Differentiable roads for real functions

by

Jack G. Ceder (Santa Barbara, Calif.)

In 1936 Maximoff [6] proved that for a Borel measurable function f
defined on a real interval I, there exists a countable set C such that for
each ¢ ¢ I— C there exists a perfect subset P of I having # as a bilateral
limit point that the restriction of f to P, f|P, is continuous. On the other
hand, in 1966 Filipczak [4] proved that for a Borel measurable function f
defined on a perfect set @ of the reals, there exists a perfect set P CQ
such that f|P is monotonic.

Both of these results can be simultaneously strengthened by the
following theorem:

THEOREM 1. (Bruckner, Ceder and Weiss [2]) Let f be any real-
valued Borel measurable function defined on o perfect set Q of the reals. Then
there ewists a countable set C such that for each % € @ — O there ewists a perfect
set PCQ having ¢ as a bilateral limit point such that f|P is differentiable.

It is unknown whether the perfect set P in the above theorem can
be chosen so that f|P is also monotonic. Nevertheless, the theorem does
imply Filipczak’s result as shown in the last paragraph of this article.

The main purpose of this paper is to establish the following natural
analogue of Theorem 1 (as well as Maximoff’s and Filipezak’s theorems)
for arbitrary real-valued functions defined on an uncountable subset of
the reals.

THEOREM 2. Let f be any real-valued function defined on an uncountable
subset A of the reals. Then, there exists a countable set C such that for each
e A—C there evists a bilaterally dense-in-ifself set B containing @ such
that f|B is monotonic and differentiable.

A set B is bilaterally dense-in-itself if each point of B is a bilateral
limit point of B. By saying f|B is differentiable we mean that (f|B)’(x)
exists as an extended real number for each z ¢ B.

On drawback of Theorem 2 is that the “differentiable road” B may
be countable. However, because B is dense-in-itself its closure will be
perfect. Nevertheless, Theorem 2 is the best possible result in the sense
that it cannot be improved to assert that B is uncountable or that B is
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dense in some open interval. These facts are shown by the following two
examples.

BxAMpLE 1. There exists a continuous function f on [0, 1] such that
for each somewhere dense set 4, flA is neither differentiable nor mono-
tonie. Tor this, take f to be any continuous, nowhere differentiable function
on [0, 1]. If A is dense in some interval J then the continuity of f implies
that f|J is differentiable (differentiable a.e.) whenever fI{A ~ J) is differen-
tiable (respectively monotonic).

ExAMPLE 2. There exists a function g on [0, 1] such that for each
uncountable set 4, fl4 is neither differentiable nor monotonie. In [5],
pp. 147-8 Goffman constructed a funetion ¢ on [0, 1] such that g|4 fails
t0 be continuous for each uncountable set 4. Since differentiability implies
continuity and monotonicity implies continuity on an uncountable
subset of each uncountable set A, it follows that g|4 is neither differen-
tiable nor monotonie for each uncountable set A.

Prerequisite to the proof of Theorem 2 are some terminology and
two preliminary results, Lemma 1 and Theorem 3.

TFirst of all, throughout the sequel we will regard a function as identical
with its graph and we will only consider functions whose domain and range
are subsets of the reals. For such a function we call (2, f(#)} a bilateral
condensation point of f provided that 8 ~f is uncountable whenever §
is an open square (with sides parallel to the coordinate axes) of side length A

which has the point (w :Fg, f(w)—g) as its lower-left or lower-right

vertex. Next we have the following result concerning bilateral condensa-
tion points for functions, the statement and proof of which are modifica-
tions of Lemma 4 of Ceder and Pearson [3].

Lemma 1. Let f have domain A where A is uncountable. Let B be the
domain of the bilateral condensation points of f. Then A—B 4s countable
and for each % e B, (v, f(2)) is a bilateral condensation point for f|B.

The left-derived set, Di(f, ), and the right-derived set, Dxr(f, »), of
a function f at the point & are defined to be sets of all possible sequential

limits (as extended real numbers) of the difference quotient fy—r(@) (@)
y—o
a8 y approaches z from the left and right respectively,

The next preliminary result, Theorem 2, is possibly of independent
interest, and it asserts that for any given function f with an uncountable
domain, & countable number of points may be deleted from f to form
a new funetion g whose left and right derived sets overlap at each point
of the domain of g. This result extends a result of Bagemihl [1] which
agserts that for a function f defined on an interval the derived sets of f
overlap except possibly at a countable number of points. The proof of
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Theorem 3 consists of a modification of Bagemih!’s proof and an application
of Lemma 1.

