we have

See (n®x14) (Z wi@Kai) = Z (mf(ﬂ(ﬂfi—lwt)) ®Ka£) = jwi®K‘li

i=1 i,j=1 t=1

for all a;eA.
Lemua 1.3.5. 4 G-direct summand of a G|K-special module is GK-
special.
Proof. Standard.
Lemwa 1.8.6. If A egC is G|K-special, then the mapping ag(d):
Z[G]1®x A—~A in o€ as defined in [4], D. 27 has a coretraction in .
Proof. Let «eHomg(4,A4) be such that Sgx(u)= 14. Defined

n

@ A>Z[#®xA by ala)= 1(05@1{’“(%;_1&) for ¢ € A; then, a is indepen-

[ b=
dent of the coset representative choice for K in ¢ and ag(d)a = 14. Also,

if ge@, then {o}= gz 1 <i<n}is also aleft K-coget representative
choice and hence

galo) = X goi@xuai’s) = D) si@xu((w)g0) = a(ga) .
- i=1

Thus, a is & G-homomorphism,
Levwma 1.3.7. If .A €€ is G|K-special, then the mapping ah(A):
A—-Homg(Z[F], A) in &8 as defined in [4), p. 27 has a retraction in G,
Proof. Let ue¢Homg(4,A4) be such that Seg(#) = 14. Define

8: Homg(Z[ &, 4)-» 4 by 3(f) =‘§,1’ wg((uf)-(mg_l)) for f « Homg (Z[@], 4). An

argmmt similar to that in Lemma 1.3.6 shows that § is the required
map in gC.

o This last lemma is implied by Lemmas 1.3.2, 1.3.3 and 1.3.6, but
is included for completeness. ’

CorOLLARY 1.3.1. 4 G|K-regular module is @K -special.
This is Proposition 11.2 of [91. :

CoROLLARY 1.3.2. If 4, B are two G-modules such th !
at A is QK-
regular, then the G-module Homz(4, E) is G|K-regular. |

/
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Proof. Let A = Z[G]®xB in &€ Then, the isomorphism s':
Homg (Z[6], Homz (B, B))>Homy(Z[¢]®x B, E) of (3], Chapter II, Prop-
osition 5.21 is a G-isomorphism and the result follows from Lemmsa 1.3.3.

This is Proposition 11.4 of [9].

II. A general theory of group cohomology

§ 1. Definitions. Let G be a group, let 4 ¢ g€ and let H be a sub-
group of finite index in @G. In Chapter I, § 3, the trace mapping Sgg:
AT > A% has been defined. If § = {H} is any collection of subgroups of
finite index, then for any A ¢+C we define:

Us(d) = 4%] ) Sam(4™) .
HeH

Thus Ug is a covariant functor from & into Ab.

The following lemma is easy to prove.

Levva 1.1.1. If H, K are subgroups of finite indew in G such that
HCaEa™" for some © e G and if A e o€, then Sgm(A™)C Sex(A™).

Now assume that §, $, are collections of subgroups of G consisting
solely of subgroups of finite index in @ such that $ < §,, then for any
A ¢ g€ there is a cannonical epimorphism Ug(d)—Ug,(4) and hence,
there is a natural transformation of functors Ug—Us,. If § == §,, then
clearly Ug= Ug, .

Let P be a proper class of short exact sequences of g€ in the sense
of [7], Chapter XII, § 4 and let $ be any collections of subgroups of @
of finite index.

DEFINITION 2.1.1. A (P, ) cohomology theory for ¢€is a sequence of co-
variant additive functors {F"| n € Z} from o€ into 4b, together with functions
which assign to each proper short exact sequence E: 0—>A—~>B—>C—0,
morphisms E%: F*(0)—~F""" (4) in Ab such that (F", £y, F**) isa P-con-
nected pair which is both left P-couniversal and right P-universal in
the sense of [7], Chapter XII, § 7 forall n ¢ Z and such that F° is naturally
equivalent with Usg.

Tt follows from universality that if a (P, $) cohomology theory
exists for €, then it is unique up to isomorphism of doubly infinite P-con-
nected sequences of functors. Moreover, if we define the index, d(9),
of § to be the greatest common divisor of {|G: H| |H € }, then since
|G: H| A¢ c SG]H(AH), we have by the usual universality argument:

THEOREM 2.1.1. If {F"| neZ} is a (P, $) cohomology theory, then
d(H)F"(A) =0 for all n e Z and all A €gC.

