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On equations with several involutions of different orders
and its applications to partial differential-difference equations

by

D. PRZEWORSKA-ROLEWICZ (Warszawa)

In [8] we have shown that a differential-ditference equation
n

(1) D D wga®(t—w) = y(1)

k=0 7=0

(y is a given periodic function, ay, w; are sealars, w, = 0 and #*® denotes
the k-th derivative of #) is equivalent in the class of periodic functions
to a finite system of ordinary differential equations with constant coeffi-
cients. This permits us to find all the periodic solutions of (1).

The method used appears to be more general. This paper contains
general theorems on equations with several involutions and a generalization
of the result described above to partial differential-difference equations
with periodic coefficients.

1. Involutions of order N. We shall enumerate here without proofs
those properties on involutions of order N which will be needed later.
The reader can find the respective proofs in papers [7], [8] and in book [9].

Let X be a linear space (over complex scalars). A linear operator §
transforming X onto X is called an involution of order N if N is the smallest
positive integer (¥ > 2) such that Sy = I, where I denotes the identity
operator.

Let ¢ = emi/N,

1 . .
Pr= (T4 a7 8p e @08,y 1,2, N,

If § is an involution of order N, we have the following important
properties of operators P,:

N
(1.1) ) P,=1, P,P,=P,P,=5,P, PJS=4P,

=1

(#,»=1,2,..., X),
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where 4,, is the Kronecker symbol;

(1.2) 8P, =P, (v=1,2,...,N).

This implies that X is a direct sum,

N
(1.3) X = @]X(")’
of spaces X, such that
(v=1,2,...,N).

Sz = @y for gy e X,

Every element <X can be written in a unique manner as a sum:

N
(14) o= Zw(")’ where @y = P,weXy (r=1,2,...

v=l

y N).

If a linear operator 4 acting in X is commutative with an involu-
tion § of order N, then
(1.5) ADyn X)) = Xy for v =1,2,..., N,

. where Dy = X denotes the domain of 4. In fact, suppose that we have
an arbitrary zeD,. Then oy = P,we X, forv =1,2,..., N and

N N—.
Awyy = AP,z = A (;’1 et e = (g] P8 40

= P,(4n) = (4o)pe Xy,

N-1
For any polynomial a(?) = 3 @:t* (ax being sealars) we have
k=0

N
a(8) = D'a(e)P,

(1.6)
ve=l

because .

N-1 N-1 N N N-1

o) = ) w8 = 3 as*( 3'P)= 3 3 wsP,
k=0 k=0 Pl Va=l k=0
N N-1 N N
=D D weP, = 3 ()P, = Y a(e) P,

y=1 k=0 r=1 V=]
Then any equation with the involution of order N s
1.7 yeX,
is equivalent" to N equations

(1.8)

alS)w =y,

a(Naz(») =y (), v=1,2,...,N,

icm
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each of them being considered in the space Xy. The respective theorems
on the solvability of (1.8) are given in [8].

2. Multi-involutions. Let us suppose that we have g given involu-
tions 8y, ..., 8, of orders Ny, ..., N, respectively acting in X. Let us
write
1 Np-1
EZ 8;krg£ =12,...,q.

k-0
From the preceding considerations we obtain

_ oy,
& =677,

Ppr =

Ny
(2.1) D Por=1, PppPpr=06,Ppr, 8Pp,=eP,,
r=1

(py7,1 = 1, 2.4 q).
To simplify the theorems to be given later on, we shall now introduce
multi-involutions.
Let us consider g-dimensional multi-indices & = (Byy ..., k) and
m = (my, ..., my), where k, and m, are non-negative integers. As usual,

we assume
Bl =Ty +...+kyy  ktm = (ky+my, ..

ik o= (Aky, ..

-5 bgtmg),
.y Akg) for any non-negative integer A,
kem = (kymy, ..., kymy).