TEEOREM 3. Suppose f has an uncountable domain A. Then, there
exists a countable subset C of A such that for each x e A—C

Do(fI(4—0),9) ~ Dx(fl(4—0), 2) #0 .

Proof: By virtue of Lemma 1 we may assume without loss of genera-
lity that each point of f is a bilateral point of condensation of f. Define
B={z,y) edxAd: y<a} and 4= {,2): A} First we establish
the following lemma.

LeMMA 2. Suppose M C B. Then, there exists a K C A such that A—K
is countable and for each (z,®)e K and positive integer n we have, where

Ln(z) = {@} X (m——%, w) and Ra(x) = (m, m—l——}b) X {x}, that

(1) both Ln(x) and Ra(x) intersect M
or
(2) both Lu(x) and Ru(w) intersect B—M .

Proof of Lemma 2: Let F, consist of all {w,#) ¢4 for which

neither (1) nor (2) hold with respect to n. Put K = 4— | Fu. To complete

n=1
the proof it suffices to show that each Fy is countable. Consider a given Fy.
Then clearly for each <z, #> e I we have: (a) Ln(z) C M and Ruy(z)CE—M
or (b) In(x) CE—M and Bu(z) C M. Let FF%) consist of all (z, z) e Fn
for which (a) (resp (b)) holds. Now suppose <z, &> and ¢y, y> are any two

points of Fy such that 2 <y < o+ % Then (%, y) € Ba(®) » La(y) which
violates condition (a). Thus each two points of Fy, and, similarly, of wn,
are separated by at least a distance of % . Hence F, is countable, which
finishes the proof of the lemma.

Put X = [—oo, +oo] and give X the two-point compactification
topology. Let %= {Bu}aa: be a countable basis for X which separates

each pair of disjoint compact (equivalently closed) subsets of X.
Define for (z,y) ¢ B,

B

Now for each n put M, = {(x,y) ¢ E: D(z,¥){ B,}. Applying Lemma 2
to each set M, we obtain a sequence of sets {Ku}aw: such that K.C 4
and 4— K, is countable for each n and such that for any (@, @) ¢ Kn
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and m (1) both Ln(x) and Rm(z) intersect M, or (2) both Ln(x) and Rn(z)
intersect B— Mp.

Next put K = () K, so that 4—K = 4— | K, is countable. Choose
n=1 n=1

any (z, 2) ¢ K. We will show that Dr(f, 2) ~ Dgr(f, ?) #0. Assume that
this is not the case. Then since Dr(f, #) and Dgr(f,2) are closed subsets
of X there exists an » such that Dz(f,2)C B, and Dg(f,2) CE—B,.

In particular, (2, 2) € K, 80 that for each m (i) Bn(2) and Lmu(2) both
intersect My, or (ii) Rm(z) and Lm(2) both intersect B—M,. Hence we can
find a sequence {my} of positive integers such that either (a) for each %
Rmy(2) and Lm,(2) both intersect M, or (b) for each & Ruy(2) and Lm(z)
both intersect B—My,. Supposing (a) holds, we can clearly find a sequence
{#xYim1 in A such that i1z, D(z,xx)¢ Bs for each k and iimD(z,mk)

exists. Since By is open this implies that lim D(z, ) ¢ By and Dz(f, 2) Q‘F By,
koo

a contradiction. Likewise supposing (b) we can contradict the fact that
Dr(f,2) CE—Bx.

Letting C be the domain of K we now have that ¢ is countable and
for each 2z e A—C, Di(f, ) ~ Dr(f, %) @. It remains to show that the
derived sets for f|(4—C) also overlap.

To show this let 4 ¢ A— (. Then there exists a A ¢ X and sequences
{onYoes and {yn}nm1 such that @ | @, yn 1 @, D (@, ©)—21 and D (ya, y)— A
Since each point of f is & bilateral point of condensation of f, there exist
for each n points x, and y, in 4 — O such that

((@n— a2+ (F () — F @0))") < = ((@a 2"+ ( () — f (@)?)

n
and

((n—9al +(flym) —F(52)°) < % (=9 +(Fym) —F @)") -

Then clearly yn < @ <« for each n and D(y,,x)—A and D(ay, 2)—>24

Hence, 1 is common to the derived sets of fi(4— ¢) and the theorem is
proved.

Proof of Theorem 2: Suppose f is a function with an uncountable
domain A. Apply Theorem 3 to obtain a countable set ¢ such that the
left and right derived sets of f|(A— () overlap at each x e A — (. First
we will show that for each z e A — (¢ there exists a bilaterally dense-in-
itself countable set B C A— C containing « such that fIB is differentiable.

The proof consists of several inductions within inductions so that
a detailed proof is very cumbersome to describe. Therefore, we will describe
in"detail only the first “leg” of the induction and then outline how the
inductive process can be reiterated to give the full induction.