Observe that if @ is a finite group and § consists solely of the identity
subgroup, then Ug(d)= A%/NA for any A egE (N = Sgu denotes the

Fundamenta Mathematicae, T. LXV 18
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usual norm). If, further, P consists of all short exaect sequences of 4,
then the ordinary cohomology groups form'a (P, $) cohomology theory.
The same is true if P consists of all short exact sequences of @& which
are Z-split (as we shall prove).

§ 2. Existence. Now, we prove the existence of two cohomology
theories which will turn out to be the cohomology theory of [9]. These
methods will generate new results in this theory and will shed new light
on this theory.

Tor the cohomology theories in which we are interested, we restrict
ourselves to a finite permutation representation (@, X) (i.e. X is a finite
set). Thus, f((¢, X)) = $ is a finite set of subgroups of finite index in @
and is closed under conjugation. On the other hand, if we assume that
such a set § of subgroups is given, we can then construct a permutation
representation (&, X) such that f((&, X)) = $. In either case, we assume
(@, X) and $ with the above properties such that f((&, X)) = $.

I § denotes the set of subgroups obtained by adjoining to & all finite
intersections of its elements and if $, denotes the set of subgroups formed
by choosing one subgroup from each conjugacy class of $, then %,
~ %% and §, 9 are finite sets of subgroups of finite index in @.
Thus, cohomology theories for (P($), $); (P(H);H) and (P(SH0); Hi)
are the same if they exist. ’

Levma 2.2.1. Let (G, T) be a tramsitive permutation representation
of . If ee T and H= {g « G| ge= ¢}, then Z[F1Q@pZ and Z[T] are iso-
morphic in ¢C. (Here, Z s a trivial H-module and Z[T] is as defined on
p. 135 of [9].)

Proof. Let @ = Ula;iH be the left coset decomposition of H in G

1€,
where {z:] eI} is a left coset representative choice. Every element
aeZ[61®rZ can be written uniquely in the form a=132 wi®pga; for
€J
a wnique finite subset J of I. It is easy to see that the G-map
f: ZIA1®@r Z—~Z[T] given by f(a) = f( ) #:@m2) = ) #:w:¢ has an inverse
in g(g ieJ e
THEOREM 2.2.1. A (P($), $) cohomology theory ewists.

Proof. Let r be a positive integer and let {T,, ..., T,} denote the
fioma.ins of transitivity of the permutation representation (&, X"). Then
it is clear that the left G¢-module Z [X'] (as defined on p. 135 of [9]) is

isomorphic in € to{G_}l Z{[T;). But the subgroup of @ fixing an element

of X" _is always a member of $; thus, Lemma 2.2.1 demonstrates thab
Z[X']is an 80(5? = 8(H) = &(H,)-projective. Since the “standard complex
of the permutation representation (G, X)” of 9], p. 135 has a contracting

&
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homotopy for each He$ ([9], Proposition 1.1), this complex is in
8(9) ~ &%) and the objects of the complex are &($)-projectives. There-
fore, the set of functors {H™X; &, %)| n ¢ Z} as_defined in [9], p. 137
is an exact doubly infinite P($H)= P($H,) = P(H)-connected sequence
of functors. Moreover, the results of [9], Chapter I, § 4 show that the
functors H(X; G,%) and Us, = Ug= U are naturally equivalent
and Lemma 1.3.3 shows that the §,($)-projectives and the §($)-injectives
are the same; hence, the functors H™(X; @, %) vanish on these objects.
(This, by the way, implies [9], Proposition 11.3.) But 8(9) has enough
projectives and &($) has enough injectives and so the P($)-connected
pair of functors (HY(X; &, %), H"(X; @, %)) is bothleft P($)-couniversal
and right P($)-universal by [7], Chapter XTI, Theorems 7.2 and 7.6.

Tmvora 2.2.2. Let 0—>A 5B 0—0 be a short evact sequence of Q(9).

Then there ewists a short exact sequence 0>A5B5C—0 in P(D), which
is the bottom row in a commutative diagram
0— A-*+B>~(—0
A
0—r A2, B2 0—0
such that HY(X; &, w)= 0 for all neZ.

Proof. Let A5 B, be a P($)-monic with B; a P($)-injective and
let

A2 B . A2, B,
l“ l"" be the pushout of the diagram l“
B2~ B : B

Then it is easy to see that @ = w,%: A—>B is a P($)-monic and letting
7= coker % we get the commutative diagram

00— A-2s B> C—0

PP
0—s A2V B2 T—s0

which has the desired properties—proving the lemma.
TEBOREM 2.2.2. A (Q(9), H)-cohomology theory ewists.

Proof. The “standard complex” Les in &) C®($) and has objects
which are § ($)-projectives. Hence the functors {H"(X; &, %)| n e Z} form
and exact Q(9)-connected sequence of funectors. .

