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An isomorphic characterization of L, and c,-spaces*
by

L. TZAFRIRI (Minnesota)

1. Introduction. Let X De cither one of the Banach spaces L, (2, X, u);
1< p < +oo of all complex-valued measurable functions whose ahsolute
»™ powers are integrable with respect to a finite measure space (2, X, )
or ¢, the space of all the sequences of ecomplex numbers converging to
zerg. In X, one can consider the Boolean algebra of projeetions & con-
sisting of “multiplications” by echaracteristic functions

E(o)f = 2.1, e, fely(Q,%,u), 1<p < oo,
or
E(é){mn} = {Zé("’)mn}: =N, {56“}600.

This Boolean algebra of projections satisfies the following conditions:

(a) & is g-complete i.e. B(-)x is a o-additive vector-valued measnre
on (2, 2) for every zeX.

(b) X = clm {E(c)x,! E(c)c B} for some z,¢X {which can be chosen
a8 w, =1 for L, and z, = {1/n} for ¢;).

(e) ]l = (1B (on)i)"", 2eLp(2, X, p), 1< p < o0,
or it

llzl] = sup |5 (on)il; eco

for every sequence of disjoint projections of &, finite or infinite, whose
sum is thé identity I. If X is only isomorphic either to an I,-space,
1< p < +oo, or to ¢, then the images under the isomorphism of the
“multiplications” by characteristic funetions will form a Boolean algebra
of projections, again denoted by &, which still satisfies (a) and (b) while
(¢) should be replaced by the following condition:

(d) There exists a constant K such that

K”l(gllE(ﬂn)ﬂﬂH”)”p < ol < K(%’ 1B (o) alf")H?
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for some 1< p < oo Or

K sup|B(a) 2] < |l < Ksup|[E(on) 2l

for every z<X and every sequence of disjoint projections F(cy)e &, finite
or infinite, whose sum is the identity F.
n essence, condition (d) assures the existence of a two-sided estimate
of |} E(0,)x|| in terms of {| B (on)%|}s satisfied by every z¢X and every
n

sequence of disjeint projections {H(s,)} of ¢ and this estimate is in-
dependent of the choice of weX and E(o,)ed.

The purpose of the paper is to show that conditions (a), (b) and (d)
characterize the spaces L, (2, X, ), 1 < p < 400, u finite, and ¢,; more
precisely, the existence of a Boolean algebra of projections in a Banach
space X satisfying (a) and (b) and admiting any two-sided estimate of the
above described type (details will be given in the next sections) is possible
only if X is isomorphie either to an I,-space, 1 < p < oo, on a finite
measure space (2, X, ) or to ¢. Replacing conditions (a) and (b) by
other adequate conditions stated in terms of Bade’s theory of multiplicity
for Boolean algebras of projections (ef. [1] and [2] we obtain a charac-
terization of L,-spaces, 1 < p < -+ o0, 00 any measure space (not necessarily
finite) and ¢, ().

Related results have been obtained recently by Lindenstrauss and
Zippin [6] who have shown that a Banach space with an unconditional
basis ought to be isomorphic to either I, I, or ¢, provided there exists
a two-sided estimate valid for every Boolean algebra of projections. They
also conjectured that if the existence of an unconditional basis is replaced
by a requirement guaranteeing the existence of “many’ Boolean algebras
of projections admiting a two-sided estimate, then the underlying space
is either an %,, %, or % -space in the sense of [5]. This conjecture has
been proved recently by them in [7].

Acknowledgment. The author wishes to express his thanks to
M. Zippin for his very valuable comments and suggestions.

2. Preliminaries. In this section we shall bring some notation,
definitions and results which will be useful in the sequel. The term
“isomorphic” as used in the introduction has the following meaning:
two Banach spaces X and ¥ are isomorphic if there exists an invertible
bounded linear operatior from X onto ¥. The distance between X and ¥
(cf. [5]) will be defined as follows:

(X, Y) = inf 7] ||},

‘Wwhere the infimum is taken over all invertible bounded linear operators =
mapping X outo Y if such operators exists; d(X, ¥) = +oo if X and ¥
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are not isomorphic (d, which is not a metric is used instead of logd which
is a metric.)

