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Hence taking into account (7) we get the continuity cquation

D £, 0l d =0,
. ¥; 0
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A differentiable structure
in the set of all bundle sections over compact subsets

by
J. KIJOWSKI and J. KOMOROWSKI (Warszawa)

In several branches of mathematics (e.g. in the caleulus of variations,
mathematical physics ete.) we have to deal with sets of maps, e.g. with
families of parametrized curves or, more generally, with k-cubes in a finite-
dimensional differentiable mamifold.

The case of the set of CF-maps from a compact Banach C*-manifold
into & separable Banach ¢®-manifold has been investigated by Rells [1,2].
He has shown that this set has the structure of a C™-manifold modelled
on a separable Banach space.

A particular case was worked out by Palais [5]. The construction
of the Hilbert manifold of parametrized curves was one of the main items
of his general Morse theory.

The ahbove-mentioned results are inadequate for many important
problems. For example, in the modern formulation of the clagsical field
theory the states are described by sections of the respective bundles;
besides, the compact sections play a fundamental role.

In the present note we prove that the set of compact sections of
finite-dimensional differentiable bundle can be naturally equipped with
the structure of a differentiable manifold modelled on a Fréchet space.
Some other probleras of this kind are solved, e.g. a differentiable structure
in a set of non-parametrized curves or, more generally, in a set of compact
submanifolds; the results will be published in this journal.

We want to emphasize that in the construction of a differentiable
structure in such sets there are difficulties which do not occur in “para-
metrized® cases. The set of homotopie (*-submanifolds which are
boundaries of relatively compact domains in a given finite-dimensional
C*-manifold has a canonical structure of a topological manifold modelled
on a Banach space (*(Q), where Q is one of those C*-submanifolds, but
the coordinate maps are not differentiable (the formally calculated deri-
vative of a coordinate map contains differential operators; cf. Remark
on p.200). To overcome this difficulty, in the present paper we consider
C™-submanifolds and we take as a model space the space C*(L) in


GUEST


192 J. Kijowski and J. Komorowski

which differential operators are continuous and which is not a Banach
space. We prove that a manifold constructed in this way is of class
C® in the sense of the theory of differentiation in I‘réchet spaces
which are Schwartz spaces {4].

We should like to express our gratitude to Dr. W. Tulezyjew for
many profitable conversations. We are also indebted to Professor K. Maurin
for his lively interest in our work.

A MANIFOLD OF BORDERS

1. Preliminaries. Let X be a real (n-41)-dimensional differentiable
C%-manifold. An #-dimensional imbedded C®-submanifold is a border
if it is the boundary of a relatively compact domain in X.

The set of all borders splits into the equivalence classes of diffeomorphie
borders.

Let Z be one of those classes. In the set & we shall introduce the
topology and the structure of a differentiable manifold modelled on the
space & =~ &(£2), where 2 is any border from £. £(R) is the space of
O*-functions on Q with the topology of uniform convergence of all
derivatives.

In the following we shall identify the isomorphic spaces &(£2), where
Re?, by means of a fixed but arbitrarily chosen isomorphism.

2. Topology in #. Let QeP; then a (™-(tangent) vector field u
defined in a neighbourhood of the set 2 < X is called transversal to 9
if u(p)¢Tp(Q) for pe (T,(RQ) is the tangent space at p).

Lewmma 1. If Qe2, then there exist a neighbourhood of 2 = X and
a vector field on this neighbourhood, transversal to 9.

Proof. For every pef there exist a neighbourhood w,<X and
a coordinate chart (w,, x,) such that
(qewp ~ Q)< (ep(g) = (..., 4", 0)<R™Y),

and that points of w, with the negative n-th coordinate belong to the
domain of which £ is the boundary.
Let {w,, Y: be a finite set of neighbourhoods with the above properties
E

and Q < U wy, =1 0.

Let uy, eT {wp,) be & vector field such that (0, . .., 0, 1) are its coordi-
nates in the coordmate chart (wp,, %p,).

Let-{p;}¥ be a partition of unity, of class 0%, on 0, subordinated to
the covering {w,, Y. We define u: —_2 @iy, I qef, then u(g)eT(X)

©
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is a convex linear combination of vectors up (9)¢T4(2) which belong to
one half-space of the space T,(X). Thus (q)¢T,(R) and so the vector
field « is transversal to Q, q.e.d.