We shall also write (n);, = (n,...,n) for n = 0,1,2,... We write
¢ times

k< m if and only if k, < m, for p =1,2,...,q;
k= m if and only if %, = m, for p =1,2,...,q.

Let N = (Ny,...,N,) and & = (g, ..
=1,2,...,¢). We write

arci/ N
.5 &), Where &, = ™" (

P =
k % 3
& = (g1l ..., &),

where k = (k,, ..., k;) is a multi-index. By definition, z~* = V=",

where N, v and k are the respective multi-indices.

A superposition S = 8, ..., 8, of operators S, ..., 8, acting in
a linear space X is called multi-involution of order N = (Nyyoony Ny)
if 8, is an involution of order N, and S, are commutative with §, for
p,r=1,2,...,¢q

Let us write

8F = Sh...8le,  where k= (ky,..., k);
then
8 =g 8=,
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If we write
P, —"—‘—P;[,vl---Pq,vqy v = (V1y 0y V),
oy = P, Xy =PX,

we find that the following formulae (which are analogous to (1.1) and
(1.2)) are true:

s

2.2) D P=1,
)g<t<N
(2.3) P,P, = 0,P,,
v= (v, ooy ¥g)y b= (B ooy i)y (D <y u KN,
(2.4) 8'P, = &"P,,

To prove (2.2) by induction we use the first of the formulae (2.1).
We have further .
P"P“:( ” Pz”"ﬁ)( n 'Pp”‘p): ]—[ P””'pP”"‘v = ” 6”77=/‘11P”"';1
I<pse l<p<q

1<n<g l<p<a

1 ifwy=p (p=1,2,...,0),
" |0 otherwise.

Finally,
8P, = 811...81Py ... Py = (81 Py,) ... (S50Py,)

uyy B, L Hep 2] o
= (sfT1Py,,) ... (6€0Py, ) = &f LogyfiPy, Py = 7P,

Let us remark that the space X is a direct sum:
(2.5) X= @ X,, where X, =PFX.
(l)qgsz
If a linear operator A acting in X commutes with involutions §,, ..., qu
of orders Ny, ..., N, respectively, then 4 commutes also with a multi-
involution § = §,...8, of order N = (N,,..., N,) and
(2.6) A(Dg~ X)) © Xy  for (1)gv< N,
where Dy < X denotes the domainof 4. In fact, let xeD,4. Then
= P,peX, for (1);<v< N and
Az = AP,z = P,(4dx)eX,
since P, commute with 8. Hence 4 (D4 ~ X)) < Xy.
3. Equations with several involutions. By A (t) we denote an arbitrary
polynomial of variables ¢ = (t;, ..., t;), which we shall write further in

one of the following manners:

AW =Alyestd = D aypfiode= 3w

(0)g<k<m (0)g<Fem
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Let § = 8,...8, be a multi-involution of order N = (Nyy ooy N

A8 = N 48R,

P
(0)<E<N-{1),

(3.1) A8) = Z A&)P,.

(I)qgvg.\‘

A(8) = 2 A(S)P, = S D wSP,
(g N (g=<r<N (0)<E<N— (1)

= D wmdP, = > A@)P,.
(g=P<N (0)g<R<N - (1) ()gsr<N
This implies that any equation
(3.2) A8y, .., Sp)a =y
is equivalent to a system of equations
A(Vwpy =Yp for (1)g<v< N,

The number of equations iy N, = N,...N,.

TueorREM 3.1. Let X be a linear space. Let
(3.3) A8y = > 4;8m,

. oi<m

where

1° 8 =8;...8; and 8y,..., g, Ao, ..., An, arve linear operators acting
in X;

2° 8,8, —8:8, =0, S,4;—4;8, =0 for p,r=1,2,...,q0 and
j=0,1,...,m;

3% my = (Nyj, ..., Ngs), Np; are non-negative integers and

2 Ny >0 (j=0,1,...,m).
JESTEN §

Let Ny be a common multiple of numbers ny; (j=0,1,...,m) and
let us suppose that there is a subspace X < X such that § is a multi-involution
of order N = (N, ..., Ny) on X. Then