Ag is well known, if ¥ denotes an hf. class of epimorphisms of ¢&
in the sense of [8], p. 189, exercise 5, then the class of short exact se-

18*
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quences 0->A%B50>0 in ¢C such that ve Y is proper in the sense
of [7], Chapter XII, § 4 and conversely.

Hence by Lemma 2.2.2, we may apply the generalization to proper
classes of short exact sequences mentioned in [8], p. 211, exercise 1 of [8],
Chapter VIIT, Theorem 2.2 applied to [8], p. 198, case 2 and, of course,
all duals to conclude that the pair of functors (A™(X; &,%); H" WX; &, %)
is left Q($)-couniversal and right Q($)-universal for all n e Z. To finish
the proof it only need be reiterated that the functors Ug and HYX; &, %)
are naturally equivalent.

Since Ug= Us= Us,, it follows that cohomology theories for
(@(), $); (@(8), $) and (@(H), Ho) are the same.

CoROLLARY 2.2.1. If P is a proper class of short ewact sequences such
that P($) C P CQ(H), then a (P, H)-cohomology theory ewists.

‘We have seen that cohomology theories for (P($), $) and (@(5), §)
comprise the same sequences of functors; this sheds new light on §7
of [9].

The functors H {(X; &, %) and HY(X; G,%) are computed in special
cages in sections 5 and 6 of [9] and in section 4 of [1]. Moreover, Theo-
rem 2.1.1 gives [9], Corollary 10.2.

Suppose that @ is a finite group and that (@, X) is a fixed point
free permutation representation; then f((¢, X)) = $ consists only of
the identity subgroup, Q(S$) consists of all short exact sequences of (&
and P($) consists of all Z-split short exact sequences of ¢C€. Thus, we
have proven that the ordinary (the (Q($), $))- cohomology theory and the
“Z-split” (the (P($), $)-) cohomology theory comprise the same sequences
of funetors,

If p is & positive integer, then (G, X°) is also a finite permutation
representation. If & = (G, X%), then R =H which implies that P($)
=P(R), 9($)=Q(R]) and Us= Us. Hence, both (¢, X) and (&, X9
give rise to exactly the same cohomology theories of Theorems 2.2.1
and 2.2.2.

Suppose that the finite permutation representation (G, X) is such
that f ((G, X)) = § contains a subgroup H such that if & consists only
of H then § =~ &. If (¢, ¥) denotes the permutation representation of @
on the left H-cosets, then f((&, Y)) =~ &, P($)= P(R), Us= Ug and
thus for purposes of the (P($), H)-cohomology theory, we 'may use
the transitive permutation representation (&, ¥) instead of (&, X).

This can be generalized to: if we can delete tramsitive constituents
of (G, X) to get a permutation representation (&, ¥) such that f((G, X))

=f((¢, ¥)}, then for purposes of the {P(9), $)-cohomology theory,
we may take the permutation representation (&, Y) instead of (&, X).

® ©
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For example, this will be the case if in (@, X) we delete transitive con-
stituents which are fixed point free.

§ 3. Passage to a quotient group.

LemMA 2.3.1. Let H be a subgroup of the group @ and let M be a sub-
group of H which is normal in G. If B ¢ zC, then (Z[G1®aB) =~ Z[¢/M]
®H,M(BM ) as left Q| M modules.

Proof. Let G = Hx;H be the left coset decomposition of H in &

where {w;| © ¢ I} is a left coset representative choice. As abelian groups,
Z[#1®rB = GBI (2:Z[H]®nB) =~ @I B; where B;= B. The induced
1€ i€

@-action on i@-)l B; is determined by: if g ¢ & and gz; = @y h; where h; e H

for iel, then for b eB = B;, gb= h;be By, = B. But if ne M, then
na@; = w;n' for some n' ¢ M C H and so, (B By = @ (BY);.
iel el

Moreover, {x; M| ¢ eI} is a left coset representative choice for H/M
in @/M and henece Z[& M1®ma(B"Y) =~ D (B); as abelian groups. Finally,
i€l

the induced G/M action coincides with that above.

‘We could have avoided this lemma by referring to [9], Proposition 10.1
which is implied by this lemma.

The kernel of a permutation representation (G, X) is defined to be:
HﬂﬁH where $ = f((&, X)).

TeEOREM 2.3.1. Let (@, X) denote a finite permutation representation
and let M denote a normal subgroup of @ which is contained in the kernel
of (@, X). If the functor V: o@—>guQ s given by V(A)= A™ for A ¢ o8,
then

(7" (X; G/M,V(*))I n e Z} is a (P($), H)-cohomology theory

where § =f((G, X)). Hence, for any neZ and any A a8, HY(X; G, A)
~ HYX; G/M, A™) in Ab.