Definition. By a transversal Lomotopy H through o border QP
we mean a C*-diffeomorphism

Qx]—r,r[>(p,t) > H(p,t)cX, H(p,0)=p, r>0.

The set of all transversal homotopies through a border Qe is
denoted by $(R2)

LEMMA 2. For every border Qe there ewists a transversal homotopy
through it.

Proof. Let  be a vector field transversal to 2 and let ¢ — H(p, t)
be the solution of the dynamical system dz/di = u with the initial condition
#(0) = p. Since 2 is compact, there exists an & >0 such that H(p,1)
is defined for [t| < ¢;. It follows from the uniqueness of the solution of
the Cauchy problem for dynamical systems that the map H is injective.
'Besides, we infer from the theory of ordinary differential equations that H
is a C*-map. For every pe the jacobian of H is non-zero. Then the
map H is invertible in a neighbourhood QX 71—&,, e[ X 1—gq, 5[
and the inverse map is of class C*, gq.e.d.

LemMMA 3. If Qe#, He$H(R2) is defined for |t| <7, pef and |p(p)l<7r
for pe, then

H(p): = {H(p, p(p )JEX peQ}e?.

Proof. Since the map £>3p —>H(p,zp(p))ef(¢) transfers the dif-
ferentiable structure from 2 to #(g), £ (p) is an n-dimensional imbedded
O®-submanifold in X. It can be seen that #(¢) is the boundary of
a domain in X, g.e.d.

Thus, if He$H(2), then there exists & domain Ug < €(8) on which
the map H defines the map 5 as

(1) Ugs ¢ - #(p)e?.

It is easily seen that 5 is injective.

THEOREM 1. If Q,Lsgl HieH(2), % < €, i=1,2, are such that
V: ...#1(4?/1) n%z(%g) £ @, then #7T'o#, is a homeomorpmsm Sfrom
H7HV) < & onto #7H(V) < &.

It follows directly from this theorem that if the sets #;(%), i=1,2,
are equipped with the topologies transfered from & by the injeetions
#i, i =1,2, then those topologies are compatible on V. Thus the set &
hag the canonical topology given by transversal homotopies and the map
#, tor He$H(R), P, is a local homeomorphism from & to #. In other
words, Z is a topological manifold modelled on & (see Remark on p. 200).

Studia Mathematica XXXIL2 13
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Proof of Theorem 1. Let  : = H#,(¢) = y.fz,(%.); then ﬂfi;mm?t;
pies H;, ¢ = 1,2, define transversal homotopies H;, ¢ = 1, 2, through
2]
as follows:

Hi(Hi(Pﬂr'z‘(P));t) t=Hilp, pulp) 1), Pl

Tt is obvious that the topology given in & neighbourhood of l\?he pi(zn;i;
Qe by the injection #; coincides‘ Wiﬂ% one given bzrl %:f ; 1_;)1:): O,in;i
enough to show that the topologies g1v.en-m a nelghbmiu '0;) “(i ; /thel(zrem
QeP by injections #i, i =1,2, coincide. Then we get the &

directly from the following . - »
LemMa 4, If QeP, H,G<H(Q), then there ewists o domain ¥ :l:é;(Q)ﬂwch
that the map # '0% is a homeomorphism from ¥ onto K oGV )&

(# and & are defined by (1)). .
Before the proof of lemma 4 we state a few definitions.
Let Q¢2, HeH(Q). We define maps

H(Qx]—r,r[)> 5 > xg(n)e 2,

H(2x]—r,r)oz — ag(x)eR*

such that (wg(), ag(s)) = H™* (), and

Qx—r,r[>(p,1) = 2(p,1):

QxI=ryrl2(p, 1) > y(p,1):

gzﬁvi;)?i;}(rb)r :1]11(}(11 IZJ (;;I;T<O r I‘EI;?-P;eQ; then we have the maps
Qop > 7y(p) 1 = 7(p, 9(p))€ 2,

Q>p = 7,(p): = y[p, p(p)) <R
The last map will be denoted by two symbols, y, or y(p). It can be
seen that y(p)e £(2). Besides we define the map

¢~ L(p)e2(6(Q), £(2))

= wgoG(p, 1)L,
= ago@(p, t)eR™.

a8
E(Q)2yp —Lip)y: = porye £(L2);
2{8(Q), £(Q)) is the set of linear continuous operators from &(&)
to £(0). »
The continuity of the operator L(¢) follows from the fact that 7,
is a C*-map and 2 is compact.
Proof of Lemma 4. The domain ¥ must be such that (¥") < #(Ugx)-
Then the map §: = #""' 0% is well defined on ¥ because of ¥ and #
are injections. S(p) will also be denoted by 8,. Let us notice that

H(z,(p), 7,(0) = G(p, 9(0)), peQ.

icm
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8, must satisfy the eondition
H(8p) = 9 (p).

