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Dboundary problem with Cauchy’s initial conditions. In fact, that problem
can be considered as the limit case of ours, viz., when the thickness ¢
of I tends to 0. Note that, if we wish to admit, as solutions, functions f
which are not of class ¢, then the Cauchy conditions become inappli-
cable. Still our formulation allows to extend the problem onto solutions f
which are arbitrary distributions (Theorems 5 and 6).

The problem of extending solutions of (1) was also considered by
Lojasiewicz in [1], but the purpose of his extension lemmas was quite
different. It can be noted that neither Theorems 2, 3, 5 and 6 of the
present paper nor the particular case, considered in this section can be
deduced from XYojasiewicz lemmas.
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On orbits of elements
by

S. ROLEWICZ (Warszawa)

Let X be a linear metric space. Let 4 be a linear continuous operator
mapping X into itself. Let z<X. We shall write

0(A:z)={A"2w:n=0,1,...}

and we shall call @(4 : 2) an orbit of x with respect to the operator A.

It is well known that if X is a space of finite dimension, then there
are three possibilities:

1° lim 4"z = 0,

2° lim|[|A"af] = + oo,

3° the closure of the orbit ¢(4 : z) is compact and 0 does not belong
to this closure.

This follows for instance from [4], lemma 1, p. 270.

The purpose of the present paper is to show that in the infinite-
dimensional case it is not so : it may happen that for some A and z, the
orbit @(4 : x) is dense in the whole space X. Examples of this situation
in concrete spaces are given. It is not clear whether it may take place
in an arbitrary infinite-dimensional separable Banach space (ef. Prob-
lem 1). Some related questions are also discussed.

The basic terminology and notation are the same as in Banach’s
book [1] and paper [3] of Mazur and Orlicz. In particular, by an F-space
we mean any complete linear metric space and by a Bg-space we mean
a locally-convex F-space. The norm in the sense of [1] (i.e. a subadditive,
symmetric functional vanishing only at 0) is called in this paper an
F-norm; norms and pseudonorms used here are always homogeneous and
continuous.

TuroreM 1. Let X be either IP(1 < p < + o0) or ¢,. For any arbi-
trary real a > 1, there are a linear continuos operator A and an element x,
such that the orbit €(A : m,) is densgagn the whole of X.
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Proof. Let § Dhe the left shift operator

S({a’lymmway ---- }) = {mzymar “““ }

and 8" be the right shift operator

3) ={0, @, myy ..

Let A =a8 and B = 8'/a. Then [4]|=a, |B|= 1/a, AB = I,
where I, as usual, denotes the identity operator.

Now we shall start to construet the veetor ,. Let 4™ be a sequence
dense in X, with the property that all except finitely many coordinates
of each element 2™ are 0 (for instance we may take finite rational com-
binations of unit vectors). Let k(n) denote the greatest index of the
coordinate of #" that does not vanish.

Let r(n) be a sequence of positive integers such that

,
8 ({1, 22y 75, ...

(1) 7(n) > max k(1)
1<<isn
and =
rny 1
2) (1B ™| < o
Let
"
(3) p(n) = D).
We write =
(4) oy = %B”(“)w”.

Formula (2) implies that series (4) is convergent.
Condition (1) implies that

(5) Ar(n) m'i =0 fOI' Z <.
Therefore
(6) AY)(n)mo — mn_}_ Z Bn(m) .q:(n)mm.
But mertl
had 00
7 o B 3
) H BP0 | Z 1B o) < Z ~;1,;; _ _é_'l_%_.
- M= 1 M=mn41 Tt 1
erefore
1
(8) ”Ap(")-’l?o—-wn” < 'QE

Let % be an arbitrary element. Since the sequence {#"} is dense in

the space X, for each positive ¢ there is an &" such that le—a") < e
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Without loss of generality we can assume that 1/2" < e. Then
9] M| n 1 l
- AP (@) — ] < AP — o[+ 2" — 2l < o + o < 2e.

Since ¢ is arbitrary, we infer, that the orbit #(4": m,) is dense in X.

