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Introduction. In this paper we study the extension of open and
closed mappings to compactifications such that the extension is open.
It iz shown that this can be done in such a way that the compactification
has the same weight and dimension as the original space. A characterization
of open and closed mappings in terms of the ring of bounded real valued
continuous functions of a space is given which facilitates the study of the
extension of such mappings to compactifications. Also a sufficient con-
dition is given for the extension of a mapping to a compactification to
be open. These results should be of interest in themselves. Among those
who have studied the extension of mappings to compactifications have
been R. Engelking [2], R. Engelking and B. Skljarenko [3], A. B. Forge [4],
H. de Vries [13], and A. Zarelua [15]. J. de Groot and R. MecDowell have
studied the extension of mappings on metric spaces to completions [6].

The last section of the paper deals with finite to one open and closed
mappings and dimension. Dimension and finite to one open mappings
have been studied by K. Nagami [11] for domain and range paracompact.
The author has studied the case with domain and range metrizable [8].
The theorems of this section are an attempt to generalize these results
to more general spaces. A. Arhangelskil has studied finite to one open
and closed mappings and metrization [1].

The paper has three sections. The first deals with the preliminaries
and reviews the relation Letween C*(X) and compactification. The second
characterizes open and closed mappings on normal spaces and proves
the results dealing with extending such mappings to compactifications.
The last section deals with finite to one open and closed mappings and
dimension.

Notation. Throughout the paper all spaces are assumed completely
regular. By mapping is meant a continuous function. By B(X) is meant
the ring of bounded real valued functions on X. The set 0*(X) is the subset
of B(X) consisting of those functions which are -also continuous. The
modified Lebesgue covering dimension of the space X is denoted by dim X.
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For a discussion of this dimension function see Gillman and Jerison [5],
p. 243 or Isbell [7], p. 97. A compactification of the space X is a pair g7
such that ¢ is an embedding of X onto a dense subset of Z which is compact,.
It gZ and LY are compactifications of X, then gZ > hY whenever there
is a mapping f(Z) = Y such that h=fog. If g7 = 1Y and hY > g7,
then f must be a homeomorphism and we write gZ~hY. By X iy meant
the Stone-Gech compactification of X. If f: X-»Y iy a mapping, then the
Stone ewtension of f is denoted by pf: fX—-BY.

A compaction of the space X is a pair ¢Z such that ¢ is & mapping
of X onto a dense subset of Z which is compact. We have the same quasi-
ordering and equivalence for compactions as for compactifications. For
terminology see H. de Vries [13].

The weight of a space X is the least cardinality of a basis for X and
is denoted by w(X). We will use the standard result that considering
0*(X) as a metric space with the metric induced by the uniform norm
w(C*(X)) = w(X) whenever X is compact and w(X) is infinite.

Part I. Preliminaries. The results of this section seem to De
entrenched in the folklore of compactification, but seldom referred to
in the literature. Authors tend to use the relation of compactifications
to precompact uniformities on the space. Such an approach will not suit
our purpose and because of the scarcity of detailed discussion in the
literature, a presentation must be made of the precise relation between
the closed subrings of C*(X) and compactions of X. The result needed is
basically stated in Zarelua [14], but without proof and without the precision
needed here.

L1. DErNITioN. Let gZ be a compaction for X. Define Fz = {ho ¢:
h e 0*(Z)}. Then Fz C C*(X).

1.2, LiemMA. If gZ is a compaction for X, then Fz is @ closed subring
of C*X) containing the constant fumctions.

Proof. Trivial. By closed is meant closed in the metric induced by
the uniform norm.

1.3. DeriniTION. If F i3 a closed subring of C*(X) which contains
the constant functions, then by AF is meant the mawimal ideal space of F
with the hull-kernel topology. For a commutative ring with unit it is known
that this space is compact, but possibly not Mausdorff. Our purpose is
to indicate that AF is Hausdorff and in a natural way a compaction
for X. Let ep: X—~fF be defined by ep(w) = M, where My= {feF:
flz) = 0}. Then M, can be shown to be a maximal ideal in J and thus
an element of SF.