(3.4) A = N 4¢P, on X,
< T
(l)qs{vg;\
Ny
where & = (e, ..., &), & = ™0, Py =Py Pyys
N1
B
P 1 ~ oy gk
vy T Ty Ep D
P =0
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Proof. Since S, and 4; are commutative, we find

-A(S) = A(S) >—1 P, =" 2 Aan]- 2

(1) N 0T (W SN
g
= > M 48P, = ) D 4™P,
057Em (g . 0&2m 0, Sen
3 i \ » e
== ) E E'NJA,') P, = N AP,
(=< v<2\ 0<jm (N

which was to be proved.
THEOREM 3.2, Under the assumptions of Theorem 3.1 the equation

(3.8) A®)e =y, yeX,
is equivalent to Ny = N,...N, independent equations
(3.6) A7 =gy, Q<r< ¥,

where Y,y = P,y, and if each of the equations (3.6) has a solution «x,, then
a solution of (3.5) is given by the formula

(3.7)

Proof. Since the operator S, as a superposition of operators 8y, ..., 85,
commutes with 4; (j = 0,1, ..., m), every space X, is preserved by
operator A (¢"). Then equation (3.6) for y e X can be written in the following
manner:

=4®z—y= D A@)Pa— D Py

Wg=<N (g N

= > PlAEg— Y Py

(1)q<»<\ (M)gs
= ) DJA()a—Py]

(g ¥

= D PlAE)e—ye).

(1), qz,,(N

<N

Since the space X is a direct sum of spaceq X, we infer that equa-
tion (8.5) is equivalent to N, = ¥N,.. N, independent equations

A(s’)m = Yy (1)q<v<N7

and if z is a solution of equation (3.5) in X , then each of these equations
has 2 as a solution.
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Conversely, let us suppose that each of the equations A(e)x = Yo

has a solution. Let us denote by z, the solution of the »-th equation.
Then, if we write

@ = E Pz,
(l)qgvg‘\'
we obtain
Az = A8 > Pa= Y 45Px
(Dg=r<N (y<srsN

= ¥ ( by A(s“)P,,)P,.fr,

e L
(I)qgvgl\ (l)qug‘\

= M oA Y @)= ¥ A(e-“)( D OwPa)

(=N (Ng=<rN (Dgsp<sN {(Ng=rsy
= > A("P.a, = D P4,
(Dg=sé<N (Ugsr<N
Al
= X Pyy= 3 Py= 3 Py=y,
(Dg<r<N (DgrsN (Dg=rsN

which proves that # is a solution of equation (3.5).

Let us remark that the second part of Theorem 3.2 can be formulated
more strongly:

COROLLARY 3.3. Under the assumptions of Theorem 3.1, if each of the
equations

(3.8) A(@e =y, yeX, (1)<r<¥,
has a solution x,, then
T = 2 P,z
(1)q<v<N
8 @ solution of the equation A(S)z =y on X
Proof. In the same manner as in the proof of Theorem 3.2, we obtain
A(®e=A41S) > P = D P4,
(1)q¢;r<1\' (LgrsN
But A()x, = vy, whenee
A®e= D' Py=y,

(N)g<r<N

and  is a solution of 4 (8)z = y.
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4. Application to partial differential-difference equations with periodic
coefficients. ILet R? be a g¢-dimensional real euclidean space. Let ¢
= (ty, ... t)eRY, g= 1. As usual, we write

0k1+,..+kq

Dra(t) = z2(t), k= (ky, ..., k).

otk otk

Let w; = (w17, ...y wgy)y § = 0,1, ..., m. Let us consider the partial
differential-difference equation

(41 DD A Drelt—w) =y ().

(0)g<k<n0<T<m

Without loss of generality we can assume that
0=y <wp1<...<wpm (P=1,2,...,9).

