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quence (f,) weakly converges to zero. Hence, by [3], p. 156, there is
a sequence of blocks (z;) where

m(k)
Y = Z "%}‘"wi, 0=m(0) <m(l) <m(2)<...,

i=nb (—1)--1

which is equivalent fo a subsequence (f,,). Thus, by the well-known
property of the unit vector basis in Iy, the sequence (2) is equivalent
to the unit vector basis in Ip. Since for 1 < a < f < 2 the space L does
not have complemented subspaces isomorphic to I (cf. [12]), Lemmas 4
and 5 imply that there is no unconditional basis in I, having a subbasis
equivalent to (z).

This example answers in the negﬂ.ﬁve a question of Ivan Singer.
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Additive functionals on Orlicz spaces
by

K. SUNDARESAN (Pittshurgh, Penn.)

This paper is concerned with obtaining integral representations
of a class of non-linear funetionals on Orlicz spaces. These funectionals
are known as additive funectionals and their representation has been
studied in Martin and Mizel [6], Mizel and Sundaresan [7]. For the
importance of this class of functionals in generalized random processes
we refer to Gel’fand and Vilenkin [2]. Further the representation theorems
obtained here are of intrinsic interest and provide generalizations of
results established in Halmos [3], Bartle and Joichi [1] and Krasnosel’skii
[4].

We start with few definitions, remarks and establish a theorem
useful in subsequent discussion.

Throughout this paper (I, X, u) is a complete non-atomic totally
o-finite positive measure space. @ (with or without a suffix) denotes
a continuous non-zero Young funetion. L, denotes the Banach space
of real-valued measurable functions f on 7T such that for a positive number
K (depending on f) M (%f) =Tf & (k{f])dp < oo equipped with the norm

Il = inf{-;-] £>0, e <1}

For a detailed discussion of this class of Banach spaces and for the
undefined terms in this paper we refer to Luxemburg [5].

Next we proceed to define additive functionals. Throughout the
rest of the paper [fdu denotes the definite integral T{ fdu.

Definition. Let & be a linear space of measurable functions on
a measure space (T, 2, u). A real-valued function F on & is said to be
additive it (1) F(z+y) = F(2)+ F(y) for o, y<F such that u{tlz(t)y(?)
#0} =0 and (2) F(z) = Fly) if 2,y are equimeasurable functions in
#, i.e. (o™ (B)) = uly~"(B)) for all Borel sets B in R, the real line.

Remark 1. If #,y are integrable equimeasurable functions, 113. is
verified that [ wduy = [ ydu and further if f is a Borel measurable function
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on R,f(z) and f(y) are equimeasurable. It is also verified that for an
additive functional F, F(0) =

The problem of representing additive functionals on L., has been
studied in [6] under the additional assumption of continuity with respect
to bounded a.e. convergence. The case of additive functionals on L, (p > 1)
continuous with respect to various types of convergence in these spaces
has been discussed in [7]. In this paper it is proposed to obtain integral
representations of continuous additive functionals on Orlicz spaces L,
when @ satisfies the growth condition§ @, or @, (defined below) according
as u(T) < oo or u(T) = oo respectively.

Gy: There exist positive numbers U, and % sueh that @ (2U) < kD (U)
for U > U,.
@,: There exists a positive number &k such that @(2U) < kd(U)
U=0. .
The following theorem is a generalization of results established for
the case of L,-spaces in [1] and [3] to Orlicz spaces.

TrroREM 1. If f is a continuous function on R - R, then ey,
implies f(x) e Lq, if and only if for each positive number k there exist positive
numbers Ay and ¥, such that

(a) Py (1] () < Pi(Brl)  for Ir] = if p(T) < oo;
(b) Bo(Iaf () < Pu(hr)  for 720 if p(T) = oco.

Proof. Let u(T) < oo and &; (¢ = 1,2) satisfy condition (a). Let
zeLg . Thus there exists a positive number k such that f D, (Kz)dy < oo,
Let P = {t|teT, |u(f)] > 7} and P’ =T ~P. Since @, and f are contin-
uous, the function @,(l4f(x)i) is bounded on P' and hence is integrable
on P’. This together with condition (a) yield

for

[ @1t () f@(lakf (@)1) du—+ f@l(mf ))dp < oo.