For any abstract set I', I,(I"), 1 < p € -+oo, will denote the Banach
space of all funetions ¢ defined on I" for which

Wl = (X lo()F)™ < 40, 1<p< oo,

vel

lpllee = sup lp(¥)] < +o00, p = 4oo.
ve

If I' is countable or it has a finite number n of elements, we shall
denote 1,(I") by l,, respectively I;. Another space considered is ¢,(I),
consisting of those pel,(I') for which the set {y||p(y)| = ¢} is finite for
every ¢ > 0. When I" is countable, ¢,(I") is denoted as usual by ¢,.

The following definition is due to Lindenstrauss and Pelezytiski [5]
and introduces a new class of Banach spaces %, which is larger than
the clags of L,-spaces. ’

Definition 1. A Banach space X is called an £, ,-space (L<p
< +o0,1 <A< 4o0), provided that for every finite-dimensional sub-
space ¥ of X there is a finite-dimensional subspace Z o Y such that
d(Z,1;) < 4, where n = dimZ. A Banach space X is ¢alled an %Z,-space
(I<p< +o0), if it is an £, ;-space for some 1 < A < +oo.

A set of vectors {u,}n.; is called an wunconditional basis of X (cf.

Day [3]) provided every xeX can be represented uniquély as 4 = Ya,u,
=1

and this series converges unconditionally, i.e. Zayuunm converges for
every permutation m of the integers. If [lu,) = 1,7 =1, 2, ..., the basis
iy called mormalized. Two bases {u,} and {v,} are said to be equivalent

o0 [e+]
if a series Ya,u, converges whenever >a,v, does.
N=1 =1

Finally, we shall summarize some results concerning Boolean algebras
of projectiony which mostly are due to Bade [1] and [2].

A Boolean algebra of projections & will be called complete (o-complete)
it for every family (sequence) F,e¢& the projections VE, and A, exist
in & and, moreover,

(VE)X = dm{B, X}, (AB)X = N(EX).

If ¢ is o-complete, there is a uniform bound for the norm of the
projections in & (cf. [1], Theorem 2.2). A projection Fe ¢ is called countably
decomposable if every family of disjoint projections in & bounded by F
is at most countable. For every Hed& there is a family of disjoint countable
decomposable projections H,e&, yel, such that = \4wa (cf. [2],

Pe
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Lemma 3.1). If for every"y there exists #,<X such that

B; X =dm{Bx,|Be6}, vyel,

then Fed is said to have muliiplicity one (c¢f. Bade [27, Definition 3.2).

3. Boolean algebras of projections with two-sided estimate. This
concept has been firsh considered by Lindenstrauss and Zippin [6] but
a concrete definition has not been given there. The following definition,
which seems to be the most general possible, appears also in [7]:

Definition 2. Let B be a bounded Boolean algebra of projections
in a Banach space X. We say that B has a two-sided estimate if there exist
a constant K and a function y defined for every sequence of complex
numbers such that

CE (P, [Pyl ..y [Prall, ..) < ol

< Ey(|Pyelly [Paly ooy 1Pal]ynn),  3eX,

for every finite or infinite sequence of disjoint projections P, B whose
sum is the identity I.

Remarks. 1. » may take infinite values.

2. p should not be a symmetric function although the norms ||P,x|
can be substituted in y in any desired order.

3. Mackey [8], Theorem 55 (see also Wermer [11]), has proved that
every Boolean algebra of projections on a Hilbert space has a two-sided
estimate With w(ay, ..., @y, ...) = (}]e,[}}'* while Lindenstrauss and

3

Pelezyniski [5], Corollary 8 of Theorem 6.1, have shown that on an

Z-space (Z,-space) every Boolean algebra of projections hag a two-sided

estimate with p(ay, ..., @n, ...) = Dlan| (p(ay, ..., Gn,...) = sup [a,]). This
n n

is not true for Zp-spaces, 1 < p # 2 < oo, and it follows from Pelezynski
[10], Theorem 7, and our Proposition 3. However, for the Boolean algebras
of “multiplications by characteristic functions” in a space isomorphic
to ¢y or Ly, 1 < p < +oo, p can be chosen as (@, ..., @y, ...) = SUD |Gy,
respectively w(ay, ..\, Ga, ...) = (3 lanl?)7. "

For a Banach space X with an unconditional basis {e,} and any set
of integers o — N let us -write

o )

P((I) (Z anen) = Z U, ny 2 OpbneX.