Obviously, if for a given @ there exists a function 8, satisfying (2),
then it is unique. Condition (2) is equivalent to

H(Ttp‘(p)y Sq:Oan(p)) = G(p, (I](p)),

ie. 8,07, =y, or

@)

_'pe.Q,

L(w)‘gq: = Yo

Now it is sufficient to show that there exists a domain ¥ < &(Q)
such that for every ge¥” the operator L(g) has the inverse operator
Lig)y™? e .2”( &(0Q), é“(.Q)), Le.for every ¢« ¥ the map 7, is a diffeomorphism
£ onto Q. But every point p < has neighbourhoods @, ¢ = @ diffeomor-
phic to some subsets of R™ and such that 7(0,1) = 0 for |f| < r. In the
following part of the proof we denote by the same symbols the neigh-
bourhoods @, @ and their diffeomorphic images in R™ Analogically,
the transfer of v by the above-mentioned diffeomorphism will also be
denoted by 7; in this case 7: R*x]—7r,7[ - R™ By t<R' we denote
the function on £ identically equal to . The jacobian of 7, is bounded
away from zero (7, = id). Then there exists an ¢ > 0 such that if [f] < e,
then the jacobian of the map 7; is bounded away from zero. But

, [727

To(D) = Tom(P)+ % (2, 0(2))-¢' ().

Let us notice that d7/dt is bounded on OX]—e, ¢
Let @ be sueh that [p(p)| << e and

1

0 ' ,
o 0] < et

fl<e

lle’ (p)lsup
qe@®

li<e

where the norms are taken in % (R", R1) » R*, Z(R", R") respectively.
The set of functions ge &(Q) satisfying the above conditions is denoted
by #7. Obviously ¥ i3 a domain in &(Q).

Since for every ¢¢¥7y the jacobian of 7, is bounded away from %ero,
then it follows from the Inverse Function Theorem that 7 18 a loecal
diffeomorphism @ onto 7.(0). We can follow}c this procedure for a finite

covering {0;}; of the border Q. Let ¥ : — () ¥6,; then for every pe¥
i=1

the map 7, is a local diffeomorphism ©Q into 2. We shall show that T,
is a global diffeomorphism Q onto £.
Let

QXT=8,140[>(p,8) > B(p, 1) : = (r0p(p), t) @ X ]— 8, 1+ 6]


GUEST


196 J. Kijowski and J. Komorowski

The map p is a local diffeomorphism.
Let us define the function

Qx]—06,1438[>(p, t) > m(p, ) R,

where m(p, %) is equal to the number of points ais..Q _su'ch that f(ay, t)
= (p,1). Since £ is compact, the number m(p,t) is finite.

T,o prove the continuity of m let us tale a sequence (D15 t) 3=, (Do) o)

Let me = m(Py, &) and let points a;, i=1,...,my, be such that
Blai, t) = (Pos to)- o

,Tilere exist neighbourhoods 0> (Po,t) and Op(ai, k), = 1,...,mg,
such that @, is p-diffeomorphic with every @1 =1, ..., M,
O;~ O =@ for ¢ #5. . .
' ’l‘}jlen for every point (p, t)ed, there are at least m, points in £
which are f-mapped onto (p, ), thus }cim-m(pk, ) = My.