Proof. Let f((&¢/M, X)) = {H|M| H ¢ H} be denoted by $/M. Then,
for any H e P($), we have V(H) ¢ P($H/M). Lemma 2.3.1 shows that V
sends §,($)-projectives (and &(H)-injectives) into 8&($H/M)-projectives
(and &(H/M)-injectives). Also, it is easy to see that Uga oV = Ug and
hence |H"(X; /M ,V(*))| neZ) is a (P($), H) cohomology theory.

Thus, we have another proof of [9], Proposition 3.1.

In the above, if F <Q($) implies V(H) € Q(H/M) (e.g. if M e$ or
equivalently if M is the kernel of (&, X)), then {H"(X; G/M,V (%)| n < Z}
is also & (Q(9), $)-cohomology theory.

Since the lattice of subgroups of a finite eyclic group of prime power
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order is linearly ordered, any permutation representation (G, X) of such
a group is such that f((&, X)) = $ contains a unique maximal subgroup
which is, of course, normal. o

CorOTLARY 2.3.1. If (G, X) is a finile permutation representation
of the finite eyclic group @ of prime power order and if M is the mamimal
subgroup of = f((&, X)), then, for any A 'egC:

HYX; @, A) < AHN(4AY)  for n even
and :
HYX; G, A) = y(AM)I(4Y)  for n odd

where N = Sgp denotes the norm of G/ M, I denotes the augmentation ideal
of Z[6]M], and N(A™)= Kernel(N: A™—4™).

- Proof. Let | denote the set consisting of just M and let (G, ¥)
be the permutation representation of & on the M -cosets. Then, f (&, Y))
=R = § = f((&, X)). Hence, for any 4 ¢ o€, H"(X; ¢, 4) = HYY; &, A)
~H"Y; @M, A™). But (G/M, ¥) is a fixed point free permutation repre-
sentation and so H™(Y, G/M,A™) is the ordinary cohomology group
BYGIM, AM).

§ 4. Relations with subgroups. Throughout this section, K will
denote an arbitrary subgroup of G.

Let $ = {H} be an arbitrary collection of subgroups of & and set
£ = {H ~n K| H ¢ $}. This is suggested by the fact that if (&, X) is a per-
mutation representation such that f((G, X)) = 9, then (K, X) is a permuta-
tion representation of K such that f ((K , X)) = £.If § is a finite collection
of subgroups’ of finite index in @, then the same can be said for £.

For-arbitrary §, the “forgetful”’ functor Tx: ¢€—£C€ is such that if
E ¢ P($), then Tx(E)eP(L) for € where £ = {K ~ H| H e $}.-

Levwma 241, If H, K are arbitrary subgroups of & and if B exC,
then Tx(Z[GF1®@gB) is isomorphic in xC to a direct sum of K-modules of
the form: Z[K1®sD where J = = Hwx ~ K for some x € G and for some
D e ,4C.

Proof. Let G = UIKa:;H be the (K, H)-double coset decomposition

of G where {z;] eI} is a double coset representative choice. Clearly,
VA I :@I (Z[K}w:2[H]) a8 a left K-module and as a right H-module.

Hence, Z[@]®gaB g%(z[x]miZ[H]®HB) a8 a left K-module. Letb

{ki;zi %i; € K, j em(i)} bea coset representative choice for the left H - cosets
in Ko H for i el. As is well known, {ky| j e m(4)} forms a complete seb
of left coset representatives for J = K ~ (z;Ha7") in K. Let D= B be
the left J = K ~ z;Ha7'-module with action defined by: (w:hai')b = hb

©

@
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gor all beB and @;hoi' ed and leb a: (Z[Klz; Z[HI®gB)—~>Z[K]®sD
denote the abelian group homomorphism defined by a(kz:h®@ub) = kQshb
forallk e K, heH and b ¢ B. Finally, let §: Z[K1®;D—~(Z[K]=: Z[H])®@xB
denote the abelian group homomorphism defined by: p(kQ.sb)= ke:@mb
for all keK, and beB. It is straightforward to prove that both
o and f are well defined K -homomorphisms which are inverses of each
other.

For the rest of this section, we assume that there is a finite permuta-
tion representation (@, X) such that f{(¢, X)) = . Hence, (K,X) is
a finite permutation representation of K such that f (X, X)={H~E|
H e $}=£. Moreover, {H"(X; K, Tx(¥))| n<Z} is an exact P($)-con-
nected sequence of functors each of which (by Lemma 2.4.1) vanishes
on the &($)-injectives and &($H)-projectives. Thus, for each n ¢ Z, the
ordered pair of functors (H"(X; K, Tx(%)), HYYX; K,TK(*))) is both
left P($)-couniversal and right P($)-universal.

