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1. Introduction. In 1930 C. Kuratowski (see [7]) has characterized
the local dendrites (i.e. connected, 1-dimensional ANR-sets) which are
embeddable into the plane E? as those which do not contain homeomorphic
images of the two graphs K, and K,. K, and K, will be called the graphs
of Kuratowski. K, is the 1-skelton of a 3-simplex in which the midpoints
of a pair of non-adjacent edges are joined by a segment; K,is the 1-skelton
of a 4-simplex. O. Kuratowski has also described two locally connected
curves K, and K, which are not ANR-sets and he has conjectured the
characterization of locally connected continua which are embeddable
into the sphere S* ag those which do not contain homeomorphic images
of the four curves Ky, ¢ = 1, 2, 3, 4. This was proved in 1937 by 8. Claytor
(see [3] and [4]). As a corollary, Claytor obtained the following result
(3], D-'632), which will be useful for us: Bach cyclic locally connected
continuum which does not contain homeomorphic images of the graphs
of Kuratowski is embeddable into §%. Recall that a connected space is
ceyclic (in the sense of Whyburn) if it is separated by no point.

In 1966 8. Mardesié and J. Segal (see [9] and [10]) showed that the
connected polyhedra which are embeddable into S can be characterized
as those which do not contain homeomorphic images of three polyhedra,
namely K., K, and |, where | is the one-point union of a 2-simplex
and of a segment relative to an interior point of the 2-simplex and an
end-point of the segment. They raised the question if this characterization
can be extended to the connected ANR-sets (they are always assumed
to be compact) which are embeddable into §*. We shall show in this paper
that this is in fact true. Namely, we shall derive this from Claytor’s result
mentioned above and from the positive answer to the following question
for m = 2: Tf X is a connected ANR containing no n-umbrella and if the
cyclic elements of X are embeddable into E", is X also embeddable into i
By an n-umbrella we shall mean here a one-point union of a (topological)
n-ball and of an arc relative to an interior point of the n-ball and an
end-point of the arc. For the definition of cyclic elements see section 3.
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I proved in an earlier paper [11] that the answer to this question
is negative for # = 3. In this paper I shall prove that positive answer
in a modified form is possible in the general case and it is positive for
n=1,2.

Given two spaces X, Y, call ¥ a Cartesian divisor of X if there exigts
-a topological space Z such that the produet ¥ X Z is homeomorphic
‘with X. We ghall prove the following

TeEEOREM 1. If X is a connected ANR containing no n-umbrelle and
if the cyclic elements of X are embeddable into E", then X is embeddable
dnto an n-dimensional Cartesian divisor of H™'.

The arrangement of this paper is as follows: In section 2 we ghall
derive some corollaries from theorem 1 in the case # = 2, in particular
we shall give the solution of the problem of Mardeiié and Segal, men-
tioned above. In section 3 we shall list the properties of cyelic elements
and, more generally, of the sets entirely arcwise connected, which will
be needed in the sequel. In section 4 we recall some properties of ANR-
sets contained in Buclidean spaces and give some useful definitions. The
last four sections are devoted to the proof of theorem 1. In section b we
shall reduce this theorem to a lemma, and we shall formulate three cases
into which the proof of this lemma is divided (the last case is general).
The proof of the lemma in these three cases is given successively in sec-
tions 6, 7 and 8.

2. A characterization of ANR-sets which are embeddable
{and quasi-embeddable) into E? or S As mentioned in the in-
froduction, in this section we shall assume theorem 1 to be true (in the
case of n = 2) and give some corollaries.

Let X be a connected ANR containing no 2-umbrella and assume
that the cyclic elements of X are embeddable into . Then, by theorem 1,
X is embeddable into a 2-dimensional Cartesian divisor of B?. It has been
proved by Borsuk (see [2], p.286) that each 2-dimensional Cartesian

divisor of B™ is homeomorphic with B2, Therefore X is embeddable into E*
and we obtain the following

TE®OREM 2. If X is a connected ANR containing no 2-umbrella and

is theEc;’yolic elements of X are embeddable into B?, then X is also embeddable
into E°.

) Notice that the theorem is false for the locally connected continua
ghl‘f]ll are not ANR-sets; the counter examples are the curves K, and K,.
n the other hand, this theorem is true for n = 1 (cf. the b ginnin,
section 5). et ° 8 of
» Now, let X be a connected ANR which does not contain any 2-um-
brellas and any homeomorphic images of the graphs K, and X,. Then
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each cyclic element of X is a cyclic locally connected continuum (see
section 3) which also does not contain these sets. Thus, it follows from
Claytor’s result mentioned in the introduction ([3], p. 632) that each
cyclic element of X is embeddable into 8% It there is a eyclic element B
of X homeomorphic with §°, then B = X; otherwise X would contain
a 2-umbrella (since X is arcwise connected). Hence, in this case, X t?ps?.
On the other hand, if there is no such cyelic element, then each cyclie
element of X is embeddable into E* and — by theorem 2 — X is also
embeddable into E?. Thus, in either case X is embeddable into 2, and
we obtain the fellowing

THEOREM 3. If X is a connected ANR which does not contain,any
2-umbrellas and any homeomorphic images of the graphs K, and K,, then X
is embeddable into S

Exactly as in [9], p. 636, we can obtain from this theorem the following
two corollaries:

CoROLLARY 1. If X 4s an ANR which does not contain any 2-umbrellas
and any homeomorphic images of K, and K, and if no component of X
different from X is homeomorphic with 8%, then X is embeddable into 82

COROLLARY 2. If X is an ANR which does not contain any 2-umbrellas
and any homeomorphic images of K,, K, and &, then X is embeddable
into B

Let us recall that X is quasi-embeddable into ¥ if for every ¢ >0
there is & map f: XY such that diam(f™'(y)) <& for every y f(X).
Using the same argument as in [9], namely that none of the sets X, K,, 1
and &% is quasi-embeddable into E?, we obtain from theorem 3 also the
following

COROLLARY 3. An ANR-set is embeddable into EP(S*) if and only
if it is quasi-embeddable into EA(S?).