©
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Without loss of generality we may assume that ¢ =@. First of all,
choose #, € 4 and 3y € Dr(f, @) ~ Dr(f, %,). Next choose a sequence {t;}n1
in A such that %, | @, and D(ta, 2,) :]_”(t,;)——]{;(ﬁ,) —2,. Then for each f

n— wo
pick Ax e Dr(f, t) ~ Dr(f, ) and a sequence {fyn}a~1 in A such that

(1) tom d e

(2)  D{ten, te)—Ak;

Sltp—i—te] i k#1
3 ’
® bl <) e,

(4) 1Dty o) — D (@, t)] < % for each = .

Now suppose, in addition to the above, we have defined by induction
the pPOINts tryk,..iy for each j-tuple (%, k,, ..., ks> of positive integers
for 1 < j << m such that

(1) ey kgt § Tnyonty LOT J < M5

(2) for § < mUm D (tyky,...kpns by kgnty)y A€DOLEA DY gy gy, ks, XISLS

Nn—>00
and belongs to
Di(fy trygnts) ™ DRIy Lorstinenty) 3

(3) for j < m and s the first point to the right of tx,i,.. of the
form t;,3,,..,; Where 4 < j, we have

[tk ety — 81

1
3
Tk —1 < X .
] \{J;-, if s does not exist;

(4) for j<i<m

| D (brey, ks er 5 Elorslinyennslis) — D (g, ez s T

Now we proceed to define the Points t, ks,...kmkns» FOT €ach m-tuple
Cyy By, ooey Bemd We can clearly choose & S6qUence {ta,ky,...knnjn=1 Such that
conditions (1), (2), and (3) of the induetive hypothesis are satisfied when j
is replaced by m. To satisfy condition (4) we must show thatb

1

[T
In (4) let i = m and let j < m = i. Then there exists a neighborhood V;
of (thnka,-u.kmi f(tkhkn,---,km)) such that

ID (tkl,’\‘?z,u-,km—(-l) Thoyk ’f;)"‘-D(tk< Engeensftn s th,k:,---'kl)‘ <

Y—F Gstnetr) | 1

D (T ea,enn g s Porigpennsles) —
( K1yJeasene 413 Yk ks 7] m“‘tkl,k,,...,k; ki+1

whenever (z, y) e V;. Let V be the domain of p V;. Then if the sequence
<m
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{tis,kmm et 18 chosen to lie in V and satisfy (1), (2) and (3), then it will
also satisfy (4). Therefore, the points ix;k,....k for j < m+1 can be chosen
to satisfy the conditions (1) through (4).

Tet €, be the collection of all POInts tu,ky,....km Where ki, ko, ..., kmd
is an arbitrary m-tuple. Clearly by condition (1) each point of €, is the
limit from the right of a sequence in ¢,. On the other hand, no point
of €, is the limit from the left of a sequence in ¢, because it follows from
condition (3) that when ¢= tr,ke.kim DA b= Flbk, elin = DhrTon, ki
we have Oy ~ (¢c—h, ¢)=0.

We now show that f|0, is differentiable. Let @ ¢ 0; and {%n}ne be
a sequence in € with #,} . Then for some j we have @y ==ty ..k
and we may assume without loss of generality that for each n
B = Uiy iy lplisamimkigny - BY CORAition (4) we must have

1
1D (g ) — D (@5 Ly bigenilegaim)} < Trma(m)

Since @y-+4, we must have limk;yi(n) = oo 50 that

N—00
D (@, thykaponkpsatnd) = Mennty ARG D@y Do) = Aieyytyennily +

Hence, f|C, is differentiable.

This completes the first leg of the induction.

Let us now relabel the points tx,ky..k, in C; by & where s is
the m-tuple <k, ..., km). For each t,e(; choose k>0 such that
0y ~ (ts—3hs, t) = @. In the open interval (f,—hs,?;) we can repeat the
above construction of ¢, only using limits from the left instead of limits
from the right, and where i, plays the role of x, and (f|0,) () plays
role the of 4,. The set of points so obtained will be denoted by ?s, where %
represents any finite tuple of positive integers.

Next for each fixed t,, there exists a right neighborhood disjoint
from all the other ?,,. Then we can again put a copy of €, in this neigh-
borhood as outlined above. In this way we obtained the points fsu.
where 8, 4 and v are finite tuples. ) ”

Continuing in this way we will obtain the set B consisting of all
POINLS ts,...,s, Where each sy is a finite tuple of positive integers. Clearly B
is a Dbilaterally dense-in-itself set containing the original point 2, of A.