When (&, X) is fixed point free, so is (K, X) and then H*(X; K, Tx(%))
is just the ordinary cohomology functor H"(K, Tx(%)).

LEvMA 2.4.2. If @ « @ and A « ¢C, then the mapping cz: AT s ACEED
defined by: cz{a) = xa for a e AE is an abelian group isomorphism agda-is
such that oy is the ddentity if @eK. Moreover, ox(Szizar(4”™")

xKx~1) 0 (cHz™Y)
= SreieEe™ 0 ey AT O CETE),

Proof. Straightforward.

Thus, ¢, induces & natural equivalence of fumetors ez Ug o Tx
> TUsy © Toxos Where M = {sKo~! ~ H| H ¢ $} = f((Kz~, X)). By the
usual universality argument, ¢; induces a unique isomorphism: {dz] » € Z}:
{E"(X, K, Te)| » e Z) {0 (X; oKo ™", Txer(ze))l n e Z} of exact P($)-
connected sequences of functors. If every B €Q(9) is such that TK(E) €
€ Q (L) and Tog—(E) €@ (M), then this isomoprhism is also an isomorphism
of Q($)-connected sequences of functors.

If (@, X) is fixed point free, then {di} n e Z} coincides with the
homomorphism ¢, defined in [3], Chapter X1I, § 8.

In order to define the restriction map we need:

LEMMA 2.4.3. Let H be any subgroup of finite index in & ar:nd let K
be any subgroup. Then H ~ K is of finite indew in K and if AegC
then

Sea(A”)C 2 SK\Kn(sz‘l)(AKn(sz—l))-
ze@

Proof. Let G — | ) EoH and let {kywH| 1<j<m(i)} be as in
Gl

I
;
|
;
f
g
|
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n n
TLemma 2.4.1. If ae A%, then Sgg(a) = J kyzia. But z;0 ¢ AZES
i=1j=1
and {ky) 1 < j < m(4)} is a set of left coset representatives for K ~ (z;Ha;)
in K. Hence,

n
En(eHs
Som(a) = D) Skignag(@ia) € D) Sxinmen( ATNEE),
i=1 ze@

Suppose now that I is an arbitrary subgroup of K, that f((K s X))
=f={KnH He$} and that f(L, X)) =M= {L~ H He$H}. Then
for any A e o€, the inclusion map: 4% A" induces a natural transforma-
tion of the funetors Ug o Tx->Ump o I which by universality induces
a unique morphism: {Res"(L, K)| neZ): (B"(X; K, Tx(¥)| ne2)
~{H"(X; L, To(%))| n € Z} of exact P($)-connected sequences of functors
which is ecalled the restriction mapping.

Clearly, this restriction mapping coincides with that of [9], Chapter I,
section 8.

Now we further assume that L is of finite index in K. Then for every
A € ¢C, the trace Sgjz: AT 4% induces a natural transformation Ug o Ty
—Up o Tk, since Sepz(Spzaa(4™")) C Sxiznm(4™"7) C Seixaa(AZ"E) by
Lemma 2.1.1. This natural transformation induces a unique morphism:

{Cor™(K, L)| m e Z}: {HYX; L, Te(¥)| n ¢ 2} {H"(X; K, Te(¥)| n < 2)

of P($)-connected sequences of functors which is called the corestriction
or transfer mapping.

Clearly, this corestriction mapping coincides with that of [9], Chap-
ter I, section 9.

It (@, X) is fixed point free, both the restriction and corestriction
mappings defined here coincide with the ordinary cohomology theory
restriction and corestriction maps.

When Tx(H) ¢Q(L) and Tr(E) « Q) for every E eQ(S), then the
restriction and corestriction mappings are also morphisms of Q(%)-con-
nected sequences. of functors.

Via a routine check in dimension zero one can prove:

P(];DPOSI‘I‘ION 241, {dzl neZ} o {c}| n 2} = {cg| neZ} for all
z,ye@.

PrOPOSITION 24.2. If @weK, then {d| neZ}: [EMX; K, T=(®)|
n e Z}>{HX; K, Tx(®)| n e Z) is the identity and hence if K < G,
then each H™(X; K, Tx(A)) becomes a GE -module for any A € oC.