3. The ecyclic elements and the sets entirely arcwise
connected. The concepts of a cyclic element and of a set entirely arcwise
connected are basic for the proof of theorem 1. We shall recall their de-
finitions and the most important properties. Qur general reference will
be [8], § 47, and in the sequel of thiz section we shall give only the page
and the number of the proposition in question.

In this section X will denote a fixed locally conmnected continuum.

A set A C X is said to be entirely arcwise conneoted (in X) if ¢,y ¢ A
and @ # y imply that each arc (in X) joining  and y is contained in A.

A get T C X is said to be a cyclic element of X in either of the following
three cases:

1° B consists of one point which separates X.

Fundamenta Mathematicae, T. LXV 19
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2° F consists of one point # € X such that ord,X =1, where ord, X
denotes the order of z in X in the sense of Menger—Urysohn.

3° B is a connected subset of X containing more than one point
and maximal with respect to the property of being a cyclic gpace, i.e. of
containing no point which separates it.

This definition of cyclic elements slightly. differs from that given
in [8], but it is easily seen from [8] to be equivalent to it.

In the next five propositions 4 will denote any closed and en-
tirely arcwise connected subset of X. Thus we have:

(3.1) A is a locally connected continuum (p. 231, No. 2).

(3.2¢ If C is a component of X— A, then A ~ U consists of only one point
(p. 232, No. 4).

(8.3)  The set of the components of X — A is at most countable, and if it
is infinite, then the diameters of those components converge to zero
(p. 232, No. 7). .

(3.4) A is a retract of X and, consequently, if X ¢ ANR (AR), then
also A e ANR (AR) (p. 263, No. 15).

(3.8) If B is another closed and entirely arcwise commected -subset of X
and A ~ B @, then the set A v B is also entirely arcwise connected
(p. 232, No. 8).

For cyclic elements we have (the cyclic elements of the form 3° will
be said to be non-degenerate):

(3.6). Bach oyclic clement of X is a closed and entirely arowise connedted
- subset of X (p. 236, No. 6).
(8.7) X is the union of the cyclic elements of it (p. 235, No. 1).
(3.8)  The set of the non-degenerate cyclic elements of X is at most countable,
and if 41°is infinite, then their diameters comverge to zero (p. 238,
No 9).
(3.9)  Bach connected subset of X separated by no point is comtained in
a cyclic element (p. 238, No. 10). -
-(3.10) A mon-degenerate continuum A C X is entirely arcwise conmected
if and only if it 43 a wnion of cyclic elements (p. 239, No. 11).
The following theorem is due to ‘Borsuk [1]:
(3.11) X iz an AR-set if and only if all oyclic elements of X are AR-sets.
The next proposition follows easily from the preceding ones and
from some elementary properties of ANR-sets, especially that each subseb
of an X ¢ ANR with a sufficiently small diameter is contractible in X:

(3.12) X is an ANR-set if and only if all oyclic elements of X are ANR-sets
and almost all are AR-sets.

® ©
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(The sufficiency of the condition can be proved by embedding each
cyclic element of X which is not an AR-set in a set homeomorphic with
the Hilbert cube and thus embedding X in an AR-set so that X is a neigh-
bourhood retract of it).

Now, we shall prove two properties of X, related to the subject-
matter of this section, which will be useful in the sequel:

(8.13)  Given two different points a,b e X, the least closed and entirely
arowise connected subset of X containing o and b is the wnion
of an arcL joining & and b and of all the cyclic elements of X which
have at least two points n common with L. Moreover, if By, B, ...
8 a sequence of the cyclic elements having this property, then
By ~ L is a non-degenerate subare Ly of L and Ey~ Ey=IL;n Iy
=1Ii Iy for i 5 j. (L denotes the boundary of the arc L).

Proof. Let Z denote the least closed and entirely arcwise connected
subset of X containing a and b. Of course, there is an areL C Z such that
L= (a) v (b). I two different points %,y eL are contained in a cyclic
element B, then the subarc of L joining those points is also contained
in B, since — by (3.6) — F is entirely arcwise connected. Consequently,
if a cyelic element E contains more than one point of L, then B A L is
a non-degenerate subare of L. Arrange into a sequence (finite or not)
E,, B,, ... all cyclic elements of X with this property and let By ~n L= Is
(cf. (3.8)). Denote by Z' the union of I and of all sets F;. We shall prove
that Z = Z'.

Given an index i, let us observe that there is a point a; e L; which
belongs to no cyclic element of X different from B (see [8], p. 238, No. 8).
Since a1 e LC Z and Z is a union of cyelic elements by (3.10), it follows
that B;C Z. Thus Z'C Z.

To show the inclusion Z C Z’ we have to prove that Z’ is a closed
and entirely arcwise connected subset of X containing o and b. Indeed,
a,beLCZ and Z is a continuum by (3.8). Considering (3.10), it remains
to prove that Z’ is the union of cyclic elements, i.e. that each point @
of I which belongs to no E is a cyclic element of the form 1° or 2°. Indeed,
otherwise — by (3.7) — @ belongs to a cyclic element ¥ of the form 3°
such that ¥ ~ L = (). Thus, there is a component ¢ of X —F containing
a component of L—a. By (3.2), 0 ~ F = (z), and therefore ¢ is & com-
ponent of X —a. Since ¢ ## X —u, this contradicts the assumption that @
is not a cyclic element of the form 1° or 2°, and thus the inclusion Z C Z'
is proved.

In order to finish the proof of (3.13) we have to prove that E; ~ Hj
= Iy ~ Ly= Iy ~ L for i s j. Since different cyclic elements haye at most
one point in common (see [8], p. 236, No. 4), LinLi=Ihn1;. If
(p) =B~ E; and p e X—L, then p does not separate X between the
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sets By—p and F;j—p, which contradicts the remark given in [8] (p. 238).
Consequently, B n By=Lx~ L.

(8.14) Let X = G Ay, where A;C Asiq ond Ay = A;+ X is a set entirely
i1

arowise connected. If the mazimum of the diameters of the com-
ponents of X— A; is equal to s, then limé; = 0.