L4, Tusorem. With the notation above epfF is a compaction for X
whenever F' is a closed subring of C*(X) containing the constant funclions.

icm

©

Open and closed mappings and compactification 75

Proof. The proof will only be sketched. # can be shown to be a sub-
lattice of 0*(X) and all maximal ideals in ¥ can be shown to be absolutely
convex in F. Thus F/M can be ordered in the way indicated in Chapter 5
of Gillman and Jerison [5]. F'/M can also be shown to be totally ordered
and. Archimedean. Therefore F/M is isomorphic to the real numbers.
If g < I, then if we let §(M) = Mg in F|M, the function § will be con-
tinuous and an extension of ¢ to AF. The function ": F—C0*(fF) can be
shown to be a ring isomorphism. Showing that * is onto involves use of
o form of the Stone-Weierstrass theorem. It follows that AF must be
a Hausdorff space since points are separated by real valued continuous
functions. All that is needed now is a discussion of the continuity of er.
If_g}”e C*(BF), then ¢ = # for some % eF. Thus goer=h is continuous.
Since AF is completely regular, this implies the continuity of er.

" The isomorphism * identifies F with C*(f¥F). It will sometimes be
convenient to consider this identification without specific reference to
the function . The mnext theorem is a consequence of 1.2 and I.4.

" L5, TuporeM. If gZ is a compaction for X, then pFz with er, is an
equivalent one. If B is a dlosed subring of C*(X) containing the constants,
then F = Fap. Furthermore, if gZ and hY are compactions for X, then
g7 = 1Y if and only if FzD Fy. '

Proof. It will be sufficient to prove the last part of the theorem.
If ¢Z = 1Y, then clemly Fz D Fy. On the other hand, if FF = Fz O Fy =G,
then" if we consider epfF and ecfG and define h(M)= M~ G for all
M. fF, then using the Stone-Weieistrass theorem again we get that
h({M) e G. It can be shown that b is continuous and that eg="1ho er.
Thus erBF > eqfG. However, g¢Z~erfF and 1Y ~ecpG. Therefore
9Z > hY.

. . As a result of .5 we have that e« xfCHX)~pX.

1.6. TurorEM. If T is a closed subring of C*X) containing the con-
stants, then erpF is a compactification of X if and only if B induces the
topology of X.

“Proof. Tt K is a closed subset of X and Ir={geF: g(K)= 0},
then the closure of ex(K) in fF can be shown to be the set of all M ¢ pF
such that M contains Ix. If F induces the topology of X, th‘.zn eF(Iff)
contains all of the points in the closure of er(K) which are also in er(X).
Thus er is an embedding and erfL is & compactification. The converse
is trivial. 4

If f: X—Y is a mapping onto & dense subset of ¥ and ¢Z is a com-
pactification for X and AW is a compaction for ¥, then the following
theorem holds.

1.7. TuzoreM. There 15 a mapping m: Z—~W such that m e g = hof
if and only if hefW < gZ as compactions of X.
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The theorem is trivial, but a useful rephrasing is the following:

defiming f*: CHX)—~C0(X) by f*g) = qofforqe C*(Y), then the mapping m
exists in 1.7 if and only if (ho f)* (Fw)C Fz.

The relation of dimX to C*(X) has received considerable attention.
The next theorems are headed toward I.11 which will be a characterization
of dim X in terms of C*(X) which will be of considerable usefulness later.
To reduce terminology we define the following algebraic closure operation.

1.8. DuriNiTioN. If L C 0*(X), then L° denotes the smallest closed
subring of CX(X) containing L and the constants.

The following result is essentially due to Mardesid [9]:

1.9. TuroREM. The space X has iim X << n if and only if whenever gZ
is a compaction for X with Z metrizable and \imZ < co, then there is a com-
paction, 1Y for X with Y metrizable such that AimY < n and bY > gZ.

A rephrasing of 1.9 is the following.

1.10. THEOREM. For a space X, dimX < n if and only if whenever
F={g:i=1,..,p} is a subset of C*(X), then there is a set = {g::
i=1, ..,k in O"X) containing F such that dimpG* < n.

Note that if ¥ is compact metric (or just separable metric), then
there are a finite number of real valued mappings which generate the
topology of Y if and only if dim¥Y < co.

The next is just a sharpening of I.10.

I.11. TuEorREM. For o space X dimX <n if and only if there is
a dense subring F C 0*(X), F = {g.: ae A}, such that if {go: i =1,..., 1}
CF, then there are functions {go: i = k+1, .., p} such that if G = {go:
i=1,..,pY, then AimpG < n.

This is the last preliminary.

1.12. TueoreM. If X is compact and w(X) is infinile, then w(X)
:w(C*(X)). If X is mot mecessarily compact and there are a functions
in O*(X) which generate the topology of X, a infinite, then w(X) < a. Again
if w(X) is infinite, then w(X) 78 the least such a.