N=1 e T=1

Siﬁcé"the basis is unconditional, the projections {P(¢)},cy form
& _o-complete Boolean algebra of projections B which will he called the
Boolean algebra of projections generated by the basis {en}.

icm°®

Lp and ¢, spaces 299

The proof of the main results is based on the next proposition which
constitutes a characterization of 1,, 1 < p < oo, and ¢, among the Banach
spaces with unconditional bases.

PrOPOSITION 3. Let X be a Baiach space with a normalized uncondi-
tional basis {e,} and B the o-complete Boolean algebra of projections generated
by the basis. If B has a two-sided estimate, then X is isomorphic either to
o oF 10 Ip, 1< p << 0o, and under this isomorphism the basis {en} is equi-
valent to the natural wnit vectors basis ¢, or 1,,.

Proof. Assume that the two-sided estimate of 9B is given by the
constant K and the function y as in the Definition 2. Let {pz} be an in-
creasing sequence of non-negative integers and ' *

P41

A
Wy = Z A€y

N=np+1

E=1,2,...,

with 4, scalars such that |y = 1,k=1,2,... A sequence having this

form is called a normalized block sequence with respect to {e,}. Consider
r *

@ = Yae; and write w = Yu;w;. Then

i=q i=g
loll < Ky (lagly lagqaly -y lanl, 0,0, .0
< Eyp(IP(ogwly [P (ogs)wlly ..., [P (o) w], 0,0, ...
< K*|lwl,
where oy = {p;+1, ..., pryi}. By means of symmetry we have also
lloll == 2 flw]

which implies that the unconditional basis {e,} is equivalent to every
normalized block sequence. Thus, by Zippin [12], Theorem 3.1, the basis
{€x} is equivalent to the natural unit vectors basis of ¢, or Iy 1 <p < oo,
Hence X is isomorphie to ¢, or l,,1 < p < +4-oco (this is a well-known
consequence of the open mapping theorem and the uniform boundedness
principle; cf. [4], Ch. II), q.e.d.

THEOREM 4. A Banach space X is isomorphic to ¢, or Ly, 1< p
< oo, on some finite measure space (£2,X, u) if and only if there ewists
& Boolean algebra of projections B in X such thai :

(a) B 15 o-complete;

(b) X = el {Px,|PeB} for some z,eX;

(6) B has a two-sided estimate. .

Proof. The necessity is obvious and has been discussed in the in-
troduction. In order to prove the converfie, first, let us observe that B
pan be considered as the range of a spectral measure P (o) defined on the


GUEST


300 L. Tzafriri

Borel sets o<Z of a compact Hausdorff topological space £ and every
projection in B is countably decomposable (¢f. Bade [1], Lemma 2.6).
We also can assume that B confains an infinite number of disjoint pro-
jections otherwise X iy finite-dimensional and the assertion is trivial.

Let 0 # P(oy)eB,n =1,2,..., be an infinite sequence of disjoint
projections whose sum is I and remark that {P(on)a,/|P(0w) @} is an
unconditional basis for the subspace

Y = celm{P(oy)m |7 = 1,2, ...}.

Since the Boolean algebra of projections generated by this Dbasis
is a subalgebra of B having still a two-sided estimate, in view of Propo-
sition 3 we conelude that Y is isomorphic to ¢, or ,, 1 <p < oo, and
under this isomorphism the basis {P(o,)a/|[P(ou) @} is equivalent to
the natural unit vectors basis of ¢, or I,,. Now, consider any other sequence
of disjoint projections 0 # P(d,)eB,n = 1,2,..., whose sum is the
identity I. Obviously, {P(6,)z,/|P (0,) %} will be a normalized uncon-
ditional basis for the subspace

Z = clm{P(8,)|zo|n = 1,2, ...}.
Moreover, the existence of a two-sided estimate for B implies