Thus f(2)eLg,.
If condition (a) is false, there exists a positive number % and a se-
quence of real numbers », such that |r,| 4 co and

) RN
Since @, is convex and @,(0) = 0, it follows that

1
¢'z(2—n |f(?‘n)I) > 2" Dy (kiral) .

icm°®

Additive functionals 271

Further, @, is a non-zero increasing funetion and there exists an
integer m such that 2" @, (k|r,|) > 2. The non-atomieity of the measure
space guarantees the existence of a sequence of mutually disjoint meas-
urable sets {T}nsm sSuch that

w(Ty) = “(1)

— nz=m).
T iy E™

Let z be a function on T defined by #(?) = 7, if tely, n > m and
a(t) = 0 if t¢ U T,,. Thus z is measurable and it is verified that

n>m
T
f@l(mmnfzﬂm § -".éﬁ_)

n=m

We verify that f(z)¢Ls,. Let ¢ >0 and m,, m, be two positive
integers such that 1/2™2 < ¢ and m,; > Max(m, m,). With this choice
of m, and the choice of {T,}nom it is verified that

[ @(cif(@)l)du > Do qu (klral)dpe = oo,.

nz=m
Thus f(x)¢L®P,, completing the proof of the theorem for the case
p#(T) < oo
Next let u(T) = co. Clearly condition (b) on &; (i = 1, 2) implies
J(@) eLy,.

Conversely, suppose that xeL, implies f(z) €Lg,. We proceed to
verify condition (b). Let 7, = sup @7 (0). Claim that (b) holds if |r| < 7, k.

Case 1. Let @,(t) > 0if t > 0. If {r] < 7y [k it is verified that 7y eLy,.
Thus f(r#r)eLlq,. Since @,(t)>0 for 1 >0 and u(T) = co, it follows’
that f(r) = 0. Thus with % =1, ®,(4|f(")]) = 0 < B,(klr]).

Oase 2. Suppose there exists a 7>0 such that @,(t) = 0. Let
r, = sup @;(0) and 7, = sup|f(r)| on the closed interval [—ry[k, ro/k].
Thus if |r| < 74/ let » > 0 be such that pr, << r;. For such a p

Ppf(r))) <

Thus inequality (b) holds for [r| < #/k. If (b) fails to hold for
[r] > 7y[k, then there exists a sequence of real numbers r, such that
[7al > 7ok and

Dy ([pra]) < Po(lra]) = 0 < Do)

P, (2_];1 ]f(%)i) > 270, (kral)-

Let {Ty}nzy be a sequence of pairwise disjoint measurable sets such
that u(T,) = 1/2"® 1(%r,). Let @ be the function on T such that z(3) =7,
if teT, and «(f) =0 1.f t¢UT Thus [&y(k|z))de =1 and zelo,.
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However, for any real number ¢ > 0 if m is an integer such that 1/2" < ¢,
then

[@u(cif@an> D [ dulelf(ra))dp.

nzm Ty,
Since [ @qfe|f(r)])du > 1 for n = m by our choice of r,, it follows
7

that q§2(c|;(m)|) is not p-summable. Thus f(z)¢Ls,. Hence f satisties
inequality (b). )

Remark 2. If @, satisties conditions ¢; or &,, then conditions (a)
and (b) of the theorem are respectively equivalent to (a’) and (b') stated
below:

(@) DAl () < By(ir))  for 7= 7y =05
(v) Dy (AIf ) < D1(Ir])  for all real numbers 7.

Indeed, with k¥ =1 it is verified that (a) = (a’). Next suppose D,
satisfies the condition G, say, @(2r) < e®,(r) for r = r,, where ¢ could

be assumed to be > 1. Let k > 0. Let s be an integer such that 1/2™ <
Then for |r| > Max(2"r,,7,) it is verified that

7

F) < Oy (kr).

P, (21f(r)1) < Do(ir)) < 6'”@1(

Thus
y) 1
.5 100) < F B f21700) < i)
it |r} > Max(2"r,,7,) completing the proof (a’) = (a). The proof (b) = (b’)
is similar and details are omitted.

Before proceeding to the representation theorems we state n lemma
established in [5], p. 13, in a form suitable for our purpose.