00

Let us assume that imm (Prs k) > my; then for every point (px, t)e 0,
Je-r00

My
there exists at least ome point (gx, %) such that (qk,tk)gf{L;J] 0; and

B(qx, &) = (Pr, t). Since 2 is compact, we take a subsequence (Grys thy)
(Go, o). Obviously (go, o) # (2, ) for ¢ =1,..., m,. But

B(dos t) = ﬂ(}irg(qkl, i)

oo

= imf(gs, &) = Lm(px, &) = (Do, %),
100

10

whenes m(pg, ) = mp+1 (a contradiction). Thus we have proved that
Limm (P, t) = me. Hence the funetion m is continuous.
k-

Since m(p,.0) = 1, m(p,?) (ﬁ) 1 and 7, is a bijection. Hence

8(g) = Lp)™ ¥ (9),

The continuity of the map S follows from. Theorem 2, q.e.d.

pe¥ .

3. Differentiable structure in . Let T be a Fréchet space of type S
(Schwartz space; cf. [3]). The differentiability of a map from ¥ to B
and the continuity of its derivative iy understood in the senge of [4].

We say that a topological manifold M is a ("-manifold modelled
on B, with the atlas {(0;, %;)}iz, Where O; < M, ig@,- =M, »:0,—~H
it ot is a O-diffeomorphism from x(0; ~ 0;) into X.

We shall show that the topological manifold # is a (°-manifold
modelled on &.

It is sufficient to prove the following

icm
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THEOREM 2. The map
€= V29> 8(p) = Lip) 'y (p)ed
is of class O® (¥ is the same as in Lemma 4).
Before the proof we state a few lemmas.
LeMMA 5. Let & (Gk(!.?) , OF( Q) be the Banach space of linear continuous
maps from C*(Q) to O°(Q); then the injection
E2p > A(g)e2(C*(Q), 0%(Q)
defined as
0“(Q)2y > A(g)p: = ppeC¥(Q)
is continuous and (because of linearity) differentiable.
The proof is trivial.
Thus we can say the same about the map
Er9 > Alp)eL( &, &),

defined similarly, where %,(¢&, &) is the space of linear continuous maps
with & simple topology (weak topology).
Let f: QX ]—r,+[ - R' be a C™-funetion; then we define the map

Vo0 > f(p)ed(Q)

as
Q>p ~ (f@))(p) : = f(p, o(p)) <R".
LemMA 6. The map y is o O°-map and its derivative is given by
= 174
") = A |-~
0 =4[50,
.6.

- d
(7 (9)9)0) = v(0) 2, w(2),

where ped(Q), pe .
For every ge¥” we define the vector field u, as
22 > us(p): = 00 (5 (0), po i (0)) e L),
ie. if ped(Q), then
<oy upd (1(p)) = @aj—z(p, o(p).

LeMMA 7. For every pye ¥ there exist a neighbourhood W < ¥, a finite set
of first order differential operators D;e % (C**(Q), G¥( Q)) and O°-functions
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fi: OxR' > RY, i=1,...,m, such that
m

Gy = 3 (D) Lig) f (),

i=1
where ge W, peC 1 (Q).
LeMMA 8. The map 729 — K(p):
continuous.
COROLLARY 1. The map ¥ >¢ — K(p)eZs( &, &) is continuous.
COROLLARY 2. The map

= L(p) " e2(C"1(Q), C°(Q)) 45

VXY 3 (p, p) = K(p)fw)

is continuous for every fe&(Qx]—r, r[).
Proof. By virtue of Lemmas 6 and 8 we have

WE (p+Ap) f(p+4p) =X (9) F ()l
< K (@+A9)lox W (9 +A9)—F (@)l 11+
I (9-+29) —E (@)l 1T )l =, 0.
Ay—0

where || ||; denotes one of the equivalent norms in the space o7 (), q.e.d.
LEMMA 9. The map K defined in Lemma 8 is differentiable and
(B @) )y = — (K@) 1) <K (0)p; up,
where y, wed& (cf. (5)).
Proof of Theorem 2. We divide the proof into three parts:
1° the map § is differentiable;
2° the map K: ¥ — Z,( &, &) is of class ("
3° the map S is of class C.
Ad 1°. Let us define the map

= F(gp, ) :

It folows from lemmas 6 and 9 that F is partially ditferventiable.
If we take f = 0y /0t in Corollary 2, then we infer that the partial derivative
of F' with respect to the second variable is continunous. Thus F is dif-
ferentiable on ¥ X ¥ (cf. [4]). Let

&2 - P(p) 1 =

Then 8 = FoP is differentiable.

Ad 2°. In the same way as in the ﬁr%t part of the present proof we
can show that the map 7> ¢ - L(p f’ p)e & (cf. Lemma 7) is dif-
ferentiable, and thus it is continuous.