4==00
Proof. Since the sequence 4; is increasing, it suffices to prove thab
for every & > 0 there is an index i{¢) such that the diameter of each com-
ponent of X — Ay is less than or equal to e. Suppose that such an index
i(e) does not exist. Therefore, for each 4 there is a component C; of X —4;
such that diam(Ci) >e We shall define by induction a sequence of
indices 4y, i, ... and two sequences of points ay, dy, ... and by, by, ... such

that for k> 1 ax,br e Ay Cipn and o(ax, by) > e
Let 4, =1 and let a;, b; be arbitrary points of X. Now, given an
index 1, suppose that the indices 4x and the points ax, by for k <! have

been defined. Since the set Oy, is open and the set ~—U1A‘ is dense in X,

oo o0
it follows that the set | J 4; ~ Cy_, is dense in Oy, whence dia.m(iulAf )
i=1 =

A COy) > e Since the sequence of sets Ain Oy, I8 increasing, there
exist an index 4> 4, and two points a,be Ay~ Cy, such that
g(a, b;) > & Thus the required sequences have been defined.

Of course, there is a sequence {k;} such that P’mak, = gand Pmbk, =b.

=00 =00

Since the sequence Ay is increasing, we can assume that lima; = ¢ and

=00

limby = b. The local arcwise connectedness of X implies that there are

k=00

and index %' and two ares I,J with diameters less than /2 such that
T = (ar) U (a41), § = (bx) © (bsa). Since Cy, a8 an open and connected
set, is arcwise comnected and @wi, bwi1 e Oy, it follows that the set
Iy 0y v d contains an arc K joining the points ap and by . Taking
into consideration that g(aw,bw) > & and diam(I), diam(J) < ¢/2, we
infer that K n Cy, # 9. However, since ay, by ¢ 45, and C;, is a com-
ponent of X —A;,, we obtain a contradiction to the entire arcwise
connectedness of 4, and thus (3.14) is proved.

4, Some properties of ANR-sets contained in Euclidean
spaces. The following two well-known properties will be useful for us:

(4.1) If ACE" and A ¢ ANR, then the set " — A has only & finite number

of components, which 8 equal to 1 whenever n >1 and A e AR
(see [6], p. 192).

ol
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(42) IfA nC B a.nd A e ANR, then every boundary point of a component ¢
of B"—A is accessible (by am arc) from O (see [6], p. 195).

Now, we introduce some definitions which will be useful in section 7.

Let ACE" be a locally connected continuum. By a star with the
core A we shall mean every locally connected continuum H C E™ such
that 4 is a closed and entirely arcwise connected subset of H.

Given a point @ « B" and a cardinal number a, where 1 < a < &,
by a necklace with a beads and the initial point o we shall mean any set
T C E" which is the union of an arc I and of « geometrical #-balls @;, @, ...
such that:

1°ae L—U Qi.
1
20 Q.,;f‘\Qf=® for ’b#j
3° @; ~ L is a non-degenerate subarc I; of L.
4° If o = &, then }i_mdia,m (@+) = 0 and there is a sequence of points
aseQi, i=1,2,... convergent to the point b e L—a = (b).

Now, let 4 C E" be a fixed locally connected continuum and suppose
that there is given a sequence (finite or mnot) of points a; eBd(4),
i=1,2,.. and also suppese that for each ¢ there is given a cardinal
number a;, where 1 < a; < 8. By & star with the core A determined by
{aiz1 and {ai1 (m —natural or oo) we shall mean each star H
with the core A for which there is a one-to-one correspondence between
the components of H—.A and the points a; such that, if O; corresponds
to ai, then 0; ~ A = (as) and O is a necklace with a; beads and the initial
point a;.

Let us notice that:

(4.3) If A eANR (AR), then each star with the core A determined by
sequences {a;}1; and {a}i~y is also an ANR (AR).

Indeed, it is evident from the definition that all cyclic elements of
a necklace are AR-sets. Consequently, (4.3) follows from the definition
of a star with the core A determined by {a;}je; and {a:}i=; and from (3.11)
and (3.12).

(4.4) Given A ¢ ANR and two sequences {a:}ie, and {ai)i=y with the de-
seribed properties, there cwists o star H C H" with the core A determined
by {ai)i-y ond {ag}i-1.

Actually, since a; ¢ Bd(4), it follows from (4.1) and (4.2) that the
points a; are accessible from B"— A. Consequently, by the use of induction,
one can easily construct a sequence of sets T4 C E" (where i=1,2,..,m



GUEST


206 H. Patkowska
»

if m is natural or i =1, 2, .., if m = o) such that Ty is a necklace with o,
beads and the initial point a:, Ti~ Ty=9 for ¢ #Ji Ty~ 4 = (a;) and
such that limdiam(Ty) =0 if m = co. Then, defining H= A4 v Lij T,

1=00

we obtain the required star H with the core A.

5. Reduction of theorem 1 to a lemma. First, let us notice
that theorem 1 is true for # = 1; moreover, in this case we shall show
that each space X satisfying the assumptions of this theorem is embeddable
into B. Indeed, it follows from the agsumptions that X cannot co.nta,in
any simple closed curve, because—in virtue of (3.9) —each simple
closed curve is contained in & cyclic element of X and such cyclic element
is not embeddable into B*. Thus, X is a dendrite and, since X does not
contain any 1-umbrella, we infer that X has no ramification points.
Consequently, X is an are (or a point), which proves the embeddability
of X into B Therefore, in the sequel we shall assume that = > 1.

Now, we shall show that theorem 1 derives from the following lemma
(condition 3° in the lemma is not used to derive the theorem, but it is
useful for the proof):

Lemma, If X satisfies the assumptions of theorem 1 (for n > 1), then
there exist a locally conmected continuum X' C " and a map g from X'
onto X such that:

1° For every point @ e X the inverse set g~'(wx) 4s either a point or
an are.

2° The family of all ares of the form g~Yw) is at most countable and,
if it is infinile, then the diameters of these ares converge to zero.