Equivalently, if w(X) is infinite, then there is a closed subring I
in C*(X) containing the constants and generating the topology of X such
that w(F) = w(X).

Note that w(F)= w(f¥) by the first part of I.12.

Part II. Open and closed mappings. In the following let
f(X)= Y be a mapping.

TL1. DeFINITION. Let fy: B(X)-~B(Y) be defined by f.(¢)®)
= supg(f'(y)) for all ye ¥ for ge B(X).

R C’*I§Z.2. Lemma. i ds a continuous fumction onto B(Y). Also f+(0*(X))
(X).
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Proof. If ¢ and h are elements of B(X) and & is a positive number,
then if g and h are within ¢ in uniform norm, then fi(g) and f.(h) are
within 6 in the uniform norm of B(Y). Let g ¢ B(Y). Then g fe B(X).
But f.(g o f) = ¢ and therefore f, is onto. If g € O*(Y), then gof e C*(X).
Since f4(g°f) = ¢ we have that f(C*(X))D C*(X).

11.3. TumormM. If f is open and dlosed, then fi(C*(X)) C C*(Y).

Proof. Let 2% be the space of non-empty closed subsets of X with
the finite topology as defined in Michael [10]. The funetion F: ¥-+2%
defined by F(y) = f"’(_q/) is continuous by Theorem 5.10 in Michael [10].
Now let ¢ ¢/0*(X). Then by Proposition 4.7 in Michael [10], the function
G: 25 —R, defined by G(K) = supg(K) for K closed in X, is continuous.
But G o F(y) = supg(f () = f+(9) (). Therefore GoF = fi(g)e C*(Y).

IL.4. TumoreM. If X s normal, then f is open and closed if and only
if £+(C7(X) C C¥(Y).

_ Proof. We mneed only show that f is open and closed if f4 has the
stated property. Suppose that z e U with U an open set in X. Let g 0*(X)
such. that g: X —[0, 1] with g(z) =1 and g(X—0U) = 0. Then f(g)(f(2))
=1 and f(U)D {y e ¥: fi(g}y) # 0}. Since we are assuming that fi(g)
is continuous on Y, we get that this last set is open and contains f(z).
Therefore f(U) is open. Now suppose thab K is closed in X and that
ye Y—f(K). Then f'(y) » K =@. Let g: X—~[0,1] be continuous 50
that g(K) =1 and g(f™(%)) = 0. Then let V = {y ¢ T: f1(g) < 1}. Then
V is open, y ¢ V and V ~ f(K) = @. This implies that f(K) is closed.

IL.3. Note. The proof indicates that even if X is not assumed normal,
if f.{C%(X)) C C*(Y), then f must be open. If f has compaet point inverses,
then f is open and closed if and only if f+{0*(X) C 0%(T).

Theorem IT.4 will be our basic tool in showing the existence of open
eohti_nuous extensions of open and closed mappings to compactifications.

I1.6. TusonEM. Let f(X,) = X, be o mapping. Then if* Fi=TF;
in O*(X 1) such that Iy generates the topology of X and such that (1) f _(14’2) CF,
and (2) f4(Iy) C By, then there is an extension f of f to BF, which maps
onto T, and this exlension is open.

Proof. The existence of the extension follows from the fact that
F¥(Fy) C F,. To demonstrate the operiness of f let g e Fy and g X0, 1}
Let U= {M ¢ fF,: j(I)> 0}. Define f.(s)" to be the extension of f4(g)
to AR, and let V = {M e ¥y fi(g)" (M) > 0}. We now want to show
that f/(U) = V. Let M e U. Since gy =4¢ and f*f+(g) has an*extenAsmn
to pF, we have f*fi(g) (M) > §(M). It can be shown. that f*f+(g) (MZ
= f+(g)"(f (M)}, Therefore Flg) (£(30)) > 0 and (M) V. Nowlet M <V
and let fi(g)"(M)=8>0. Let §={Qepl: g(Q)>5/2}-I Then § is
closed in AF,. Therefore f/(§) is closed in AF,. Now F(8)D {r e Xot
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fe(g)(x) > 6/2} = A. Since M is in the closure of A4, M e f'(S). Therefore
f M)~ S8 #0@. Since SC U, this implies that M ef’(U). Therefore
f(U)="7. We have now shown that f’ takes cozero sets to cozero sets.
This implies the openness of f'.