P XY 3, ) = L{p)'y(p)ed.

(g, p)e &% 6.

icm°®
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From Lemma 5 we infer that the map

(3) V2p — A(E(@)f (g))e2(C"(2), C*(2)
is continnous. Thus from Lemma 7 follows the continuity of the map
V2g — u,e L(C"1(Q), CF(2)).
Besides, from Lemma 8, we see that the map
(4) Vg = K (g)peC*(Q)
is continuous for k> 1, p< ("1 (Q).
Now from (3) and (4) we get the continuity of the map
(B (#) 2 'K((,;)l,,, 1) € C*(2) x ("1 2) x 2 (0" (), C¥(Q))

for any given y,yeé.
Moreover, the map

CH(2) x 05 (@) x 2 (C*(0), C*(Q)> (g, 1, w)
=Yg, h,u): =

Vog - D(p): =

A(g)uh<C*(Q)

is linear and partially continuouns, and thus eontinuous (ef. Mazur-Orlicz
Theorem). Thus, recalling the form of the derivative of K (see Lemma 9),
we conclude that for any given y,pe &, k> 1 the map

Vg > Pod(g) = (K (g)x)peC(2)

is continuous.
Thus we have obtained the continuity of the map

V20— (K (9) z)ye €,
where y, ped.
Hence, at last, we have proved that the map

(5) Vo0 - K (g)eZs(6, Z,( 8, &)

is continuoug. L6, Ls( 8, ) =
Ad 38°. Let 7,7 =10,1,..., be the set of all maps from &
into Z( &, ..., & &) (&, is the set of maps from & into &) which are
7 times
superpositions of the map K, any maps of the form f (where fe #(Q x
X 1—r,7[)) and any linear continuous maps. It follows from Lemma 6,
Lemma 9 and the first and second parts of the present proof that if aes,,
then « is a C-map and o es,,;. Thus for every r> 0 if aes,, then g
is a C™-map.
Since Seszy, 8 is a (C-map, q.e.d.

L6, &; 8).
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Tt immediately follows from 1° that

8 (p)z = (F'(Pg))oP ()1

0
= — (K@) ) E@)7(p), 1>+ K (p) 4 (5 (rp)) )
where ge?”, ye 6.

Remark. One can notice that the map K: é’—>.£(07‘( ), 0%(2))
is not continuous. However, the map §: C"( ) — O’”( ) is continuous.
The formally ea.lculated derivative of S contains differential operators
which do not preserve C*(Q). Thus the above construction of the manifold
# of horders does not work if X is a ¢"-manifold, % < co. In this case &
is not even a ('-manifold; however, it is a topological manifold.

4. Proofs of the lemmas.
Proof of Lemma 6. Let

_ ~ a
To(y): = y(p+y)— y({p)~wa—:((p)-

From Taylor’s formula for a function of one real variable we have

7(p, (p+9) (D) = (v, 9(2)+v(p ) P " (5, p(p)+ 12 (®)o(p, v (p),

‘where

o, ) f(1~s 92 1, p(p)+ st)ds

Qv

It follows from the theorem on the differentiability of integrals with
a parameter that o is a C%-function. Hence 7,(y) = w?g(y). We shall
show that
(6)

e (¥)lls

i»0 im0 lply

e

where by |lyllx we denote the supremum of moduli of all partial deriv-
atives, at most of order %, counted with help of some fixed covering
of @ by coordinate charts.

But any partial derivative of order % of the function »,(y) can be
expressed as a sum of products of: (1) at least two derivatives (of order
less than k) of the function u; (2) derivatives of the function o. Since
all derivatives of the function ¢ are bounded on the set {(p,?)eR2xR':
lp(p)+1Ul < r—e}, we have

lIre (w)llx < const |-

icm
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Thus if j =i, then (6) occurs. Hence y is differentiable. oylot is
a C*-map, and so the map

0)’
& @->=—I(@ &
? 6t( e

is differentiable. Hence it is continuous.
We have

9y
ot

y'= Ao

and therefore » is a Cl-map.

By induction we can prove that y is a ®-map, q.e.d.