PrOPOSITION 2.4.3. If JCLC K i3 an asoending sequence of subgroups
of @, then {Res™(J, I)| n e Z} o {Res™(L, E)| n e Z} = {Res"(J, K)| n € Z}.
If further, J is of finite index in K, then

{Oor™(E, L)| n € 2} o {Cor™(L, )| n ¢ Z} = {Cor™(E, J)| n < z.

e ©
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PROPOSITION 2.4.4. If L is a subgroup of K, then for any = e G:
{dh n ¢ Z} « {Res™ (L, K)| n e Z} = {Res"(aLa ™", aKa )| n € Z} « {62 n € Z}.
If further L is of finite index in K, then for any z ¢ G:
{dhl ¢ Z} o {Cor™(K, L)| n e Z}= {Cor™(aKa™", wLa~")| n € Z} » {c%| n € Z}.
Using both a check in dimension zero and a dimension shift, we

obtain (see the proof of [6], Chapter II, Proposition 13):

PROPOSITION 2.4.5. If L is a subgroup of finite index in K, if A, B eg®
and if u: Ti(A)—~Ty(B) is an L-homomorphism, let u": H"(X; L, Tr(4))
—~H"(X; L, Tr(B)) and let

(Smizw))": HMX; K, Tr(4))-H"(X; K, Tx(B))

denote the maps induced by u and Sgi(u) respectively. Under these hypo-
theses:

{Cor™(K,L)| n € Z} o {u"| meZ} o {Res"(L, K)| neZ}= {Sxi(u)"| neZ}.
Hence, taking w to be the identity map, for any neZ and any

a e HYX; K, Tx(A)) we have: Cor™(K, L) o Res™(L, K)a = |K: L|a where
|K:L| denotes the index of L in K.

This is [7], Lemma 10.1.
The result [3], Chapter XTI, Proposition 9.1 may also be generalized
by a check in dimension zero:

PROPOSITION 2.4.6. For any subgroup J of finite index in K and for an
arbitrary subgroup L of K, if K = Q Lx;J is the double coset decomposition
(where {z;] 1 < i<} is a double 1:;set representative choice), then

{Res"(L, K)| neZ}o{Cot™K,J)| neZ}

i

= 2 {Cor(L,L ~ (w;Jac,-"l))I neZ)o

i=1

o [Res(L ~ (@27 ), (@:J077))| e Z} o {¢z] m e B}

t
Hence, if also J <K and K= |J»:J and if A« &C, then for any neZ

i=1

and any o e H'(X;J, Ty(4)) we have

t t
Res"(J, K) « Cor™(K,J)a = Z Cgy 0= 2 Sxn(a).

=1 i=1
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We can also generalize the remaining results of [3], Chapter XIT,
sections 9 and 10.

DEFINITION 2.4.1. If 4 € o€ and L is a subgroup of K, then an element
ae H'(X; L, Tr(A)) will be called K -siable if for each o eK:

Res™(L ~ (eL07), L) a = Res™(L ~ (Lo ™), (L)) © cza

(or equivalently, if Res"(L ~ (sLs "), L)a = ¢z o Res"((z™'La) ~ L, I) a.
If T < K, this reduces to a = ¢ a. Thus, when L <| K, the K -gtable
elements of H,.(X; L, TL(A)) are precisely those invariant under X/L.
The following two propositions can be proven by using the arguments
of [3], Chapter XII, Propositions 9.3 and 9.4:
PROPOSITION 2.4.7. If o is in the image of Res" (L, K), then a is K - stable.
CoROLLARY 2.4.1. If LUK and AegC, then image Res"(L, K)
< (B"(X; L, To( L))"

ProrosITION 2.4.8. If L is of finite index in K, if A egC and if
a e HMX; L, Tr(4)) is K-stable then,

Res™(L, K) o Cor"(K,L)a= |K: L|a.
We also have:

ProposITION 2.4.9. If L < K and is of finite indem in K and if A € oG,
then IgH"(X; L, Tr(A)) C Kernel Cor™ (K, L) where Ix is the augmentation
ideal of Z[K).

Proof. Let # ¢ K and a ¢ HYX; L, T5(4)), then
Cor™ (K, L){¢z—¢t) e = Cor™(K,L) o ¢z (a)—Cor™ (K, L) (a)
= ¢y o Cor™(K, L)(a) — Cor™(K, L)(a)
= Cor™(K, L) (a)— Cor™(K, L) (a) = 0
since ¢ is the identity on H™(X; K, Tx(4)) .

N.ow assume that K is a finite subgroup of @ and that x is any set
of prime integers. If A ¢ €, then (Theorem 2.1.1) every element of
H™(X; K, Tx(A)) is of finite order dividing |K : 1| and hence the s-primary
component H*(X; K, Tx(4)), of H"(X, K, Tx(4)) is defined.

