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Note on the class L logL
by

E. M. STEIN (Princeton)

1. The purpose of this note is to prove two theorems. Each of these
incidentally characterizes the class LlogL in terms of the converse of
some well-known inequality.

In Theorem 1 the setting is R", and for a given integrable function
f(z), we define the maximal function Mf(x) by

[ wna,

B(z,r)

- 1
1 Mf)(z) = sup ——
(1) (f)o) = sup
where B(z, ) denotes the ball of radius r centered at # and m(B (@, r))
is its Lebesgue measure.

THEOREM 1. Suppose that f is integrable and is supported on some
finite ball B. Then | Mfdx < oo if and only if

B

[ Ifilog* flds < oo.
B

One direction, that feLlogZL implies MfeL, is very well known;
but the converse although mnot really deeper, seems to have been over-
looked all these years. -

We shall also obtain a consequence of this result dealing with the
Hilbert transform and its n-dimensional generalization, the Riesz trans-
forms. The most appropriate setting for this will be periodic funetions,
i.e. those that satisfy f(z-+m) = f(2), where m = (my, My, ..., M) I8
any veetor with integral coordinates. We denote by ¢ the “fundamental
eube” —} <2<}, j=1,...,n Let

(2) f ~ Z amezm'mx

be the Fourier series of a periodic function integrable over ¢, and let its
Riesz transforms be given by

[m]
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When 7 =1, B, is the usual (periodic) Hilbert transform.

TEEOREM 2. Suppose f= 0, and f is integrable. Then all the R,f are
also integrable (1) if and only if

(4) [ flog* fdw < co.
Q

Our main interest here, as above, is in the direction Ry feIL? implies
feLlogL. The converse was known previously (see Calderén and Zygmund
[81). So was the other direction when n = 1, but this was by an argument
which seems to be restricted to that case. The argument given below
has the additional virtue of showing Theorem 1 and Theorem 2 are really
clogely linked together.

2. Proof of Theorem 1. Suppose feL'(R"). Then it is possible
to estimate the distribution function of Mf as follows. For any a >0

: A
(5) m{z: Mf(x) > o} < — iflde.
fI>af2
This known inequality may be found in Weiner [5].
Our basic observation is that the estimate (5) may also be reversed.
In fact, if we apply to |f| and o the lemma of Calderén and Zygmund
([2], p. 91), we obtain a sequence {Q;} of disjoint cubes so that |f ()] < a,
if @ ¢ UQ;; also } ,
1
"< G, f \fldo <

Because of this if #eQ;, Mf( w) > ¢ 'a, with ¢ = n"®x volume of
the unit ball. So
_ {o: Mf(2) > ¢ a} > T;@;,
and therefore

mio: Mf@) > ') > 3 m( > @) [ Ifids,

I>a

> (27"0) f Ifldo >
ginee we UQ;, if |f(2)| > o. Passing from afto ca then gives
2—% c—l
6) miv: Mf(@) >0} > 2" f \f| da.
¢ [fI>ea

-3, Let now B be any fixed finite ball and B” the ball with the same
f}e.nter a8 B with twice the diameter. We observe that if f is.supported
in B and Mf is integrable over B, then M7 is also integrable over B’. In

(*) More precisely, the series (3) are Fourier series of integrable functions.
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fact, suppose for s1mphelty that B = {#: |#] < 1}, and B’ = {&: |z| < 2}.
Then if weB'—B (ie. 1 < |o|<2), we can easily verify that Mf(x)
< eMf(Z), where & = x/|x|% which proves that Mf is also integrable over B'.

However if we are outside B’, we are at a positive distance from
B and there Mf is bounded, and in fact decreases to zero as [#] — oo
(again since f is supported in B). These observations can be summarized
in the following lemma:

LeMMA 1. Suppose f is supported in a finite ball B and Mf is integrable
over that ball. Then for any fized a4, aqg >0, Mf is iniegrable over the set
where (Mf)(z) > aq.

According to the lemma then

f m{z: Mf > a}de < oo
a

and by (6) this shows that f |fllog™ |fldz < oo whieh proves the theorem.
B

4. Proof of Theorem 2. For the proof of Theorem 2 we shall need
some facts from the m-dimensional theory of H?-spaces as developed
by G. Weiss and the author [4], but in the periodic setting. The periodic
analogues can be given very similar proofs.as in the non-periodic case
treated in [4] and so we shall content ourselves with the bare statement
of the needed results.