3% The non-degenerate cyolic elements of X' are in a one-to-one corre-
spondence with the non-degenerate cyclic elements of X such that for each
‘non-degenerate cyclic element of B’ of X' the map g|E' i8 a homeomorphism
of B’ onto the corresponding cyclic element of X.

Suppose that the lemma is true and consider the decomposition D
of " whose non-degenerate elements are the arcs of the form g-%().
It follows from 2° that D is upper semi-continuous. Since D has an ab
most countable number of non-degenerate elements and all those elements
are arcs, the theorem of Gillman and Martin [5] implies that the decom-
position space E"/D is an n- dimensional Cartesian divisor of B*+*. Bvidently
the elements of D contained in X’ determine an upper semi-continuous
decomposition of X’ such that its decomposition space ¥’ embeds
in & natural way into. E"/D. Since X' is a compactum, ¥’ iy also
a compactum, and consequently the map g determines a map from ¥’

onto X, which is a homeomorphism. Thus theorem 1 is derived from
the lemma.

icm°
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Now, we shall prove four simple propositions which will be useful
in the proof of the lemma. We shall assume that X is a fized space satisfying
the assumptions of the lemma (i.e. of theorem 1).

(5.1)  Bach dosed and entirely arowise connected set A C X satisfies the
assumptions of the lemma (with X replaced by A).

Since X is a connected ANR, it follows from (3.4) that A is also
a connected ANR which evidently does not contain any n-umbrella.
From (3.10) and from the definition of cyclic elements we infer that the
cyclic elements of A are at the same time cyclic elements of X, and

therefore the assumption of theorem 1 concerning cyclic elements is also
satisfied for A.

(8.2)  If X satisfies the conclusion of the lemma and if X' is an appropriate
subset of B" whose ewistence is given by the lemma, then X' ¢ ANR.

The same is true if, instead of X, one conmsiders any closed amd
entirely arcwise commected subset of X.

Indeed, since X ¢ ANR, it follows from (3.12) and from the con-
dition 3° of the lemma that all cyclic elements of X’ are ANR-sets and
almost all are AR-sets. Using (3.12) again, we infer that X’ ¢ ANR. The
second statement of (5.2) is a consequence of the first one and of (5.1).

(5.3) If A is a closed and entirely arcwise connected subset of X satisfying
the conclusion of the lemma (with X replaced by A) and if A’ and g,
are, respectively, the appropriate subset of E" and the appropriate

map of A’ onto A, then o ¢ A'—FE"— A’ implies that gyz’)e A
—X—A4. '

Since @' e A'—E"— A’, there is an n-ball @ C A’ such that ' « Int(Q).
By (3.9), @ is contained in the cyclic element B’ of A’ containing #'. In
virtue of the condition 3° of the lemma, g,|E’ is a homeomorphism of B’
onto the corregponding cyclic element of 4, and therefore gy(z’) is an
interior point of the (topological) n-ball gy(Q). If gy(z') e X— A, then,
in view of (3.2), one sees that g,(«’) is accessible from X —A. Thus, as
94@) C A, X contains an n-umbrella, which contradicts the assumption.

m —_
(5.4) Suppose that X = | J A;, where A;= A; is an entirely arcwise
iZ1

i—1
connected subset of X such that if i >1 then A;n | JA; consists
=1

of exactly one point. If the lemma is satisfied for each Ai, then it is

also satisfied for X. Moreover, given appropriate A;C H" and

g Ai—>A;, the set X'CE" and the map ¢: X'>X may be so

chosen that, for @ € A;— | A;, g~ (@) is a point if and only if g7'(@)
i#i

8 a poind.
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We shall prove (5.4) by induction with respect to m. Ifm = 1, then (5.4)
is evident. Now, given m > 1, suppose thab (5.4) is true for m—1. Denote

¥ ="‘J A; and let 4o € ¥ ~ A= (4). Then, considering (5.1) and observ-
ing t];;.% A;, i=1,2, .., m—1, are closed and entirely arcwise connected

subsets of ¥, we see that the induction hypothesis applie-s to Y. Let ¥’
denote the appropriate subset of E" and g, the ap})lropng.te map of ¥’
onto ¥. If go ‘() i8 & point, leb y5 = ga (o), and if g5~ (yo) is an are, let yg
be one of its end-points. Since we can assume that A, contains more

than one point, in view of (5.3), yeB —Y". 00nsequen,tly,_ by (4.1)
and (5.2), there is a component ¢ of E"—Y' such that yo € C.
' By assumption, for A, there are an appropriate set A CE™ and an
appriopriate map gm: Am—An. Evidently, wo can assume that 45, C C.
As before, we define the point 4 € gmi(yy) and, by (5.3), we infer that
s ¢ B"— Al Replacing 47, by a set homeomorphic with it (and g by the
appropriate map) if necessary, we can assume that § belongs to the
closure of the unbounded component of E"—A;,L_. Thus there is a com-
ponent €, of E*—(¥' v A4}) such that yg,§s e C,. By (5.2) and (4.2),
both these points are accessible from C,. Consequently, there is an
arel’C E® such that I' ~ (Y’ v Ap) = (yo) v (o) = I'.
Now, define
X =Y ouvIvd,

and define g: X'—»X by:

Golo) if @'Y,

g{z'y =19 it el
Onf@’) i &' edr.

It is easily verified that X’ and g satisfy the conditions 1°, 2° and 3°
of the lemma. In particular, one sees that g~1(y,) is an arc as the union
of three arcs gy *(¥o) v I' v gn (%) (0ne or two of which may be degenerate)
such that g3 (yo) N gm (o) =0 ‘and the intersection of two successive
arcs is a point which belongs to the boundary of either. Since, for  # y,,
g~x) coincides with the counter-image of 2 under g, or gm., it follows
that the additional requirement of (5.4) concerning the counter-images
is satisfied for g whenever it is satisfied for g,. This completes the in-
duction step, and therefore (5.4) is proved.