It would be quite nice if IL.6 had a converse and that properties (1)
and (2) characterized the open extensions of f to compactifications for an
arbitrary mapping f. This is not the case, however, as the next example
shows.

I1.7. EXAMPLE. Let X = {(z,y) e B 0 <<, 0y<l oro=0
andy =0}. Let ¥ = {(#,y) e B y=0and0 < &= 1}. Thenlet f(X) = Y
be the projection f(z,y) = (£, 0). Then let X' = {(w,y) e R®: 0 < » <
and 0 <y < 1}. Then X' is a compactification for X and the extension
of f to f'+ X'—Y is open. If we let F = F°C (*(X) Dbe the subring of
C*(X) associated with X', then the mapping g: X ->[0,1] defined by
¢(@,y) = ¥ is an element of F'. However, f..(¢)(0, 0) = 0 and f(g)(x, 0) =1
for x> 0. Therefore fi(g) ¢ C*(Y). Note that f is open but not closed.

We now give two applications of our theory of open and closed
mappings. The first has to do with constructing compactifications satistying
certain conditions and allowing open extensions of a collection of open
and closed mappings. The second application is in Part IIT of the
paper.

I1.8. TurorEM. Suppose that f(X) = Y, is an open and closed TMAPPIILY
Jor all a e A. Then if © is an infinite cardinal with |4] < v and w(X) <1,
then there are compactifications X, for ¥, for each a and X' for X such that:

(1) fu has an extension fuX')= Y. with fi and open MAPPING;

2) w(X') <7, w(Yo) <7 for all aed; and

(3) dmX' < dimX, dimY, < dim Y, for all ae 4.

Proof. Note that w(Y,) <t for all « by the openness of fo. Now
let L= L C (*(X) be any subring generating the topology of X with
w(L) <. Let {gs: BeB,} be a dense subring of L such that |B,| <.
By induction it is possible to obtain collections {B,}3., and {0%%., such
that (1) F, = {gs: p e Bi} is a subring of O"X); (2) %= {g,: y € (%} is
a subring of C*(¥,); (3) BiC By (4) 05C €%, for each a; (B) furlL%)
C &% (6) J2(6%) CFivs; (T) Bl <7 (8) [ <75 (9) it {B, ..., i} C B,
then there is a set {Brii, ..., fp} C Biyy such that AimB{gs, -y 0o}
< dimX; and (10) if {y,, ..., o} C C%, then there is a set {Ptt1y vy Vo)
C (%41 such that dimﬂ{gyl, ey g,,m}c < dimY,. The construction of these
collections {B;} and {C%} is rather tedious. Properties (9) and (10) of the

collections can be satisfied using 1.10 of the preliminaries. The construction
will not be belabored here.

Now let F = (U1F¢)° and G. = (|J 69" Then @, and F are just the
f= i=1
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(=]
closures of 6 Fiand | @i, respectively. By the continuity of f,,: C*(X)-
i=1 i=1

5 OHT.), fer(F) C Go using properties (3), (4), and (5) above. By the
continuity of f¥: O*(Y,)—C*X), fHG.) CF using properties (3), (4),
and (6) above. By Theorem IIL.6 each f, has an extension to SF which
maps onto A@, with the extension being open. Now dimpF < dimX
by I.11 and (9) above. Similarly dim G, < dim ¥, by L.11 and (10) above.
Using 1.12 we get that w(fl) < w(F) and w(fG.) < w(G.). But by (7),
w(F) < 7, and by (8), w() <.

I1.9. Note. We can require dimX’' = dimX and dimY,= dim ¥,
in IL.8. This can be done by requiring F, to contain a finite collection
of functions {¢;, ..., gx} sueh that if F=F"C C*(X) and {g,, ..., s} CF,
then dimpF > dimX. If dimX is infinite, we may be requived to use
a countable collection {¢;}7=:. In any case this requirement can be satisfied
without altering the properties (1), ..., (10) in the eonstruction. But then
we would have dimAF > dimX and thus dimpF = dimX. In a similar
manner we can require dim Y, = dimp@, for all e simultaneously. .

I1.10. COROLIARY. If fu(X)= Yi is a countable collection of open
and closed mappings with X separable metrizable, then there are metric
compactifications X' and Yy for X and Y, respectively, such that:

(1) fs has an emtension fyX')= Yi which is open and

(2) dim X’ = dimX, dim¥;= dimY;.