P(0,)@,_ Plow)w,
2 RATIEREN| e 1P () o]

ry n

e Plo)ay |
" 1P (o)

C |

< Kp(la, logl, ...) < K

il
and
P(én) Ly l

A COLIN
= P (6,) @]

-~ 2

=

|

i

for every vector

: P (0n) 2
Uy~ €

m " P (dn) 24l

Hence Z is isomorphic to ¥ and d(Z, ¥) < K* Thus, the subspaces
Z,y vel, corresponding to all possible infinite sequences of disjoint pro-
jections in B whose sum is I (as Z for {P(4,)}) will form a net of subspaces
for which

(" X= Hzﬁ

(*+) there exists a Banach space, either ¢, or I,,1 <p < +oo,
which ig isomorphis to all Z,, ceI (the same for all Z,) and a(Z,, ¢,) or
d(Z,, 1) are uniformly bounded for all se.

It immediately follows from Definition 1 that X is an Zp-space for
some 1< p < +oo. If X is an #_-space, the proof can be completed by
using MeCarthy and Tzafriri [9] Theorem 16 and X will be isomorphic
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to ¢, Thus we can assume that there exist I =1 and 1< p < oo such
that @(Z,, 1) < M? (eI, and furthermore

R AUl Py
s St < | $0, L
; ) 2 P50z,

"=l

— ip
<u() o)
n=1

for every vector

T P(6D)

Ly o 20
21 Bpay P T

Now, denote by 2, the set of all atoms of the vector-valued measure
P(-)a,. Since I<B is countably decomposable, 2, should be at most
countable and therefore P(2,)X would he either a finite-dimensional
space or & space with unconditional basis. In any case, by Proposition 3,
P(Q)X will be isomorphic to I, for some 1 < p < +oo. Hence, we can
assume with no loss of generality that P(L) #1. Let 0 #P(8)eB,
k=1,...,m, bea finite sequence of projections whose sum is P(5) and
ceX such that P(o)< P(R— 0,). Obviously, there exists el such that

Pllow Q) ~ &) =P, &= 1,...,m,

which implies

m

m N Py, |
1) LISQO m 4 ! 4 i ———————B-
kémz I1P((s )~ ) agllP < M k2=: ' Pllow 2y) &) 1P (69) ]

SMP|P((0 v Q) ~ 8)ayP

and in view of the c-additivity of P(-)a,

D P ()P < MP|P(8) |

Jee=1

Therefore, we are able to define

»(8) = sup{ DIP (o), se,
Foe=1

where the supremum is taken over all finite Dartitions of 4. Evidently,

I (8)a|[” < #(8) < " |P(8) |,
and if 8,0eX, 6~ o = @, we have

del,

»(8v o) = sup | MIP(S)m P+ 3 IP (e},
=1 i

j=1
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where this supremum is taken over all the partitions é; of 4 and o; of o.
It follows that

(6w o) = v(d)+v(0).

Now, let us set
m

u(8) = ianar(':;i),

i=1

deX,
where infimum is taken over all partitions #; of 6. If 8, 0eZ, o=@

plbo o) < int| Y 5(8)+ Do) = w(o) (o),

=1 j=1 .

where §; and o; are partitions of 4, respectively . Conversely, for every
& > 0 there is a partition %; of § U o such that

w(dua)= ) vini)—e

s

i

i=

and if 9 = 6; o, 8 = 6, 0f < o, then

m

2 )+
i=1 %

gk

n(dvo)z= v(of)—e > p(0)+pulo)—e.

[
P

Consequently, x is an additive measure on (£, X) which satisfies

MR ()mo|” < p(8) <v(8) S MPIP()@ol”,  deX.

Thus, x is c-additive.
The next and the final step will be to construet an isomorphism
from X onto L,(2, Z, ). = will be defined on the set (dense in X) of all
e .

vectors 3 fpP(8)a, for which P(8,)eB, %k =1,2,...,m, are digjoint
k=1

projections, as follows:

v (3 6P (8ao) = 3 Busa,<In( 2, Z, ).
Fe=1 k=1
Then
o 3 opona) [ = 3 ipruisg <2 S PR ogP
o1 %=1 Tl
S P(dp)wy | A - ?
<) N ] Proa, || = 2K %01 o g P8
2| Ploa | 2 P ibuis,

i
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and by similar arguments
m

EE

k=1

m
ar—2n | . i
| ,;: B (o), .