Let us remark that in the proof of theorem 1 the fact that we have
considered the space of scalar sequences does not play any role. We can
replace in this proof the field of scalars by an arbitrary separable Banach
space, i.e. we can prove theorem 1 for spaces (X), (1 <p < + oo) and
(X), of all sequences # = {#,} of elements of a separable Banach space
X such that

o= (Y et < + oo
=1
(respectively Iim|lz,)]lx = 0)
N—>00

with topology defined by the norm |m| (respectively by the norm
|| = supjlzallx. (We denote by |zlx the norm in the space X.)
n

Therefore the following theorem holds:

TuroreM 1'. Let X be either (¥)w or (Y)o,, ¥ being an arbiirary
separable Banach space. Then for each real number a greater than 1 there
are in X an element x, and a linear continuous operator A of norm « such
that the orbit C(A : xy) is dense in X.

COROLLARY. For an arbitrary a greater than 1 there are in each space
0[0,1] and I*[0,1], 1 <p < + oo, an operator A of the norm a and
an element m, such that the orbit 020 of the element x, with respect to the
operator A is dense in the whole space C[0, 1] (respectively LP[0,1]).

Proof. The space C[0,1] (vespectively L”[0,1]) is isomorphic to
the space (C[0,1]), (respectively (LP[0,1])p)-

ProBLEM 1. Is it true that for every infinite-dimensional separable
Banach space X there are such a linear continuous operator 4 and such
an element # that @(4 :#) is dense in X? *

PROBLEM 2. Given a separable Banach space X. Characterize all
continuous linear operators acting in X which admit a vector # such
that ¢(4 : ) is dense in X.

The operator A considered in theorem 1 is not invertible, bub in
a similar way we can. construct an invertible operator with the same
property. For this purpose let us remark that the space PA<p<+ o0)
and- ¢, are isomorphic to the space 2 (c% of all sequences & = {&},
7 =0, +1, +2,..., such that

lall = 3 (@ Mol < + oo

N=—0a


GUEST


20 S. Rolewicz

(respectively lim a~™|a,| = 0) with the norm llzl| (respectively |||

n

If @ is greater than 1, then the shift operator 8 is of norm & and
has the desired property; moreover, we can construct such an element
x, that the orbits (Dfo and @30_ ! are hoth dense in the space 15 (respectively
¢®. So far we have considered only powers of one operator. Similarly,
we can construct a continuous semigroup (') (or even a group) of con-
tinuous linear operators 7'(s) such that there is an element z, such that
the set

03 = {T(s)@y: 8 > 0}

is dense in the whole space.
For example, let L4(— oo, + o0), a >1, 1 < p < -+ oo, denote the
space of all measurable functions # = x(¢) such that

lell = ([ (a™"lo() | Pat) < + oo
with the norm [j]. The space Li(— oo, - co) is obviously isomorphic
to the space LF[0,1].
The group of shift operators 7T'(s) defined as

T(s)[w(2)] = z(t—s)

is a continuous group of continuous operators. In the same way as in
the proof of theorem 1, we can construct such an element x, that 05"
is dense in L}(— oo, + oo). ’
A similar construction can also be performed in the space Cf(— oo, co)
(e >1) of all continuous functions such that
lim ja= ¥ ()] =0

|t|—»c0

with the norm
loll = supa"jo(y).

The space O0f(— oo, co) is isomorphic to the space C[0, 1].
If X is a Banach space and A is a continuous operator acting in X,
then there is an @ > 0 (namely any 0 < a < |A[™") such that lim (ad)"®
N>

= 0 for every weX, and therefore the orbit of no element with respect

to a4 is dense in X. If X is an F-space, there may exist operators S
such that

(1) A semigroup 7'(s) in called continuous if lim T(s)z = T(s')x for all a.
8-»87
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(*) for every a > 0 there is an &, such that ¢(aS:w,) is dense in X.
ProposITION 1. Let Y be an arbitrary F-space and let X = (¥); be

‘the space of all sequences ® = {4}, with y,e¥Y under the F-norm

1 |¥l
Nl = I .
EED) T

n=1

where | | denotes the F-norm in Y. Then the left shift operator 8 acting
in X has the property (*).

Proof. The proof is on the same lines as the proof of theorem 1.
It is only sufficient to remark that for all scalars a and zeX

, 1
(8"l <
where, as before, §' denotes the right shift operator.

Remark. If X is an F-space and 4 is a continuous linear operator
acting in X which admits a pseudonorm | || such that 4 is continuous
in || |, i.e. [da < bjx] for some b >0 and all reX, then A does not
satisty (*). In fact, all elements (b~ A)"xy are in the set {weX : fluf] < lxoll}
and therefore the orbit of an element #, with respect to the operator
b~'4 cannot be dense in X.