The proof of [3], Chapter XTI, Theorem 10.1 can be easily adapted
to prove:

TeroREM 2.41. If K i3 a finite subgroup of G, if A € o€ and if L is

a HZall m-subgroup of K where 7 is a set of prime integers, then, for each
nel:

Cor™ (K, I): H"(X; L, To(A))~H"(X; K, Tx(A))x

e © '
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is an epimorphism and

Res"(L, K): H'X; K, Tx(A)),~H"(X; L, Tx(4))
is & monomorphism whose image consists of the K-stable elements of
HYX; L, Tr(A4)). Further, we have a direct sum decomposition
H"(X; L, Tr(A)) = TmageRes"(L; K) @ Kernel Cor™(K, L) .
If also, L <\ K then, for any n e Z:

TmageN = (H"(X; L, T5(4))|"* = ImageRes(L, K) o= H'(X; K, Tx(4))s
and KernelN = Ig{H"(X; L, T1(4))) = KernelCor™(L, K) where

N=Sgup= ), = HYX; L, T1(4))~H"(X; I, Tr(4)) .
xeK|L
COROLLARY 2.4.2. If K is a finite subgroup of @, if = denotes the prime
integers dividing |K :1| and if for each prime p e = the p-Sylow subgroup
of K is denoted by K, , then for each A e o€ and for each n ¢ Z, there is a mono-
‘morphism .

H”(X; K, TK(A))_)T.? H”(X; Kp, TKP(-A-)) .
If, moreover, K is nilpotent, then

H'X; K, Tx(4)) = @

€n

(B"(X; Ky, TryA))) -

III. Relative deriveds and spectral sequences

§ 1. Relative deriveds. Throughout this chapter, we shall adhere
to the convention that (G, X) denotes a finite permutation representation
and = /(& X)) - '

The complex ¥ on p. 137 of [9], which (except for the Z-term) com-
prises the “upper half” of the “standard resolution”, is such that Twx(E)
has a contracting homotopy in T for each H e $. Hence, E is an §(9H)-
projective resolution and an % (%)-projective resolution of the trivial
G-module Z. Thus, for any A e ¢ and any integer » > 1,

(BRye Homal, 4)) (2) = (B Home(x, 4))(2) = H"(X; & 4)
and (since Homg is left exact)
(R8ysyHoma(%, 4)) () = (RygHoms(¥, 4))(2) = Homa(Z, 4) = AC,

Thus, the sequence of functors {Homa(Z, %); HY(X; @,%) for n>1}
has interpretations as P($) and Q(%)-right derived functors (see [7],
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Chapter XII, §9) and consequently for each AegC and n>1,
HYX; @, A) = Bxtpg)(Z, A) = Exty (2, 4) has two interpretations in
terms of composites of short exact sequences in P($) and in Q($) (for
details see [7], Chapter XII, § 4).

Since &($) and &($) are complementary classes of sequences, for
any A eq®, the sequences of groups {Homg(Z, 4); HYX; G, A) for
n>1} can be computed by utilizing an &($)-injective resolution of 4.,

Tt iz clear that the results of Chapter II, § 3 have analogs for the
positive sequence of functors {Home(Z,%); H"(X; ¢, A) for n > 1} by
means of universality. There are also analogues for most of the results of
Chapter II, § 4.

Tt should be noted that the complex F on p. 137 of [9], which (except
for the Z-term) comprises the “lower half” of the *“standard resolution”,
is an §($)-injective resolution of Z. Hence for any A4 ¢ oG,

(L& Homg (%, 4))(Z) = H ™(X; G, 4) for all n>2

and (LugHomg(x%, 4))(Z) = Z7(X; &, A) which is described in [9],
Proposition 5.1. The couniversality property of relative left derived
functors can then similarly be utilized to develop properties of the exact
P($)-connected sequence of functors {Z*(X; &, %); H™(X; &, %) for n< —2}.

§ 2. Spectral sequences. The results of [4], Chapter IV, §5
may be applied to obtain various spectral sequences involving the se-
quence of functors

{Homg(Z, %); HYX; G,%) for n=1}.

Thus, let § be an arbitrary projective class in o€ such that §(H) CF.
"Then if 4 ¢ o€ and the spectral sequence of [2], p. 171 which is rederived
in [4], Chapter IV, § 5 is applied to the complex F using the contravariant
functor Homg(%, 4) we obtain: '

THEROREM 3.1. Bfyg)(RfHoma(¥, 4))(Z) = (RyHomg(%, 4))(2), whe-
never § 18 a projective class in o€ such that F D §,($).