Definition 2. An element feL, is said to be of absolutely continuous
norm if (1) given ¢ > 0 there exists a 6 > 0 such that if HeZ, u(B) <
implies [|fx,ll < e and (2) if {Zm}ms1 18 & sequence of measurable sets
converging to a set of measure 0, then | Szl = 0. A sequence {fulus:
in Lg is said to be of uniformly absolutely continuous norm it for a given
¢ >0 (1) above holds for all f = f, for the same 6 > 0 and if {Bmtmsa,
is a-sequence of measurable sets as in (2) above, then |f,xz = 0 uni-
formly in % as m - oco. If every element of Ly is of zubsolutely"eontinuous
norm, then L, is said to be of absolutely continuous norm. Tt might be
noted that L, is of absolutely continuous norm if and only if for weLg,
&(l2]) is p-summable ([5], p. 58). Tt is also known ([6], Theorem 3, p. 58)
that if (T, 2, u) is as in the introduction, then L, is of absolutely continu-
ous norm if and only if (1) u#(7) < oo and & satisties condition G, and (2)
#(T) = co and & satisfies condition G,.
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The analogue of Vitali’s theorem providing a criterion for conver-
gence in L,-spaces (p > 1) is known for Lg-spaces of absolutely continuous
norm ([5], Lemma 2, p. 13). The following is a corollary of this eriterion
and is stated for completeness:

Lemma 1. If Lo is of absolutely continuous morm, then if a sequence
{faknzr i Lo converges to fy, then (1) fu — f in measure on seis of finite meas-
ure ond (2) {P(Iful)} are of uniformly absolutely continuous Ly-norms.

Proof. Suppose f, —f in Ly-norm. Then by the criterion referred
to above f, —>f in measure on measurable sets of finite measure and
{fa} are of uniformly absolutely continuous norms. Thus if & > 0, there
exists a 0>0 such that FeX,u(B)< § implies [ ®(fal) gmdn
= [D(Ifuxr)dp <|faxrl < e since e might be assumed to be less than 1.
Similarly, it is verified that if {E,}., is a sequence of measurable sets
converging to a set of measure 0, then f D(|ful) 1E, %% — 0 uniformly
as m —> oo,

Lmvma 2. A sequence @, converges to x in Lo if and only if
[ (k|z, — @|)du -0 as n — oo for every & > 0.

For a proof we refer to [5], Theorem 1, p. 45.

TurorREM 2. Let @ be a Young function satisfying the growth condition
G and (T, X, u) be as in the introduction, u(T) < co. A functional F on
Ly is continuous and additive if and only if there exists & continuous function
fi R — R such that (1) £(0) = 0, (2) there ewist positive numbers a and 7,
such that |f(r)l <aD(|r]) if Wl <ro, (8) Fla) = [f(x)dp for all @eLgy.
Such o representing function f is unique.

Proof. Let F' be a continuous additive functional on L,. Since
w(T) < oo, it is verified that L., < Ls. Hence by [5], Theorem 4, p. 51,
it follows that [[z]ls < A ||%], for all zeL,, and for some constant .4 > 0.
Thus if {#p}ns, i @ sequence in L, converging to weL, boundedly a.e.,
since #(0) =0 and @ is continuous, it follows that @(k|z,—x|) =0
boundedly a.e. for every %k > 0. Thus by lemma 2, ||z, —2|| - 0. Since F
is continuous, F(#,) — F(2). Hence by Theorem 1 in [6] it follows that
there exists a unique continuous function f: B — R with f(0) = 0 such
that for all weLy, F(z) = [f(z)dp.

Next we establish that the function f satisfies the growth condition
(2) in the theorem. Since @ satisfies the condition G, there exist two
positive numbers U,, ¢ such that ®(2U) < ¢@(U) for U= U,. If f does
not satisfy condition (2), there exists a sequence r, such that |7,|1 oo
and [f(r,)| > 2" D(|r,|), where |r,| > U,. Further, since @ is a non-zero
inereasing function, there exists an integer m such that 2D (Irml) = 2.
Since the measure space is non-atomic, there exists a sequence of meas-
urable sets {Hy}nsm such that u(H,) = u(T)/|f(rs)]. We verify that
llrngm,)l =0 as n — co. Let k be a real number & > 0 and p be a positive

Studia Mathematica XXXII, z. 3 18
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integer such that &< 2. Thus, sinee |ru|> Uy,

" u(T)
9% -

f@(l.: Iraym,)) ds < f@(y’ [Paim,|) dp < pr(b([’rﬂxh‘nl)(lll' <

for n > m as a consequence of condition @, and our choice of {Butusm-

Thus [ Dk |ruym,))du - 0 for & > 0. Henee [[ra yz,)| > 0. But F(tuym,)
= [f(rayz,)@s = £1p(T), & contradiction on the continuity of I since
F(0) = 0. Hence f satisfies condition (2).