ProBLEM 3. Suppose that X is a separable Bj-space and A is a con-
tinuous linear opearator acting in X. Suppose that A does not satisty (*).
Does it imply that A is continuous with respect to some pseudonorm
defined on X ?

We will say that a Bg-space X is a space with a norm if there is such
a pseadonorm fzf in X that {jaf =0 implies # = 0. For example, the
space C*[0,1] of infinite-differentiable functions #(f) with topology
given by a sequence of pseudonorms

m o,
el = 02%21 “&‘ﬁ?l? mo=0,1,...,

is a space with a norm. In fact, if [z, =0, then z = 0.

In paper [2] it is proved that a By-space X is a space with a norm
if and only if X does not contain any subspace isomorphic to the space s
of all sequences. Then obviously spaces (¥)s are not spaces with norms.

ProsLEM 4. Does there exist a separable By-space X with a norm
such that there are in X operators sabisfying (+)?

PrROBLEM 5. Let X be a separable B,-space with a norm. Let A
be a continuous linear operator acting in X. Does there exist a pseudo-
norm || || in which A is continuous?


GUEST


22 8. Rolewicz

Let X be a Bgspace. We say that a pseudonorm | || defined in X
is infinite (finite) dimensional if the quotient space X [{w: ||} = 0} is
infinite (finite) dimensional.

The following proposition, communicated to the author by Dr. C.
Bessaga, is strictly connected with problem 5.

PROPOSITION 2. There are infinite-dimensional By-space X and a-con-
tinuous linear operator A acting in X which is not continuous in any in-
finite-dimensional pseudonorm.

Proof. Let X = M(n™) be a space of all sequences 2 == {i,} such
that

]y, = supn™ |, .

M(n™) is a By-space with topology induced by pseudonorms |[ll,,.
Let A be defined by the formula

-A({xn}) = {'n"vn}'
0,1,0,..

. . n-th place
rgspectwe to the eigenvalues A, = n. This implies that 4 is not con-
tinuous on any infinite-dimensional pseudonorm.

Remark._ The example given in proposition 2 can e slightly extended.
Namely, puti:,mg T(s) (x,) = n’z,, we obtain in M(n™) a continuous
group of continuous operators such that, for s > 0, 7'(s) is not continuous
in any infinite-dimensional pseudonorm.

','L‘he author wishes to express his warmest thanks to Dr. C. Bessaga
for his keen remarks and his help in the preparation of this paper.

The basis vectors e, = (0,0, ... .) are eigenvectors of A4
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An analytic approach to semiclassical potential theory
by

8. KWAPIEN (Warszawa)

§ 0. Introduction. The aim of this paper is to give a new non-prob-
abilistic approach to the semiclassical potential theory. The method
used here is, may be, less interesting but much simpler, The semiclassical
potential theory was started in 1950 by M. Kac who, using probabilistic
methods, derived an analytic formula for the capacitory potential. Then
it was systematically developed by Z. Ciesielski who indicated analogies
between classical and semiclassical potential theories. Such notions as
Dbalayage, thinness, Dirichlet problem and barrier have their corresponding
ones in the semiclassical theory. The sets of Lebesgne measure zero play
essentially the same role as the polar sets. A brief, non-probabilistic
account of this theory is given in §2. For detailed treatment of this
subject the reader is refered to [2] and [3]. Tmproving Kac’s technique
Stroock [7] has generalized the Kac formula on the strong balayage
of an arbitrary superharmonic function. He has also obtained an analytic
formula for the solution of the semiclassical Dirichlet problem. The
method used in this article-leads to the same formulas. We deal with
this topic in §3. §4 is mainly devoted to non-probabilistic proofs of
come Stroock’s results (cf. [9]). In it a new method of solving the classical
Dirichlet problem is estabilished. The solution is obtained as a limib
of solutions of some integral equations (ef. Corollaries 4.5 and 4.6). We
finish this paper by suggesting some possible generalizations.

The author wishes to thank Docent Z. Ciesielski for his guidance
in the topic and much help and advice.

§ 1. Some basic lemmas. In the following U denotes a Greenian
domain in the k-dimensional Euclidean space R’ and G(z,y) the Green
function for this domain. It will be convenient to employ the following
notations:

H](U) — the class of all positive and superharmonic functions on U;

BH!(U) — the elags of all bounded feHI(U);

OHL(U) — the class of all continuous feBHI(U);
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