Suppose both (2) and (3) are Fourier series of integrable functions.
We form the n-+1 harmonic functions u;(x,?) given by

(7) 'uo z, i Za e—zmmt zmmw
(8) (@, 1) = iZ an ;:b_kle_zmmnemm.w’ F=1,..,n
The u;(%,t),j =0,...,n, satisfy the generalized Cauchy-Riemann
equations .
n
Ouy(x, t)
D RS0 (@ =),
7=0 i
Ouy(m, 1 Oui(m, t X
ka(m; ) - 7(;“‘: ) , Oék, jén.
Let

F(x,t) = (un(wy 1)y U@y 1)y oo
Then we say that FeH! if

supf|Fm t)de < M < oo,
>DQ

5 Un (2, t)) .


GUEST


308 E. M. Stein

The result we shall use is the following
LevMA 2. Suppose FeH' Then

fsuplF(w,t)|dw<Asupf|1ﬂ(a:,bt)|dw.
g >0 >0 g

(For the non-periodic analogue see [4], pp. 46 and 47).

5. We shall also need to make a few remarks about the Poisson kernel.
- Let :
Cn I'{(n+1)/2)

P(z,1) = Tir R = GrE

be the n-dimensional (non-periodic) Poisson kernel. Its periodic analogue
P(x,1) is

P(w,t) =2P(w—|—m, 1).

It can be seen that

(92) Pz, t)=0, in fact P(x,t) >P(w+m,1);
(9D) J 2@, ax =1;
J
(90) 5"(&7 t) — e—zn\m;tez,—:im-z'
=2

The only statement that really needs proof is (9¢), but this is a conse-
quence of the Poisson summation formula (see e.g. [1], p. 32).

6. We shall now prove that part of the theorem that concerns us.
Suppose that f and the Ry (f) given by (3) are in L*(Q). Since

uy(®, 1) = [f(y) Pla—y, t)dy
Q

and
(@, ) = [ (Rf)y) Ple—y, H)dy,
Q

we see that F = (uy, uy, ..., u,)eHY,

Next observe that if ¢ is any non-negative funetion on R"™ which
is integrable, then

10) s [96)Ple—y,0dy>sw [ g@)Ple—y, )iy
R

>0 gt

> sup bt~"
>0

[ apay =v M(g)(@).

[Z-yl<t

iom®
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Now we have . already noted the fact that f, By(f)eL’ (@) implies
that FeH. Thus by Lemma 2 .

fsupll?’(w,t)[da: < oo
o >t - -
and so since f > 0 and £(x, t) > P (=, t), we get by (10)
[ My(z)dw < oo,
4]

where g = ffor #¢@, and g = 0, ¢Q. Similarly, since #(z, t)>> P(x-+m, 1),
we also have
f Mgdr < oo
Q+m )
for any vector m with integral components. Finally, suppose B is a fixed
ball which contains ¢. Then B is contained in the union of finitely many
integral translates of @. So -

f Mgdz < oo,
B
which by Theorem 1 implies that

fglog“‘gda: = fflogﬁ”daa < oo,
B Q

7. Addendum. The following non-periodic analogue of theorem 2,
is stated without proof. Suppose feIF(R") for some p,1 < p < oco. Then
the non-periodic Riesz transform R, is defined by

. C T Yk
Bilf)(@) =limo [ fla—yy 2k ay.
0 ime i

The limit exists almost everywhere, and if in addition p > 1, it also
exists in LP-norm. T

Suppose now B, and B, are a pair of finite open balls so that B, « B,.

THEOREM 3. (a) Suppose [ |fllog™|flde < co. Then

By

[ 1Beflde < oo.
By

(b) Conversely, suppose [ |Ryflde < oo,k =1,...,n, and f> 0 on B,.
Then B2

[ 1filog* |flde < oo.
By
Part (a) was known previously, see [3]. Part (b) is proved by an

adaptation of the argument used for the proof of the periodic case, and
may be left as an exercise to the interested reader.
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The reasoh that this non-periodie version seems ackwardin comparison
to its periodic analogue is the fact that if > 0 and f %o, fel (B,
then Ry(f) never belongs to L*(R").

The author profitted from several Valuable conversations with
A. Zygmund on the contents of this nete.
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