Now to complete the proof it is enough to prove that for all weL,,
F(z) = [f(x)du. Let weLy. Since u(T) < oo, from the remark on p. 55
of [7] we conclude that L, is a dense subspace. Thus there exists a sequence
gneL, such that |o,—alls -0. We claim that [f(e,)du — [ f(z)du
as n — co. Since @ satisfies the condition @, Lg is of absolutely continnous
norm. Thug since {z,—a]ls — 0 by lemma 1, it follows that (1) @, -«
in measure on sets of finite measure and (2) {@(|#,|)} are of uniformly
absolutely continuous L,-norms. Since f is continuous, (1) above implies
that (*) f(&,) — f(z) in measure on sets of finite measure. Further (2)
implies that if &> 0, there exists a J; > 0 such that if HeX and u(E)

| X 4y, then f¢(|mm;¢E|)d,u < ef2a (a as in condition (2) of the theorem).
Now with 7, as in the theorem let %k = sup [f(+)]. Let 0 < <

r<ry
Min (e/2ku(T), &) i & 0 and 0 <9< d, if k=0. I FeX is such
that u(F) < d, then from condition (2) of the theorem it follows that

J1t) e < Tl F) - @ [ Dl g
B Iy

»

where F'y, = {t|teF, |5,(t)] = e}, Thus (**) [|f(@)adp < e if p(F)< 6.
s

Next if By, is a sequence of measurable sets converging to a set of measure
0 with % as before from condition (2) of the theorem it is verified that

JH @z au < [au+ [0(1@0ys,))dn.
Em

Since @ (|z,|) are of uniformly absolutely continuous norms, the second
integral - 0 uniformly (in ) as m — co. Thus (%) flf(a’}anm)IdM =0
uniformly as m —oco. The statements (*)(*x) and (*+x) imply that
[f@)du - [f(#)du. Hence from the continuity of F it follows thatb

F(a) =l P (@) = lim [f(@,)dp = [f(@)du.

It is verified that such a representing function f is unique by evalu-
ating F(ryp) for real numbers »,

Conversely, if f is a continuous real-valued function on B satisfying
conditions (1) and (2), then by remark 2 it is verified that z e Ly = f(aw)eLy.

icm
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Thus if ' is defined on L, by setting F(2) = [f(®)du, then F is verified
to be additive on Ly. Further, by arguing as in the preceding’ paragraph
it is found that F is continuous. ’

TeEOREM 3. If (T, X, u) is as in the introduction and W) = oo
and O satisfies condition Gy, then F is a continuous additive functional
on Lg if and only if there exisis a continuous real-valued function f on R
such-that (1) f(0) = 0, (2) there ewists a consiant a > 0 such that If ()
< a®(|r}) for all ¥eR and (3) F(z) = [f(z)du for all weLo. Such a repre-
senting function f is unique.

Proof. Let F be a continuous additive functional on L,. For BeX,
0 < u(B) < oo, let us define a functional ¥z on L (T, X, ug), where
sz is the contraction of u to B by setting Fp(y) = F(yyp). It is veritied
that Fp is a continnous additive functional on Ly ( u35). Hence by theorem 2
there exists a unique continuous function f on B — R satistying conditions
(1), (2) and (3) of the preceeding theorem representing Fp. We claim
that the function f representing Fjp is independent of B. For if ¢ X,
0 < p(0) < oo and u(C)< u(B), by the nonatomicity of the measure
space there exists a set Byel, By « B such that u(0) = u(B,). If ¢
represents g, then since for each real number, r,ryy and ryp, are
equimeasurable Fp(ryo) = F(rye) = F(rys,) = Fs(ryz,). Thus [ flrye)du
= [ glrzo)duo. Hence f(r) = glr). .