I § is taken to be the projective class of all exact sequences of 4C,
then this theorem applies and we obtain the spectral sequence of [91,
Theorem 12.1. Hence we have generalized [9], Theorem 12.1.

‘When the permutation representation (¢, ¥) is obtained from (6, X)
by deleting any set of transitive constituents, then

S=1& X)) =56, ) =8, &($H)C8R)
and again Theorem 3.1 applies.

Finally we sketch new derivations of the spectral sequences of [9],
Chapter 3. As defined in [9], a morphism 9: (G, X)~(L, Y) of the permuta-

@
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tion representation (G, X) of @ into the permutation representation
(L, ¥) of L consists of a pair 0 = (¢, §) where ¢: G—~L is a group homo-
morphism and f: X—Y is a function such that f(ow)= p(c)B(w) for
all o « G and all » € X. Assume that ¢ is an epimorphism, let ¥ = Kernel(p)
and let 0" denote the positive half of the standard complex for (&, X)
as given at the bottom of [9] page 155.

If (L, Y) is fixed point free, then we are in the ordinary cohomology
situation and we may apply the spectral sequence of hyperhomology
to the complex Homy (0", 4) in r& using the functor Homy(Z, %). Then

1B5 = HP(Bxt!(Z, Homy (0%, 4))) = H*(H*(L, Homy(C™, 4)))
0 if ¢>0 by Lemma 2.3.1
- {E’(Homa(o*, A) = H(X; &, 4))

and g’ = Bxt"(Z, H'(X; N, 4)) = H*(L, HYX; N, 4)) which is [9],
Theorem 19.1.

One can also get [9], Theorem 21.1 using the Serre~Hochschild
spectral sequence and the spectral sequence of [2], p. 171. To see this,
let § denote the “absolute exact” injective class in L& then §(f(L, X)) CF.
If B <G, then the spectral sequence of [2], p. 171 gives:

) HP[0—>Ext(D,, B)>Ext(D;, B)->...] = H"(L, B)

where D¥: ...—D,—>D,—0 is the positive half of the standard complex
for (L, Y). If A€, if (@, X) is fixed point free and if N is such that
H(N,A)=0 for all j > 0 then the Serre~Hochschild spectral sequence
H(L, HYW, A)) = H(G, X) collapses to give: H™L, AY) ~ H™@, 4A).
Replacing B by AY in (%) gives [9], Theorem 21.1.
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Some theorems on the embeddability of ANR-spaces
into Euclidean spaces

by
H. Patkowska (Warszawa)

1. Introduction. In 1930 C. Kuratowski (see [7]) has characterized
the local dendrites (i.e. connected, 1-dimensional ANR-sets) which are
embeddable into the plane E? as those which do not contain homeomorphic
images of the two graphs K, and K,. K, and K, will be called the graphs
of Kuratowski. K, is the 1-skelton of a 3-simplex in which the midpoints
of a pair of non-adjacent edges are joined by a segment; K,is the 1-skelton
of a 4-simplex. O. Kuratowski has also described two locally connected
curves K, and K, which are not ANR-sets and he has conjectured the
characterization of locally connected continua which are embeddable
into the sphere S* ag those which do not contain homeomorphic images
of the four curves Ky, ¢ = 1, 2, 3, 4. This was proved in 1937 by 8. Claytor
(see [3] and [4]). As a corollary, Claytor obtained the following result
(3], D-'632), which will be useful for us: Bach cyclic locally connected
continuum which does not contain homeomorphic images of the graphs
of Kuratowski is embeddable into §%. Recall that a connected space is
ceyclic (in the sense of Whyburn) if it is separated by no point.

In 1966 8. Mardesié and J. Segal (see [9] and [10]) showed that the
connected polyhedra which are embeddable into S can be characterized
as those which do not contain homeomorphic images of three polyhedra,
namely K., K, and |, where | is the one-point union of a 2-simplex
and of a segment relative to an interior point of the 2-simplex and an
end-point of the segment. They raised the question if this characterization
can be extended to the connected ANR-sets (they are always assumed
to be compact) which are embeddable into §*. We shall show in this paper
that this is in fact true. Namely, we shall derive this from Claytor’s result
mentioned above and from the positive answer to the following question
for m = 2: Tf X is a connected ANR containing no n-umbrella and if the
cyclic elements of X are embeddable into E", is X also embeddable into i
By an n-umbrella we shall mean here a one-point union of a (topological)
n-ball and of an arc relative to an interior point of the n-ball and an
end-point of the arc. For the definition of cyclic elements see section 3.
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