Proof of Lemma 7. Let ¥ be given. Since 2 is compact, there
exist: (1) 6 > 0; (2) a covering {(¢,, x,)}; by coordinate charts; (3) a compact
covering {K,}{; (4) an open covering {0,}{ such that 7,(0,) < K, = 0,
if supi{g—@)(R2)< 8. Let {5} be a partition of unity subordinated
to the covering {0)i. If ped,, [t—gpy(p)i< 6, then z(p,t)ed,. Let
7 (p,t),j =1,...,n, be coordinates of the point =(p, £) in the coordinate
chart (0, xﬂ)

Let us state

at 7
fi(py.t): =‘77"(P) It (Pat); ps@”,
0, P40,
Let {,e& be such that Z,(p) =1 and suppl, = 0,.
”
We define

Let ped.

@) 22 (g)
(Diy)(g): =1 =L g7 11
0, 51#@;-
Now let pe¥” be such that sup |(p— ) (2)] < 6. Moreover, let pe @,
and ¢ = 7,(p). Then

q 5(9;,

dy o7
s uedla) = Sé;”( 9 5 (p,e(0)
n s 6 1—‘
=QJ”§W  @nt) 22 (o, (0 )_zzv DI T ) @),
q.e.d.

Proof of Lemma 8. Since 7, is a (*-diffeomorphism,

Lip), K(g)e2(0°(2), 0°(Q)) = £(0"+}(2), 0*(®), where k0.
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Let g,¢ &; then we can see, as in the previous lemma, that 1her
exist: (1) a newhbomhood W of ¢u; (2) a covering {(0,1, %)} of ¢ Q2 by

coordinafe charts; (3) an open covering {0,}] such that if ge ¥, 1?hen

@) < €, and the jacobian of the map 7, is bounded away from
zelo If ¢eC,, then by h7( ) we denote the coordinates of the point

(g)e(’ in the coordinate chart (@, s %). It 15 obvious that if &2¢ —
— gye &, then the functions &), converge to , wniformly with all deriva-
tives. But (E{p)w)(q) = por; Yg), and so the &’-th derivative of the
function K (¢)y, k' < k, can be expressed by the product of: (1) terms of
the form (D%y){z;'(+)), lal < &5 (2) derivatives of functions W,

The elementary Mean Value Theorem implies that for |a| < &’
(M sup  sup (D) (7' (0) — (D) (7, ()] =5, 0

w415l 20,

Let us notice that the above difference can be expressed by: (1) the
tirst order derivatives of the function Dy which are bounded if [yl < 1;
(2) the terms 7y, (q)—hmo(q) which uniformly converge to zero. It Jmmedu’rely
follows from (7) that if [yl ; << 1 then all &’-th derivatives of the funetion
K(¢)w, k' < k, converge: (1) nniformly with respect to y; (2) uniformly
on @, In other words,

2(CHQ), Q) K () Tro K (g0) 2 (0"1(2), 0°(Q), oo,
Proof of Lemma 9. At first we prove that the map
Vop —Ligp)eds( &, &)
is differentiable and

(8) (L' (@) 2) v = 2L(g) <w, )
Let
re(2) : = Llp-+z)~Lig)—L'(¢) %,

where L'(p) is defined by (8). Taylor’s formula gives

(o9 B) = o (o, 90+ 20 =ves(w, o) —20) "0y, ato)
: )2 9
f 5)° dp;T) (2, @ (p)+sy(p))ds.

0

For any fixed ye & the partial derivatives of the function given by
the above integral are hounded. We can show, as in the proof of Lemma 6,
that
avarliy
N2l

e

icm°®
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Thus we have proved that for any given we & the map
Vg — L((p)y!e &

is differentiable. Obviously it is equivalent to the differentiability of
the map
¥ 2g > Lig)eZs( 6, 6).

Now we pass on to the gist of the proof;

Lig+ ) "p—L{g)"'p = L(g+ 1) 'o (L) —Llp+p)oLig)™*
= —L{g+z) o[l () z+re () o L{g) y
(9) = —(Lle+ 2" —Lle) Yo (L'(9) 2)» Lig) " p—
~(Llg+ 1) '—Lig) Yory(x) o Lig)  p—
(10) —L(g) o (L (g) z)o Lip) " p—Lig) " or, () o Lip) ty.

Thus we have got a decomposition into two parts: one linear with
respect to x (the first summand in (10)) and the rest which is 2
remainder in the sense of the definition of differentiability.