 With f ehosen as above we note that if < L, and B8 (#)) < oo, where
S(z) is the support of ®, then F(z) = Fyy(x) =S(£) f@)du = [ f(z)du

since f(0) = 0. Next we verify that f satisties condition (2) in the theorem.
Since @ is a non-zero Young function satisfying condition G, it is verified
that @(r) # 0 for » > 0. Hence to show that f fulfills condition (2) it is
enough to show that

. — fn

1

@ e
since f is already known to verify condition (2) of the preceding theorem..
Suppose (i) is false. Then there exists a sequence {r,} of real numbers such
that 7, — 0 and [f(rs)| > 2" D(rs]). Let {By}us, be a sequence of meas-
urable sets such that u(B,) = 1/|f(#.)|. Proceeding as in the paragraph 2
of the proof of the preceding theorem it is verified that lPnye,ll =0
as n > co. However, F(r,yn,) = f f(raxm,)du = +1, contradicting the
continuity of ¥ since F(0) = 0. Hence f satisfies condition (2) in the
theorem. ‘

The proof of this part is complete if it is shown that for all xelq,
Plw) = [ fw)du. ¥ zeLy, let B, = {|teT, |2(t)| > 1jn}. Thus i =,
= &yg,, then |z,| < |#| and », - « pointwise. Further, since ze L, and @
satisties @, ©(|z|) is summable. Hence F(m,) = Fg (2:) = [ f(@n)du.

< oo,
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Algo since f verifies condition (2) of the theorem,
1F ()| < @@ (lwnl) < aP([2]),

and since f(x,) — f(©) a.e., it follows by Lebesgue theorem on dominated
convergence that '
F(a) = lim F(a,) _hmff ) A _jf Ydu,
N—00
thus completing the representation of F. The uniqueness of f iy verified
as in theorem 2. .
Conversely, if f is a real-valued continuous function on R satistying
conditions (1) and (2) of the theorem, then from Remark 2 it follows
that the functional F(#) = [ f(«)du is well defined on L, and is additive.
Next we verify that F is continuous. Let a, be a sequence in Ly converging

to #. Thus by lemma 1 since f is continuous, f(2,) —f(#) converges in.

méagure on sets of finite measure and further the inequality [ f(2,yz)dpu
< a [ D(|@yzl)dp implies that {f(zn)}n=, arve of uniformly absolutely
continuous L;-norms. Hence [f(2,)du - [fla)dy. Thus F(2,) > F ().

In conelusion it might be mentioned that the problem of representing
additive functionals on Orlicz spaces Ls, when the space is not of abso-
lutely continuous norm, is not considered here and it is conjectured that
non-trivial continuous additive functionaly do not exist in such spaces.

I wish to acknowledge my gratitude to Professor W. A.. J. Luxemburg
for the useful discussions I had during the preparation of the paper.
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Banach spaces of functions
satisfying a modulus of continuity condition *

by

ROBERT B. FRASER (Baton Rouge, La.)

1. Introduction and terminology. A function g:[0, co) — [0, ool
will be called a smodulus of continuity if it is monotone inereasing, con-
tinuous at zero, and zero at zero only. Note that it need not be subadditive.
For pseudometric spaces (X, d) and (¥, ¢), a funetion f: (X, d) - (7, ¢)
will e said to satisfy a modulus of continuity condition f (locally) if there
is some positive real M (and some positive real ) such that e(f(z), f(y))
< Md(z, y) (whenever d(x, y) < &) for all # and y in X. Obviously, such
a function is uniformly continuous.

Let F' denote the real or complex nunbers with the usual metric.
For a psendometric space (X, d), let Lip(X, 8 o d) be the set of bounded
F-valued functions on X which satisfy a modulus of continuity condition
B locally. When f(t) = ¢, we will denote the set by Lip(X, d). If only
one metric is being considered on X, we will denote Lip(X, fod) by
Lip(X, 8). It i3 known that if § is subadditive (so that fod is a pseudo-
metric) and the functions satisty the modulus of continuity condition
B globally, then Lip (X, fod) is a Banach space with a natural norm [4].

Let (X, d), (X, d') and (¥, ¢) be psendometric spaces. If there exish
M, e >0 such that d(z,y)< Md'(z,y) whenever d'(z,y) <e we in-
dicate it by writing d < d' Then to say that f: (X, d) - (Y, e) satisfies
a local Lipschitz condition can be denoted eof, €d, where fu(%,y)
= (f(=), fy)). It & €& and & < d, we say that d and d' are strongly
equivalent (in contrast to topologically or uniformly equivalent) and
denote it by d ~ d'.

We attempt to describe how the various spaces Lip(X, fod) are
related, if one considers different pseudometries on X or different moduli
of continuity. In the first section, we give a natural norm for Lip (X, fod),
under which it is a Banach space. Then we show that Lip (X, d) is con-

* This research was partially supported by a Center of Excellency grant at
L. 8. U. It forms a portion of the author’s Ph. D. Thesis, written under the super-
vision of Professor Solomon Leader.
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