Proof. This is nothing more than the case that v is the first infinite
cardinal in IIL.8.

I1.11. BExampLE. Let f(Z)= Y be an open mapping such that Z
and Y are separable metrizable and dimZ = 0. Such mappings exist
with dim Y > 0. But if dimY > 0, then there is no compactification 2’
of Z allowing an open extension of f to Z' with dimZ’= 0 onto a com-
pactification ¥’ of ¥ even if Z' is not required to be metrizable. Therefore
the requirement that each f, be closed in addition to being open was not
superfluous in either IL.8 or II.10.

Part III. Open and closed finite to one mappin'gs. .In Fhf:n
following let f(X)= ¥ be an open and closed mapping which is finite
to one.

IIT.1. TuroreM. dimX = dim Y.

Proof. We use the standard result that if X CX'C BX, then’ dim X
= dim X', Let pf(8X)= Y be the Stone extension of f. Then ﬂ_f is open
by IL3 and IL1.6. Let Y= {y<fY: B (%) hals a mi)lst % points} fmfl
Xy = Af{(¥y). Since f is a proper mapping ff (¥) = fHy) for all y ¢ Y.

* Therefore i we let ¥’ = p ¥, and X' = ) Xs, then ¥ C ¥'CAY and
=1

T=1
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X CX'CpBX. Since ff is open, Y and X are each closed in BY and pX,
respectively. Therefore X' and ¥’ are both o-compact, Lindelsf, and
paracompact. The mapping Af|X” is open onto ¥’ and thus dim X' = dim ¥”
by Theorem 4.1 of Nagami [11] or by ITI.2 below. Therefore dim X = dim ¥.

II1.2. TurorEM. If X dis nmormal, then for every closed set KCX
we get that dim K = dimf(K).

Let us prove a special case first.

II1.3. Lemma. If X is compact and the number of points in a point
inverse of f is bounded by some matural number n, then IIL2 holds.

Proof. The proof is by induction on #. In case n =1, then f is
a homeomorphism on X and dimK = dimf(K) holds for every subset K
of X. Now suppose that it is true for all lesser values of » and let n > 1.
Then let K C X be closed. Then if Y,_,= {y ¢ ¥: f(y) has at most
n—1 points} and Xp—; = f(¥y—1), then ¥,—, and X,_, are compact and
fIX 1t Xno1— Yoy is open with |f*(y)| <n—1 for all ¥ € ¥,y. By the
induction assumption dimKE A X, = dimf(K ~ Xp—y). Now let L Dbe
any compact subset of K n (X, —X,_;), that i3, any closed subset of K
which is separated from K ~ X,—,. If we can show that dimZD = dimf(L)
for all such L, then we will have dim K = dimf(X) by Theorem 6, p. 79
of Isbell [7]. But f|(X,—Xy-1) is an open mapping which iy exactly n
to one, and thus a local homeomorphism onto ¥,—¥,_;. Thus we can

. T ,
find a finite closed cover {L;: 4==1,...,%k} of L such that L_GJL¢=L
q==1

and flI; is a homeomorphism onto f(I;). But then dimD; = dimjf(L).
By the finite sum theorem for uniform spaces, or the general sum theorem
for normal spaces (Isbell [7], p. 80, Corollary 8 or Nagata [12], p. 193,
Theorem VIL.2) we get that dimL = dimf(L). Therefore dim K = dim{(X).

Proof of IIL2. First note that ¥ must also be normal since f is
closed. Let Y= {yepBY: ff(y) has at most % eclements} and X

= A (Tp). Let X' = kUIXk and Y’ =kLDj Y. As in the proof of III.1,
= 1

X CX and ¥ C Y. Since K is closed in X and f(K) is closed in ¥, SIC and
B(f(K)) are in a natural way just the closure of K (vesp., f(K)) in X
(vesp., in AY). Let K’ be the closure of K in X’'. Then K C K'C K and
f(E)CBf(K")C ﬁ(f (K)). Therefore it will be sufficient to show that
Am K’ = dimff(K'). If we let K;= K'C X, then dimK; == dim ff(K)
by IIT.3. Again note that K’ and ff(X’) are o-compach and thus normal.
So we can apply Theorem VIL2 p. 193 of Nagata [12] to get that dim K’
= supdim K, = sup dim ff (K;) = dim ff(K’). Thus dimK = dimf(K).

The author has shown that ITI.2 holds for finite to one open mappings
between metric spaces without assuming f to be closed [8].
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