For example, let us consider the term (9)

[Z@+2)"—L@) o (L' (¢) 2)o Lig) "yl
Nl s
<L+ =L () el L (9) <Dy ™ 0y b e
< OMAp+2) ™ —L(@) Yrpsr 2 0-

Applying (8) to (10) we get the lemma, g.e.d.

A MANIFOLD OF SECTIONS OF A BUNDLE

1. Topology in the set of sections. Let 1/ be a finite-dimensional dif-
ferentiable bundle with a base X (dim X = m). Let I' be a set of -
sections of the bundle M such that if v I, then the domain of v is a compact
m-dimensional submanifold with the boundary and this boundary is
a border. From now on by “domain” we mean a submanifold of X with
the ahove properties. As was done for the set £, we shall introduce in I"
the structure of a differentiable manifold.

At first we will introduce a differentiable structure in the set of
domains. Since a deformation of the boundary of a domain does not
contain full information about the deformation of the domain, we state
the following

Definition. By a dragging of a domain D < X along a transversal
homotopy He$H(0D) we mean a map

E(0D) =72 ¢ >0, 6(X, X),
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where ¥ is a neighbourhood of zero and o satisfies the following condi-
tions:

10 g, is a (™-ditfeomorphism;

920 the map o:¥% — &(X,X) is continuous if (X, X) is equipped
with the topology of almost uniform convergence with all derivatives;

30 if wedD, then o,(x) = H(x, p(x)).

Levya 10. For every domain D and a transversal homotopy H<$(0D)
there exists a dragging of D along H.

Proof. The homotopy H defines in a neighbourhood of the set 4D
the coordinate system (p,1), where pedD,te]—r,r[. Suppose we are
given a (eCP(R') such that suppl = ]—r,7[,{=0,£(0) = 1.

Let:

ac
: = sup [wi (t)'

w4

D

Now let us take
V= {weé”(aD): ol <§1;}
We set
o (H(p,0): = Hp,t-+L(Mp(p)) i (p,)edDX]—r, 7,
o(0): =2 if a¢ HODX|—7,#[).
The map o, is bijective because

d ac 1
) = 14— (9 (2) > -

Obviously, conditions 1°, 2° and 3° are satisfied, q.e. d.

Let vel'; then ity domain (vesp. range) is denoted by D, (resp. R,).
Sinee v i3 a (™ -section on the set which is not open, we have (from the
definition of differentiability on non-open sets) that there exists an exten-
sion 9 of the section v onto a neighbourhood @ of the domain D,.

Let N, (vesp. N3) be the vector bundle over R, (resp. Ry) consisting
of all vertical tangent vectors at points of the set R, (resp. R;). Obviously
the bundle N, is a vestriction of the bundle Ny to B, < Rj.

It is easily seen that there exists a C™-diffeomorphism @ from
a neighbourhood of the range of zero section in the bundle Nz onto
a neighbourhood of the set Ry in M (for example see [1]).

Let us choose H<$H(0D,), & dragging o of D, along H and a (linear)
connection P in the bundle ¥;. Let P, be the homomorphism of the bundle
N, into Ny such that it is the parallel displacement of a fibre over yeR,
to the point o,(y) along the curve [0, 1]t — o1, (y) e Bz

e ©
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Let I'(R,, IV,) be the vector space of all global sections of the bundle NV,
We equip it with the topology of uniform convergence of all derivatives.
Let us define the map

EXI(Ry, Ny) o ¥ X Va(qp, &) — n(p, £)el,
where -
#(@, &): = PoP,cécvoo]’
on ¢,(D) = X.

If for every vel” we take all systems (H, ¢, 9, @, P), then the maps »
defined by them equip I' with the inductive topology. As in the ease
of the manifold # (cf. Preliminaries) we identify in some (not necessarily
canonical) way the isomorphie spaces I'(R,, N,), where v's are homotopic
sections of the bundle M.

Thus these spaces are isomorphic to a fixed topological vector space,
which will be denoted by %.