We assume also that all numbers w,, ; are commensurable. This implies
that there is a number r = 0 and there are positive integers n,; such
that

(£2)  wpy=mpyr for p=1,2,...,¢5=1,2,...,m; 5y, =0.

By n; we denote the multi-index n; = (nyy, ..., fg,).

We say that a function x(t) is w-periodic if » is w,-periodic with
respect to the p-th wvariable ¢, (p = 1,2,...,q) and o = (0,, ..., 0y).
The vector o will be called the period of function . Obviously, if = is
o-periodie, then for any multi-index 7 = (ny, ..., 5y)

B(t—nw) = (t—ni0, 0, Gy—Rgwg) = X(ly, ..., ty) = a;(t).

THEOREM 4.1. Let 4 veal function y(t) determined for teR? be Omypr-
periodic with period wpy1 = (Oympr, ciey Wgmin)y, Where wp ., are com-
mensurable with real commensurable numbers w,; (p =1,2,...,¢; j =
=1,2,...,m).

Let r be a common divisor of numbers o, ; (not necessarily the greatest

one) and let ¥ = (r)g = (r, ..., 7). Let the real functions Ay; determined for
a tlmeq

teRY be T-periodic, (0),<k<n, 0<j<m. Then equation (4.1) has
@-periodic solutions belonging to the class O™ if and only f all partial
differential equations

(4.3) do= 3 b0)D¢() =y, (e<r<N,
(0)qgkgn
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have d-periodic solutions belonging to the class C", where
bL, y & A}L](f
0<j<m
1 N7
—ky e
) = ) ey (t—kr
Y= XN, 2 y(t=km),
@)g=<k=N—(1)g
271/ N.
e=(e1y..r8)y, g=¢""7 p=1,2,.,y4,
= Ry ey Ngy)y, oy =t for j=0,1,...,m+1,
Np s a common multiple (not necessarily the smallest one) of numbers
Mgy Mpusy 00d N = (Ny, .0y Ng)y & =(@y,...,5,), where 6, = N,F.

The number of the equations (4.3) is Ny = Ny...N,. The solutions are
of the form

1 . .
20 = 5y > 5‘ e, (1 k),
BT 1N ()N - (1)

where w, is an @-periodic solution of the v-th equation (4.3).
Proof. Let us consider the space X of all @-periodie real functions
«(t) determined for teR? with period @ deseribed above. Let

(4.4) Spz =a(ty, ..ty 1, =T, b1yt for zeX,p=1,2,...,q

Every 8, is a linear operator transforming X onto X and, moreover,
8, is an involution of order ¥,. In fact,

N, -
SpPar = 2ty s ty1y =Nty fyray ooy 1)
(VT S S S S
Dty vy b1y tyy Tpo1y eeey tg) = 2(t)

and &, is the smallest number satisfying ({.4). Let

Sz = x(t—7).
Then 8 is a multi-involution of order N = (Ny,...,N,) because
SV = .8 = w(t,—Nyr, ..., tg—Ngr)
=2t —dy,...,l—0g) = 2(T—&) = z(t).

Let a(t) be an arbitrary real 7-periodic function determined on RZ.
Then the operator a of multiplication by the function a(f) acting in X
is ecommutative with S:

(4.5) Sa—al = 0.
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Indeed,
(Sa—aS)z = a(t—r)a(t—F)—a@)a(t—F) = [a(l—F)— a(f)]z(t—7)
[a(t)—a(t)]a(t—F) = 0.

I

Let X be the subspace of all n times differentiable functions belonging
to X. The operator S, as a shift-operator, is commutative with the dif-
ferential operator Dk, k < m. Hence the superposition aD” of the operator
of multiplication by an #-periodic function a(f) with the differential

operator D* is also commutative with operator § on X:
S(aDk)—aD"'S =0 on i’, k<< n.