The last three sections of the paper are devoted to the proof of the
lemma. As mentioned in the introduction, the proof is divided into three
cases, which will be eonsidered in turn in sections 6, 7 and 8. Now, we
shall formulate these cases:

icm°®
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Case I. There exists a finite set of points Mgy gy ooey @ € X such
that the least closed and entirely arcwise connected subset of X con-
taining those points is equal to X,

Case II. The least closed and entirely arcwise connected subset of X
containing all the non-degenerate cyclic elements of X is equal to X.

COase ITI. The general one.

6. Proof of the lemma in the case I. We shall consider
separately three subcases: m =1, m= 2 and m > 2.

Subecase m = 1. This subcase is trivial, since X coincides with the
point a,.

k
Subcase m = 2. In virtue of (3.13), X =L u U Pi, where L is
i=1

an are joining a; to a,, & is a natural number 0 or oo, {E;}r., is a sequence
of all the non-degenerate cyclic elements of X, L ~ %, is a non-degenerate
subare L of L and Ly ~ Ly = Ly ~ Ly = Ey ~ By for ¢ + j. Since X ¢ ANR,
there exists a non-negative integer I such that X has exactly I cyclic
elements which are not AR-sets (cf. (3.12)). We can assume that & > 0.

Firgt, suppose that [ > 0 and that the lemma i§ true if I = 0 (m = 2).
COonsider the family of subsets of X consisting of the sets B, B, ..., B

1
and of the closures of the components of X— | J Bs. It is easily seen
=1

that this family has at most 2/+1 elements. Suppose that the number
of those elements is equal to s and denote those elements by A4,, 4,, ..., 4.

8
Evidently, X = | J4:. It follows from the definition that, for each
=1 .

i=1,2,..,s, either 4;is a cyclic element of X or there exist two points
of X belonging to L such that 4; coincides with the least closed and en-
tirely are-wise connected subset of X containing those points and, more-
over, all cyclic elements of A; are AR-sets. Thus, by hypothesis, the
lemma is satisfied for each set A;. Suppose the arc L is ordered by a rela-
tion < such that a; < a,. Reordering the sets 4; if necessary, we can
assume that, for i < j, ® e 4; ~ L, and y ¢ 4; n L imply that 2 <3 y. Thus,

i1
if 1 <4<s, then 4~ [J 4; consists of exactly one point. Consequently,
=1

all the assumptions of (5.4) are satisfied and therefore X satisfies the
thesis of the lemma.

It remains to give a proof under the assumption that I = 0, i.e. that
all eyelic elements F; of X are AR-gets. We are going to construct a set
X' CE" and a map g: X' X satisfying the conditions 1°, 2° and 3° of the
lemma. We shall prove that the set X’ and the map ¢ may be so chosen that:

(6.1)  The sets g~Yay) and g—(ay) consist of one point either.
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Denote by f an arbitrary homeomorphism from the arc L onto
a segment L' C E". Let f(L:) = L}. One can easily construct a sequence
of geometrical n-balls {Q¥4-1 contained in B" such that Q;~ L' =1Ij,
QinQi=LinLjif ¢ #j and such that diam (Q:) converges to zero if ¢
converges to the infinity provided k = oo. Since H; is a cyelic element
of X, the assumption implies that for each ¢ there is & homeomorphism f;
from F; onto a set H} contained in the interior of @;. Suppose that the
arelL is ordered by a relation < such that a;<3a, and let Ly = (b)) © (1),
where b; < ¢; (certain points b; and ¢ may coincide). Let us denote

Fib) =%, fded)=ci, fb)=Dbi, fle)=38i.
T b # a; (6 7 ay), then bse X—H: (6; e X—E;) and using (5.3)

we infer that e B*— H; (c; e B*—Fj). Since each F; is an AR-set, it
follows that each B} is also one, and we infer from (4.1) and (4.2) that E;
does not separate Q; and that the points b; and ¢; (except possibly the
images of b; = a, and of ¢; = a,) are accessible from @;— Fi. Consequently,
there exist two disjoint ares Ii,JjC Qi such that

=@ @), Fi=@vE), LnBi=@), JinBi=(d).
(Observe that by, o; e Li CBA(Q)).) If bi= a; (cs= ), let us define
Ii=(b03) [Ji=(¢5)-
Now, define X’ by the formula:

k k
X =(L—-UL)v | (LivEio ).
i=1 i=1

Since I; = f(L:) = (b)) w (69), it is easily seen from the construction
that X’ CE" is a locally connected continuum and that the sets Ej are
non-degenerate cyclic elements of X', Define a function g: X’—X by the
formulas:

ey i o' eL'— i\_ﬁl L,
@) = b; if &' el;,

| file) i# o <E,

lOf if 2 edi.

1Si.nee f and f; are homeomorphisms, f(b}) = fr(b) = b; and F(&)
= fi (67) = ¢1, one may easily verify that g is a map from X’ onto X.
Observing that, for each 4,.g~Y(L) ~ Qi is an arc as the union of three
ares Ij v filLs) v d3, we infer that g—*(L) is an arc. The non-degenerate
counter-images ¢~(), # € X, are subarcs of g-%(ZL) of the form I} = g=(b;)
(where b; 5= ay), ;= g~*(c) (where ¢; # a,) or of the form J} U I}, provided

e ©
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¢; = bi. Consequently, all conditions 1° 2° and 3° of the lemma (and
also (6.1)) are satisfied, which completes the proof in the subecase m = 2.

Subcase m > 2. We shall define inductively a sequence 4,, 4,, ..., 4s
consisting of closed und entirely arcwise connected subsets of X, such

. j .
that, for every 1 <j<s, iLJIA: is also entirely arcwise connected.

Let A, denote the least closed and entirely arcwise connected subseb
of X containing the points a, and a,. Now, consider an index j and suppose

-1
that the sets 4, for i < j have been defined. If B;., = | A contains all
i=1

points as, i=1,2,..,m, let s =j—1, i.e. let 4;; be the last element
of our sequence. Otherwise, let k denote the minimal index 4 such that a:
does not belong to Bj_,. Consider the component ¢ of X—B;-; con-
taining ax. In virtue of (3.2), there is a point ¢ such that ¢ € C ~ Bj—y = (0).
Define A; as the least closed and entirely arcwise connected subset of X
containing the points ¢ and az. We infer from (3.5) that B;—, v 4; is
entirely arcwise connected.

