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Hypoelliptic and entire elliptic convolution equations
in subspaces of the space of distributions (II)

by

Z. ZIRLEZNY (Wroctaw)

In part I of this work (see [5]) we showed how to define in a general
manner hypoelliptic and entire elliptic convolution operators in sub-
spaces of the space of distributions. We also characterized hypoelliptic
and entire elliptic convolution operators in the space & of tempered
distributions.

The purpose of this paper is to study hypoelliptic convolution oper-
ators in the space ' (= A,) of distributions of exponential growth
introduced by Sebastiao e Silva [4] and Hasumi 1L

The space @(#";:.47) of convolution operators in ¢ (which is
a space of distributions) was characterized in [1] and its topological
properties were investigated in [6].

Using the notation of [5] we define &7 to be the set of all C*-fune-
tions fe o) such that, for every Se@(#7:.#7), the convolution §f
is a C*-function and § — §*f is a continuous mapping from @, (4 : A7)
into the space & of all (™-functions in R™ Then a distribution Se@,(}:
A7) is said to be hypoelliptic in A7y, if every solution Ue " of the con-
volution equation

(1) SxU=F

is in &7, when Fe d#7; in that case equation (1) is also called hypo-
elliptic in 2.

As a supplement of the standard notation (see [3] and [5]) we use
N" as the set of all points in R", whose coordinates are non-negative
integers; we write ¥ and R instead of N' and R' respectively. Further-
more, we denote by P" (§" resp.) the set of all points p = (91, ..., Pn)
(¢ = (q1y..., gn) resp.) such that p; =1 or —1L (¢ =1 or 0 resp.). In
particular, Q" contains the points 1 = (1,1,...,1) and 0 = (0,0, ..., 0).

For a point @ = (2, ...,2,)eR" we sometimes write @ = (', %,),
where &' = (&, ..., ®By_1)€ R-1, Also, for @ = (y, ..., %) and & = (&g, ...
ooy &) in B™ we use the product && = (&, ..., @, £,) beside the scalar
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product @-& ==z, £+... 4 2,&,. The same notation applies to pointy in
O" which are denoted by 2z = w+dy or { = E-4-iny, w,y,E,neR™

Given an ack, a > 0, I, stands for the open cube in R™ with center
at the origine and side 2q, i.c.

Iy={r=(a,..,0)eR" || <a,j=1,...,0};

1, is the closure of I,.
A horizontal strip in ¢" around R™ of width b > 0 is defined as
/

Vop="{e=(2,..,

o) eC™ Iz < by, j o= 1,..., 0},
We constantly make use of the function

o

O‘],(L’) — Z 61)])»2 —_ n (Gb:j-|- ﬁf—ll.’:j)’

pePP =1
where & = (2, ...,2,)eC” and beR.

1. The basic spaces. For the convenience of the reader we characterize
briefly the basic spaces used in this paper.
- 18 the space of all (™-functions ¢ in R™ such that oy (@) D ()
is bounded in R", for every ke N and re N” The topology in .7, is defined
by the system of semi-norms

nlp) = sup (@) (D (o)),

aeR™, 1|2l

E=0,1,...

Then 7, is a Fréchet nuclear wpace ([1], proposition 1).
The dual ¢ of &', is the space of distributions of exponential growth.
CH - P o ar! . -

A distribution 7' is in #7 if and only if 7 ean be represented in the form

T = D', (0)f(x)],

where reN", ueR and f is a bounded, continuous function on R ([17,
proposition 3). Under the strong topology #7 i a complete Montel S‘pziue.

The space @,(77 : #7) of eonvolution operators in .2 can be char-
fwterizea as follows ([1], proposition 9). A distribution § is in ¢ (% #7)
if and only if, for every keN, § can be represented as g finite sum. of
derivatives of continuous functions, whose products with opl) are
bounded in B™. The topology of @(#7; : 2#7) is that induced in 0, /j g )
by the space &,(#7, #7); it makes ¢,(4) A1) into a complete Montel
space (see [6]). )

Note that the convolution S+7 ean be defined even if neither S
nor I'is in 0,(A7: #7). If e.g. for u < v, 0,8 and L T are bounded distri-

N I3
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butions, then one can find continuous functions F,, reN", |r| <k, and
G such that
(2) § = D'F,,

Ir<k

T = DG

and the convolutions .G exist in the usual sense. Then we set

BxT = D D+ (Fa@).
171<k

One can show that the convolution SxT' so defined does not depend
on the representation (2).

The set &% can be identified with the dua 16,(# : 2#71) of O,(A1 : F'7)
similarly as in the case of the set £’ (see [5], p. 322). Thus &%, con-
sists of all C®-functions f such that one can find a keN satisying the
condition

D'f(2) = O(au(a))

as |z} — co, for all reN™ ([6], theorem 10).
For a function gpe ", its Fourier transform

§(6) = [ p(a)de

RN
can be extended over (™ as an entire funection such that

wilf') = sup(l-+ g <eo, k=1,2,..
43

The space K, of all entire funetions with the latter property corre-
sponds to o, under the Fourier transform. If the topology in X, is de-
fined by the system of semi-norms wg, &k ==1,2,..., then the Fourier
transform is a topological isomorphism of 2, onto K, ([1], proposition 4).

The dual K; of K, is the space of Fourier transforms of distributions
from #7,. For a distribution Te o its Fourier transform T is defined
by the Parseval equation

Ty (£) = Torg(—2).

K, is provided with the strong topology. Then the Fourier trans-
form is a topological isomorphism of x| onto K;.