If sufficient care is taken in picking the points of B, f|B will be di-

ferentiable. To do this we must inductively define B so that the analogue
of condition (4) holds namely

(4") for each i,4,..,5, Where 8, = <iy, ..., 44> we have

..... sns Torisammntngmy) — D (Bar.03e08n s Lo 80,y (o Dpene) | < l.
m
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and

1D (ts1.50,00mm s tsl,-..,sn—1.<ix,...,i;,m)) e tsl,.--,Sn-x,(in..-,i;,m,..),...)i < m’

The proof that this can be done is similar to the corresponding proof in
the construction of Cj.

By the construction of B each point 4.5, Das & neighborhood
such that on one side of fy,..s, the points of B are all of the form
Loy 50,mesinSnitrmse 10T SOME Sni1y .y Sp and on the other side all the points
are of the form

B4, 8200eer 8125 Breses o Tl ves T35 SbLsneesle

fOT SOME 41415erry B4y Snty -ovy Sk WhET® Sz = {iz, ..., 4>. Then using (4') one
can show that f|B is differentiable in the same way that (4) implied the
differentiability of f|0;.

Hence, we have shown that for each # ¢ A — O there exists a bilaterally
dense-in-itself set B C A— C containing 2 such that fiB is differentiable.
Tt now remains to show that ¢ and B can be selected so that f|B is also
monotonic. First we need the following lemma.

Leaa 3; Suppose B is bilaterally dense-in-ilself and f|B is differen-
tiable. Then there ewists ACB such that A is bilaterally dense-in-itself
and flA is differentiable and monotonic.

Proof of Lemma 3: Consider the two sets {m: f'(x) > 0} and
{z: f'(®) < 0}. It is easily shown that one of these sets is bilaterally dense-
in-itgelf in some relative subinterval of B. Suppose then that ¥ is bila-
terally dense-in-itself and f'(x) > 0 for # € E (or equivalently ( fIB) (z) = 0).

To construct the desired set 4 we proceed as follows. If there is
2 relative subinterval on which f is constant, then it will serve as the A
for which f|4 is monotonie. If, however, there is no relative subinterval
on which f is constant we can pick x ¢ B and sequences {zﬁ}ff:l and {zﬁf};’;l
in B such that & 1 2, 25 | @, f(5) | f(#) and f(25) 1 flz). Now about each
of the points (#,f(2r) and (e, f(x)) we can find neighborhoods UL
and UZ such that the sequence of the domains of {US, and (UBy,
are disjoint and the sequence of the ranges of {UE2., and {UBY.; are
also disjoint. In each neighborhood UL (or UE) we can choose sequences
(o fEa)in 80d {2, fleE o)l such that Zia®in, 2 2m
Flem )y flem) and FEED N f (#%). Then again choose neighborhoods of
these points and continue the process. In this way we obtain the set 4
of the points zﬁ,zf,zﬁ,n,zﬁ,n, etc., so that A is bilaterally dense-in-
itself and f|4 is monotonic and differentiable. This finishes the proof of
the lemma.

Returning to the proof of Theorem 2, let F' consist of all xe A—C
such that there does not exist a bilaterally dense-in-itself set B con-
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taining @ such that f|B is monotonic and differentiable. To finish proving
the theorem we need only show F is countable. Suppose then that T ig
uncountable. Now apply the first part of this theorem fo obtain a bila-
terally dense-in-itself set P C F' such that f|P is differentiable. Now apply
Lemma 3 to f|P to get a bilaterally dense-in-itself set @ C P CF such
that f}Q is monotonic and differentiable. But this contradicts the definition
of 7.

This concludes the proof of Theorem 2.

As previously mentioned in the introduction it is unknown whether
one can strengthen Theorem 1 to assert that f|B is also monotonic. The
proof of the second part of Theorem 2, including Lemma 3, will carry
through provided the set F' defined above is a Borel set. Whether this
is true, however, is unknown.

In [2] it was also shown that for a Borel measurable function f defined
on a perfect @ there exists a perfect P C @ such that f]Q is infinitely dif-
ferentiable. Hence, another interesting question is whether the set P
in the conclusion of Theorem 1 can be chosen so that f|P is infinitely
differentiable. Analogously, another question is whether Theorem 2
can be improved to assert that f|B is infinitely differentiable or even
twice differentiable.

As a final remark we indicate how Theorem 1 implies Filipezak’s
result. Using Theorem 1 we can find a perfect set P such that f|P is dif-
ferentiable. Secondly, apply Theorem 1 to (f|P)’ to find a perfect set
T C P such that f|T is twice differentiable. Now apply Lemma 3 to f|7
so that the closure of 4 will be the desired perfect set upon which f is
monotonie.
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