2. A differentiable structure in a manifold of sections. It iz easily
seen that the map » is an injection. We shall show that every connected
subspace of the topological space I" which consists of homotopie sections
of the bundle M is a -manifold modelled on the space & X%, and that
coordinate charts are given by the maps ». Since now we shall be interested
in one of the above-mentioned connected subspaces of I', it will also be
denoted by I

We recall that a coordinate chart in a neighbourhood of a point vel’
is given by the following elements:

H — transversal homotopy through the border 6.D,;

¢ — dragging of D, along H;

© — extension of the section v,

@ —(>-diffeomorphism from a meighbourhood of the range of zero
section in the bundle N; onto a neighbourhood of the set Ry in M;

P — connection in Ny;

I,: & - £(0D,) — isomorphizsm;

1,: ¢ - TI(R,, N,) — isomorphism.

Suppose we are given two (homotopic) sections v, wel and two systerns
(H,0,, 0, P), G 0,0, ¥,Q).

Let x, 2 be the maps defined by these systems respectively,

®: ¥ XV >I, AL:#WXW->T,

where ¥, % < £ and V, W < %.
Let 2z = =(p, £) = A(y, n)el.
It follows from the proceeding chapter that ¢ = S(y), where
8:7 — & is a C*-diffeomorphism and § depends on H and G only.
‘ Let:
#lod(p, ) = (@, &) = : (S(x), T(y, 7).
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LEMMA 11. The map T: % X W — @ is of class 0.

THEOREM 3. The map x"‘old is a C™-diffeomorphism. Thus I' is
a C®-manifold modelled ‘on & X €.

Proof. We get from Lemma 11 that the map x~'olis of class 10°".
Sinee our problem is symmetric with respect to x and 2, the map x~'o4
is a C~-diffeomorphism, g.e.d.

Proof of Lemma 11. Let x2eD,; then

2(#) = BoP,0 fovog; (1) = Po@,0nowop; ().

Let voo, ' (#) = : yeR,; then # = o,0m(y), where = is the projection
in the bundle M. Thus

£y) = Pyl o @ 0 WoQ,0n(wo 65 0 0,0m(y))-

Let v,: =wop, co,om, Where ¢ = S(y).

The map 7, is a C*-diffeomorphism from R, onto R,. (The map
wo g, oayom iy a C*-differentiable extension of the map 7, onto a neigh-
bourhood of R, in the set Rj.)

If we have in O°(R,, R,) the topology of uniform convergence
with all derivatives, then the map

€ o Wy —>1,e0°(R,, By)

is continunous.
Let

0,: =P, o® o ¥oQ,,

where ¢ = S(y); then 6, is a diffeomorphism between some neighbour-
hoods of zero sections of the bundles Nz and Ny, and a vector over a point
7,(y) Ry is mapped into the fibre over yeR;.

It can be seen that the map

€= Wy~ 0,e05,(Ng, Ny)

is continuous if we have in Cf, the topology of almost uniform econvergence
with all derivatives,
Thus

(11) & =1T(y,n) = O,0n07,.

Now let us assume that the bundles Ny and N are trivial, and let
us take some global coordinate systems in Ng and Ny. Their points will
be denoted as (v, a)e R x R, where R is one of Ry and Ry, I is a dimension
of the standard fibre of M.

Sinee now every map which can be transferred by the coordinate
systems chosen above will be denoted by the same symbol before and after
the transfer.
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Let y: Rz xR* -~ R* be a C®-map such that
@w(ya ay = (Tq;l(y)7 y(¥, a’)):
where @, : Rz x R" — Ry x R".
In addition we define &°: Rz — R*, »°: Ry — R" such that
£(y) =y, £ ()< Rs x R,
2 =, n°(y)) e By x R¥
Then from (11) we have
(12) () = »(z, (), v 07, ().
Let y: 0*°(Rz, R") — C°(Ry, R) be defined as
(;(f))(y) P= 7’(?/7f('y))7
and the map
¢ > W2y — K(y)e2(C°(Rg, RY), C°(R5, R"))
ag
C*(R, R")>f - K (p)f : = for,eC™(Rz, RY).
Now from (12) we get
£ =y)or, = K@)y ().

The similarity of the notation in the two chapters is not aceidental.
It is justified because the proof of the C>-differentiability of the map
(ws %°) = E ()7 () C~(R5, RY)
proceeds like the analogical proof for S (see the proof of Theorem 2).
Thus T is a C*-map.
If the bundles N; and N; are not trivial, then we proceed as at the
beginning of Lemma 7, q.e.d.
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