Evidently, the process of defining As ends after at most m—1
steps, ie. s < m—1. It follows from the definition that for each ¢ there
exist two points such that A; coincides with the least closed and entirely
arcwise connected subset of X containing those points. Thus, since the
subease m = 2 has been previously considered, each set A; satisfies the

i—1
thesis of the lemma. If 1 <i<s, then 4;n ‘UA, consists of exactly
=1

8
one point. Since | 4, is & elosed and entirely arcwise connected subset
i=1 :
of X containing all points a;, ¢ =1, 2, ..., m, it follows from the assump-
8
tions of Case I that | J4;= X. Consequently, all assumptions of (5.4)
=1

are satisfied, and therefore X satisfies the conclusion of the lemma.

7. Proof of the lemma in case II. Evidently, we can assume
that X contains more than one non-degenerate eyeclic element (cf. (3.6)).
Since X ¢ ANR, we infer from (3.12) that there is & non-negative integer
such that X has exactly I cyclic elements which are not AR-sets. Arrange
the non-degenerate cyclic elements of X into a sequence {Bies (% is an
integer or oo, of. (3.8)) such that the elements with the negative indices
are those which are not AR-sets. Choose from each set i a point a; which
does not belong to any other cyclic element (this is possible by (3.1) and
by [8], p. 238, No. 8). Observe that:

(11)  If A is a closed and entirely arcwise conmected subset of X containing
the sequence of points {aYary, then A =ZX.
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Indeed, it follows from (3.10) that A contains all sets H;, and therefore,
by the assumptions of case II, 4 = X.

Since case I has heen previously considered and in view of (7.1)
we shall assume in the sequal that & = oo.

Now, we shall define inductively (similarly as in section 6 for the
subcase m > 2) two families consisting of closed and entirely arewise
connected sets As, Bs C X, s = 0. Define 4, and B, as follows:

(1.2) A, is the least closed and entirely arcwise conmected subset of X
contwining the poimts a; for 4= —1I,—I+1,..,0 and B,= 4,.

Next, consider an § > 0 and suppose that for s < s, the sets A,
and B; have been defined. If By, contains all points a;, then A, _; and
B;,—1 will be the last elements of our families. Otherwise denote by bs,
the first element of the sequence {a;};=—; which does not belong to Bj,_;.
Then:

(1.3)  Asg, (8> 0) is the least closed and entirely arcwise connected subset
of X containing bs, and cs,, where ¢, 18 the point which bounds
the component of X — Bg,—1 containing bs,. Bs, = Bs,—1 v Ag,.

Tt follows from the definition that for s > 0 all cyclic elements of 4,
are AR-sets, whence by (3.11):

(1.4) If >0 then A, cAR.

It follows from (3.5) and (7.3) that By, is entirely arcwise connected.
Moreover, (7.2) and (7.3) imply that for every s = 0 (provided B, is defined)
there exists a finite set of points such that the least closed and entirely
arcwise connected subset of X containing those points is equal to Bs.
Therefore and with regard to (7.1), we shall assume that 4, and B, are
defined for all s > 0; otherwise the considerations reduce to case I. Now,
let us show that

)

(75) U Bﬂ‘ =X.

8=0
Let B =,L=J.,B" Since B,C B, C ..., one concludes that B is a con-

tinuum ?vhich contains all points a;. We infer from the definition of
these points that B contains all non-degenerate cyclic elements of X,

and therefore, by (3.10), B is entirely arcwise connected. Hence (7.1)
yields (7.5).
From (3.14) we infer:

(7.6)  For every ¢> 0 there is am indew s such that the diameter of each
component of X — B, is less tham e.

& ©
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It follows from (7.3) and (7.6) that:

o L)
(1.7 If ze X— UDB3=X— UOAS, then there is a sequente s; such
8= 8=
o0
that lims; = oo and such that x = O, where O; is a component

{=00 =0

of X— Ay bounded by a point different from c,.

Now, for every s = 0, arrange the points belonging to As—es (to As,
if s = 0) which bound the components of X— 4, in a sequence (finite or
not) {as}rs. For each ¢ between 1 and T(s) denotie by ey the cardinal
number of the set of the components of X — 4, bounded by as. By (3.2)
and (3.3) this is possible and we have 1< ag < %o. It follows from this
definition. and from (7.2) and (7.3) that:

(7.8)  If @ « By, bounds a component ¢ of X— Bs,, then @ belongs to exactly
one sequence {ast}ﬂ’f with 0 < s<8,. Moreover, & = ay implies
that O is a component of X— As. In particular, 6,11 determines
the indices 8(sq=+1), 1(so~+1) (where $(sy-+1) < 8y) according to the
Jormulas o1 = Gs(so+1hs0+1)-

Indeed, B, = 4oV (4;—6;) VY ... v (45—0s), Where the terms are
disjoint. If @ = @, then ¢ is a both closed and open subset of a com-
ponent D of X—A4,, whence (= D.

Now, we are in position to construet the required set X' C E" and the
map g: X'—>X. The subsets of E" which will appear will be labelled
with ‘‘primes”. We begin with the construction concerning the sets A,.

Suppose first that for each s> 0 there is given an n-ball Q;CE"
(it will be defined later on). If follows from (7.2), (7.3) and from the result
of section 6 that each set A, satisties the conclusion of the lemma. Thus,,
we can construct a suitable set A; C Int(Q;) and a suitable map gs from A;
onto A,. In view of (7.3), (7.4) and (6.1), we may require that:

(7.9) If s> 0, then ¢s Y(¢s) consists of only one point cs.
Tor every point ag defined before, choose & point
atg € g (aa)

such that, if g5 *(as) is an are, then ay is one of its end-points. From (5.3)
and from the definition of ay we infer that ag e Ba(44). By (5.2) and (4.4),
there exists a star H, C Int(Q.) with the core A; determined by the se-

quences {ag} and {oa}iX?. We can agsume thab:

(7.10) diam (Hg) < % for every s>0.
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According to the definitions of {ox}i~? and of the star Hj (see sec-
tion 4), we can choose a one-to-one correspondence gy between the com-
ponents of X — A, bounded by 4y and the beads of the necklace, which
is the closure of the component of H;— 4; bounded by ag.