Henee, 7 can be extended to an isomorphism from X onto Ly(2,2, u)
and this completes the proof, q.e.d. )

The previous theorem is mostly a characterization of ¢, and separable
Ly-spaces. The separability ean be dropped as follows:

THEOREM 5. A Banach space X is isomorphic to co(I) for some abstract
set I or t0 Ly, 1 <p'< -+oo, on some measure space (2, X, u) if and only
if there exists a Boolean algebra of projections B in X such that:

(a) B is complete;

(b) IB has multiplicity one;

(¢) B has a two-sided estimate.

Proof. Tirst, remark that the definition of multiplicity insures the
existence of a set of disjoint projections P(o,)eB, yel', such that

I=\ P(a)

pel’

P(0,) X = clm{P (o), | P (a)eB}

and

for some m, el ||a)| = 1. Tf I is countable, by taking x,

o
2 Fa we get
X = elm{P(0)z,| P (o) B}
and we are again in the case covered by the previous theorem. Thus, we
can assume with no loss of generality that I' is uncountable and every
subspace P (o,) X, y I', is infinite-dimensional (otherwise we can construct
another decomposition of the identity which satisfies this condition).
Let {y,} be an infinite sequence in I' and observe that {#,,} 18 an un-
conditional basis for its closed span which generates a Boolean algebra
of projections included in B and having & two-sided estimate. Henece,
{z,,} Is equivalent to the natural basis of ¢, or Iy, 1 <p < oo (¢f. Pro-
Dosition 3). Since B has a two-sided estimate, every subspace of X having
an unconditional basis which generates a Boolean algebra of projections
included in B will be isomorphic to cm{wz, } and therefore to ¢, or I,
(¢, or the same p for all these subspaces) and all this family of isomorphisms
will be uniformly bounded. Thus, X is isomorphic either to ZO@P(J,)X

vel’
(direet sum in ¢,-sense) or to 2p®P(0,) X (direct sum in I,-sense), where
yel
in the first case the subspaces P(c,)X are uniformly isomorphic to ¢,
(ie. d(P(0,) X, co), yel', are uniformly hounded) and in the second case
%0 Ly, 1 < p < oo, for some measure space (o, 5, u,). Consequently, X is
isomorphic to co(I") or Ly, 1 <p < +-o00, 0n some measure space, q.e.d.
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Note on the class L logL
by

E. M. STEIN (Princeton)

1. The purpose of this note is to prove two theorems. Each of these
incidentally characterizes the class LlogL in terms of the converse of
some well-known inequality.

In Theorem 1 the setting is R", and for a given integrable function
f(z), we define the maximal function Mf(x) by

[ wna,

B(z,r)

- 1
1 Mf)(z) = sup ——
(1) (f)o) = sup
where B(z, ) denotes the ball of radius r centered at # and m(B (@, r))
is its Lebesgue measure.

THEOREM 1. Suppose that f is integrable and is supported on some
finite ball B. Then | Mfdx < oo if and only if

B

[ Ifilog* flds < oo.
B

One direction, that feLlogZL implies MfeL, is very well known;
but the converse although mnot really deeper, seems to have been over-
looked all these years. -

We shall also obtain a consequence of this result dealing with the
Hilbert transform and its n-dimensional generalization, the Riesz trans-
forms. The most appropriate setting for this will be periodic funetions,
i.e. those that satisfy f(z-+m) = f(2), where m = (my, My, ..., M) I8
any veetor with integral coordinates. We denote by ¢ the “fundamental
eube” —} <2<}, j=1,...,n Let

(2) f ~ Z amezm'mx

be the Fourier series of a periodic function integrable over ¢, and let its
Riesz transforms be given by

[m]

Studia Mathematica XXXII, z. 3 20

V : rm 2mim-
3) Rk(f)'N@Z' T g™k =1,...,m.
. m
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