According to (2.5) we can decompose the space X into a direct sum
of spaces X, where X, =P, X, P, = Plyyl...PQ’,,a and

Np-1
~T " Lo
Lo,y = Pp,vpm =F‘ ep PRty oy by, tp—KpT, [Z TR TR AR
» Icp=0
1 Rl P -
Ty = Pt = ——— e (t—kr).
(@] 4
N,

—
T ()g<k=<N - (1),

Let us write

A®e= > D Ayt)Da(t—o)= Y D Ay () DS
O)g<hesn 0Fin (0)g<<hs<n 0<<m
= Z A;8%z,  where 4; = 2 Ay DE.

0<j=m ok
Hence equation (4.1) can be written as follows:
(4.6) ' Az =y.
Basing ourselves on theorem 3.1, we obtain
(4.7) AR = N 4P,
(1)427<N
Let us write
4, =A@E) = > b,D",
(0)g=sk<n
ba(t) = D &A1),
=<Ism
Theorem 3.2 implies that equation (4.6) (i.e. (4.1)) is equivalent
to Ny = N;...N, partial differential equations,

(4'8) -A-vm =Y (1)q< ¥ < N7
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on X. If this system has an &-periodic solution a,, (1) <v< N, then
the given equation (4.6) has an @-periodic solution

) 1
m(t) = > Pv‘ru(t) = 8“’”13“—7:7‘),
£ N....N, Z
(1)g<r<N (O)g<k<N-—(1)
\l)qgs‘(:]\'

which was to be proved.

The assumption that 0< Op1<...<opm (p=1,...,¢) is not
essential. Indeed, if wp; <0, then wy; = —ny;7, where n,; is a positive
integer and

Tty eeey b1y bp—Wp gy tpay onyty)
o= (g eyt 1y Ry 7 Ty 1y eeey Bg)
= Sﬁnp’j-'l'(tls ety tay iy ey )

But S~"»i = §p~"wi, which follows from the fact that 8, is
an involution of order N,.

The assumption that all numbers wy; are commensurable is not
essential either. It is enough to assume that for any fixed p all numbers
wy; are commensurable, and in place of veetor ¥ = (r), to consider & vector
F = (1, ..., 7,), where

Wy =Nty (P=1,2,...,9).

In the same manner we can consider the case where x and y are
vector-functions and A;;(f) are square matrices of respective orders.
This is also true without any essential changes for functions with values
in a Banach space, even in a linear metric space.
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Tame singular integrals*
by

MICHAEL FISHER (Baltimore, Md.)

Introduction. Let H be a real separable Hilbert space, B be a one-one
Hilbert-Schmidt operator on H, and y — T, be the regular representation
of the additive group of H acting in IP(H ), 1< p< oo,

In [1] we studied singular integral operators

Zy(f) =11;101f[ fT,,fa(j//t)dntzoB“(y)]dt/t
8105 "H

acting on IP(H), where [a(y)dnoB'(y) =0 and a{y) satisfies an
H

integrability condition with respeet to the Gaussian measure noB~l.
In this note we shall restriet a(y) to be either an absolutely integrable
odd function or an r-power integrable even tame function for some r > 1.
Under these, conditions Z, is a bounded operator on L”(H) as was shown
in [1].

Extension of the results of the present note to the more general
functions a(y) used in [1] is a simple matter.

Singular integral operators Z, generally map tame functions f in
IP(H) to non-tame functions Z,(f). In this note we shall consider the
tame singular integrals (introdueed in [1]) which map tame functions to
tame functions. Corresponding to each singular integral Z, there is a net
{(ZoQ™") 1QF} of tame singular integrals determined by the finite-
dimensional orthogonal projections Qe on H and this net converges
strongly to Z, as @ tends strongly to the identity through the directed
set #. We shall prove this result in this note.

Preliminaries. We refer the reader to papers [3] and [4] of Gross
and [5] of Segal for the measure theoretic preliminaries.

Definition (Segal). A weak disiribution on a real Hilbert space H
is an equivalence class F of linear maps from the conjugate space H*

* Research supported by the Air Force Office of Scientific Research, Contract
No. AF 49 (638)-1382.
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