Now, define @ as an arbitrary n-ball in E". Next, consider an s, > 0
and assume induectively that for s < s, the n-balls @s have been defined.
Suppose also that for ¢ < s, the constructions of Az, gs, {a:}E9, H and
of {p} have been performed as described before. Then:

(TA1) Qs = Pateaten(0), where 8(sg), t(sy) are determined  according
t0 (7.8) and where O denotes the component of X — Agqy (and
also of X— Bg,—1), whose closure contains As,.

Thus, if s,> 0, then @i, C Hyy, and it follows from the definition
of the star Hi, that the set @i, ~ Hisy—Qs, consists of two points,
which will be denoted by p:, and gs,. (7.4) and (4.3) imply that Hg, ¢ AR
and — by definition — Hj, C Int(Q;,). It follows from (7.9), (7.3) and (5.3)
that c;, e Bd(4s,) and therefore also ¢;, € Bd(Hs,). We conclude by (4.1)
and (4.2) that there exist two ares I, Js, C Qs such that:

(7_12) I;o = (ng) hd (p:ro) ’ J.éo = (6;0) v (q;0> ,
Iy~ Jhy = Hiy ~ (Ihy o Ih) = (b)) .

Finally, define inductively some sets Bj, s > 0, as follows:

(118) Bi=H; and Bi=(Bia—Qa)v(livH;vJ;) for §>0.

Let

X' = B;.
8=0
. We shall show that X’ is the set required in the lemma. T

e?,slly from (7.12) and (7.13) that {B;}s= is a decreasing sequencz ﬁ(f)lz?ﬁ
tinua, and therefore X’ is also a continuum. One can observe by means
of (7.11) that each n-ball of the form ¢,y(0) (where C is a component
of X—A,) appears once in the sequence {Qi}is,+1; namely geu,(0) = @}
IWhere s(le) =8, 1(8)) = t, and C D 4,,. Since, for every s 20(0) X' A B;
is a continuum, it may be verified by (7.10) that X" is locally c:)nnected:

Now, we are going to define the required map g: X'—X. For this
purpose we shall define a sequence of maps f,: X'—X. Since H is a star
with the core A;, there exists a retraction r, of H} onto A} s:ich that
for each component O of Hi— A3, r(0")=0C" ~ A} (0" ~ A} is a poi 1;
by the definition of Hj). Let ’ ) P

fo= gorl X’

e ©
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and, if 8 >0, let
foil@)  for o e X'—Q,
Fool@) =1 geutse(a’y for o' e X'~ Hg,,
Csq for @ elywds .

By (7.9) and (7.12) the definitions of f,, agree on the set (I, v Jg) ™
~ Hi, = (¢h,) C A5, In order to show that they agree on the set
Q% ~ X'—@Qi, = (Phy) v (gs) We shall prove that fa-1(Qs » X') = Cs,-
By (7.11) and by the definition of s, @}, = Patsosn 0) is contained in the
component of Hiey— Agsy bounded by the point assgs € Gaton( Bs(sottsn)»
whence fﬁ(sn)(Qéo N X')= gs(SO)Ts(sn)(an A X') = teapiits)- Consequently, (7.8)
and the definitions of f, yield fa—1(@h ~ X') = fuen(Qi0 © X') = ¢5,. Thus
foo is & map.

We infer from the definition of fy, and from the formula gs(4%) = Agy
that fu(Qh ~ X') = A, for every s 0. Since, by (7.2) and (7.3),
By, = Ag v ... U Ay, it follows thab:

(7‘14) fﬂn(xl) = Bsn = f&‘o(-Aa VoV -A;o) -

Taking into consideration (7.11) and the definition of f;, one can
ghow by an induetive argument that:

(7.15)  If 8> 8, then fa, and fs, agree on the set (X'— @D U 4a,
8>80 0880

and for & > & the sets fo,(Qs ~ X') and Fa(@s ~ X') are contained
in the closure of the same component of X —Bs,.

Thus, we conclude from (7.6) that the sequence fs is nniformly con-
vergent and ¢ = limf, is a map from X’ into X. By (7.14) and (7.15) we
§=00

have ¢(X')D | B, and therefore, by (7.5), g is onto.
820

We shall prove that g is the map required in the lerama. For this
purpose, taking into consideration (7 .15) and the definition of f, let us
notice that:

(7.16) glAL=gs for every $>0.

Tt follows from the definitions of f, and r, that, for every point as,
fN(as) is the union of g5 '(as) and of the necklace r7Yay) CHy. T O is
a component of X— A4, bounded by as and ¢a(C) = Q,, then, by (7.11)
and (7.9), ¢s, = sty frg (Cs0) N Qo0 = L5~ Jios Fal(€) = Qi ~ X' — (I3 ¥ Ja)-
‘We conclude from (7.15) that:

(117) g Naw) 48 the union of g Yag) and of the arc which arises if one
replaces each bead Ql, of the mecklace rs Yak) by the aro Is ™ Jag
moreover, if Qi = pa(C), then gHO) = @by n X' —(T5y© J a0}
= Hj n X' —cg,-
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Now, consider a point # ¢ X. By (7.8), there are three possibilities:
®e Ag—0s, (for some s> 0) and it is different from every point a,,,
= ag for some s and ¥, or e X— | J 4,. If the first possibility holds

8§=0
and s, > 0, then z ¢ C, where € is the component of X — Ay, such that
0D A,. Consequently, (7.17) implies that g-(«)Cg—(C)C Hj, and,
since @ 5% ag, we infer that g-Y(x)C Ay,. We conclude by (7.16) that
g () = ¢ (w) (also if s, = 0). If the second possibility holds, then (7.17)
and the definition of ag imply that g—(z) is an are. If the third possibility
holds, then (7.7) and (7.17) imply that there is a sequence s; (not the
same as in (7.7)) such that lims; = co and such that g-*(»)C (e“c] Q. Since,
i=00 =1
by (7.11), each Q;, (except Q) is contained in some Hj, it is easy to show,
by (7.10) and by the definition of a star (see section 4), that lim diam(@s,)
=00

= 0. Thus, ¢g~}(z) is a point. Since each ¢, satisfies condition 1° of the
lemma (with respect to 4;), we conclude from these considerations that
so does g.

Since each non-degenerate inverse image ¢—(x) is contained in some Hy,
using (7.10), the definition of a star and again the properties of g, we
infer that ¢ satisfies condition 2° of the lemma.

To prove that it also satisfies 8°, first observe that, by (7.2) and (7.3),
each non-degenerate cyclic element of X is a cyclic element of a set A,.
Next, the construction of X' implies that each non-degenerate cyclic
element B’ of X’ is contained in a set A;. Indeed, limdiam(@}) = 0, and

8=

therefore there is an index s, such that B’ C@j,— |J @, whence B’ C Aj,.
8>8p

Consequently, (7.16) and the respective properties of g, imply that g
satisfies 3°. Thus, the proof of the lemma in ease II is completed.

8. Proof of the lemma in case III. Let X be any space sa-
tisfying the assumptions of the lemma with » > 1 (see section 5). Denote
by A the least closed and entirely arcwise connected subset of X con-
taining all non-degenerate cyclic elements of X. By the result of section 7,
we can assume that X—A4 #£@ (however, it may happen that 4 =@,
and then, in view of (8.1), the proof is trivial). Let us notice that:

(81) If C is a component of X-A, then C is- a dendrite.

. Indeed, it is clear in view of (3.2) that O is a locally connected con-
tinuum. By (3.9) and by the definition of 4, C does not contain any
simple closed curve, and therefore it is a dendrite.

From (5.1) and from the result of section 7 , we infer that there exist
a set A" CE" and a map ¢, from A’ onto 4 satisfying the conclusion of
the lemma with respect to A. In virtue of (3.3), the points of 4 which
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bound some components of X— 4 can be ordered in a sequence {a:ii,
where % is a natural number or oco. Let {C4;)7<1 be a sequence consisting
of all components of X —4 bounded by @;. For each point a¢, choose
a point

a% < go '(as)

such that, if gy '(a;) is an arc, then a} is one of its end-points. By (5.3),
a; e Bd(A4'). Consequently, in virtue of (5.2), (4.1) and (4.2), every point ag
is accessible from E"— A4’. Since # > 1 and in view of (8.1), one can easily
construet by induction a sequence of sets Di; C E" such that:

(8.2) Diyn 4_’ = (a), the pair (Dy,ai) is homeomorphic with the
pair (Ci, as), (Dhjy—ai) ~ (Dige—an) =@ if (6, 51) (i Ja);
diam (D3;) <% and limdiam (D) = 0 if J (i) = co.

j=o00
Let
ko
X=Av|) UDy.

Since A’ is a locally connected continuum, it follows from (8.2)
that X’ is also one. In virtue of (8.2) there is a homeomorphism g;; from D3;
onto Cy; such that gi(aj) = a;. Define a function g: X'—+X as follows:

’ Qolz) I oA,
&x)= . ’
g( ) {gﬁ(m') if z' e .Dij .

One can easily prove using (8.2) and the formula g(4’) = 4 that ¢
is & map from X’ onto X. It follows from the definition of g that g—*()
= g5 \(») if # ¢ A and g*(@) is a point if # e X — A. Since the map g, satisties
conditions 1° and 2° of the lemma, it follows that so does g. From (8.2)
and from the definition of X’ we infer that the non-degenerate cyclic
elements, of X’ coincide with the non-degenerate cyclic elements of A’
Evidently, the non-degenerate cyclic elements of X coincide with the
non-degenerate cyclic elements of A. Since A’ and g, satisfy to condi-
tion 3° of the lemma, we conclude that so does X’ and g. Thus, the proof
of the lemma, and therefore also of theorem 1, is completed.
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Structure of self-dual torsion-free metric LCA groups*

by
M. Rajagopalan ** (Madurai, India)
and T. Soundararajan (Urbana, I.)

Since Pontrjagin [3] and Van Kampen [5] introduced the notion of
the dual of a locally compact Abelian group, many examples of self-dual
LOA groups have been given in the literature. However, the structure
of all self-dual LOA groups has been. an open problem till to-day (see [1]).
As a matter of fact, there is even no conjecture about how a self-dual
LCA group should look like. In this paper we give the structure of all
metric self-dual LOA groups which are torsion-free as abstract groups.

Notations and Conventions. All topological spaces occuring
in this paper are taken to be Hausdorff ones. We usually follow [7] for
notations and concepts related to topological groups which are not defined
here. We write LCA group as an abbreviation for a locally compact
Abelian group. The dual of the LCA group @ with the usual topology
is denoted by @. We use the additive notation for groups. If HC & is
a subgroup of the LCA group &, then H*' denotes the annihilator of H
in @. R™ denotes the usual Buclidean group (» > 0). If p is a prime, then Jjp
denotes the group of all p-adic numbers and I, the group of all p-adie
integers with the usual topology. (We use the symbol @ for topological
direct sums). The definition of a local direct sum of LCA groups is given
in [1], [6] and [4]. But we prefer to repeat this definition here for the
sake of completeness.

DeFmNITON 1. Letb (G.) be a family of LCA groups indexed by a set 4.

Let H, C G be a compact and open subgroup of @, for each a<.4. We

define the local direct sum ) @, of the family (G.) with respect to (Ha)
a€d

of subgroups as follows:

> 6= {(@)| (@2 € ]—A[ Gos @ e H,

acd
for all ae A except possibly for a finite number of indices}.

* An announcement of the result presented here appeared in [4]. The main theorem
there should have been only for the metric case instead of for all the groups.

** Mhis author was partially supported by a NSF grant No. NSFGP5370 while
this work wags being done.
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