The Fourier transform & of a distribution § O (A 2 ) is a 0
function extendable over €" as an entire function; moreover, for every
LkeN there exists an leN such that

cap SOL
cere (L 2]

Studia Mathematica XXXIT, z. 1 4
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(see [1], propositions 8 and 9, or [6], theorem 3). Also, for Se0, (47 :
and Te ' we have the formula

N\ P
ST = ST ;
where the product on the right-hand side is well defined in XK.

2. Hypoelliptic operators in A'1. Necessary condition. Wo prove
a necessary condition for a convolution operator S e@u(Hy: AY) to be
hypoelliptic in 7. The proof is based on an idea similax to that used
in [5] for convolution operators in . We begin with a lemina.

LeyMA 1. Let T be o distribution, whose Fourier transform T is of
the form

bﬁs

3) ' T =) ady,

7

]
-

where the ;& = ;E+meC™ satisfy conditions

(4) Wl >208l > 2, Il < B,
and a; are complex numbers such that
(8) a; = O(|;£]")

for some ueN; then the series in (3) converges in K. We assert that Te &4,
if and only if
(8) a; = o(l;¢I™"),
for every veN.
Proof. By virtue of equality (3) and condition (5),

00
s iz g
T = E a;e™r,
i=1

where the series converges in 2#7;. If the coefficients a; satisfy condi-
tion (6), then the last series and all its term-by-tcrm derivatives con-
verge uniformly in R" on dividing by ¢”. Consequently 7T is in &47.
Conversely, assume that 7 is a function from &#°7. Then, for every
veN and every ge o'y,
' T e (— 1) > 0,
a8 |u| - oo, ueC®, |Fu| < By A is the iterated Laplace operator. Hence,
-passing to the Fourier transform, we see that

y“} (i)

as |u| — oo, ue(", |Fu| < B. We fxx_ a funetion ge#’; such that
(8) I (0)) =1

m w6 07T 6 () = —u) >0,
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Suppose now that condition (6) is not satisfied. Then there isa ¢ > 0
and a v,eN such that )

(9) 1™ ay] = o

for a subsequence of {a;}, which we may take as the whole sequence
without loss of generality. Also, since ¢ eK,,

(10) F(8) = 0(jg|=+7),

as |f] = oo, ¢ = E+ineC" [n| < B
We set now ;u = ;{. Making use of (4), (5) and (10) we obtain the
estimation

a0 (e = 0@,
j#k
On the other hand, eonditions (8) and (9) imply that, for sufficiently
large k,

2116 (0) > 2

This contradicts the convergence (7). Our assertion is thus ‘estab-
lished.

Remark. The above lemma is a generalization of lemma 1 in[5],
which can be obtained by setting B = 0.

TaroREM 1. If a distribution SeCy(5: A7) is hypoelliptic in. Ay,
then for every B = 0 there are constants a and A such that the Fourier trans-
form s of 8 satisfies the condition

(1) 8O =18 for &= g+inel”, In| <B, (&>

Proof. Suppose that condition (11) is not satlsﬁed Then there
exists a B > 0 and a sequence of points ;¢ = ;£+imeC", defined as in
lemma 1, such that
(12) 1860 < 1177

The series
(=]
Z 6(19
j=1

converges in K; to U, say. Hence Ue ', and, by lemma 1, U is not in
&4, But the convolution S+ U can be transformed according to the
formula

AN .. &
82U =80 =D 8() 8-
j=1
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Applying now mequah’ry (12) and once more lemma 1 we conclude
that S U is in &#5. Thus 8 is not hypoelliptic in 7, q.e.d.

If a partial differential operator with constant coefficients, i.e. an
operator of the form

§ = P(D)s,

where P (D) denotes a polynomial of derivation and 6 the Dirac meas-
ure, is hypoelliptic in 47, then it is hypoelliptic in @'. This
follows from theorem 1 and a theorem of Hormander ([2], p. 99,
theorem 4.1.3).

3. Two lemmas. The following fiwo lemmas are necegsary for our
investigations in the next section.

LemMA 2. Let y(C) be o function defined in the horizontal strip V, as

0  for &£ =Rel,,
1 otherwise.

y(8) =‘

Then, for every _’peP;L,

w2-rb]7 2

(13) f P8 = e n ity _ g ariaryy

where by == 1, X1y, X X1y, and Z,,j consists of three line segments: from
—a 10 ~a-+1ibp;, from — a+ibp; to a+-ibp; and from a--ibp; to a.

Proof. We use the contours I =B X...x1Ly and Iy = I X...X
xlpj, where lp is the line segment from —(H— szj to a-ibp; :Lnd lp
:onsmts of two line segments from —a to —a+ibp; and from a- @bp,
0 a.

The lemma will be proved by induction on the number of variables n.
For n =1, let y, be the function of one variable, which corresponds
to y. Then we have

f)' 2mcx(h =0

and
Y 1— 6—21:077 T ¢
it J oot
fyl (C) 27iL dC = _..,.2._—7__ (esmnm_ e I.mu.:v-) ,
2 i
»

where p = 1 or —1. Thus equality (13) is satisfied in case of one variable.
) 7I:l order to perform the induction step we use the points «’, &', p’,
1'eC" " as defined in the introduction. We also write e. g by = Z,,lxlp,
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X1y, _, and denote by yn_ the function of n—1 variables correspon-
dmg to y. Then one can easily verify that, for every peP",

(14) f y(£)erar

_ f’}"n . u,) “17: .rdw J‘e'z—'z;nrnds f ezni;'. E,d:' fez"i:“’ndé'_
ZZJ 1 2

pn . W Dy

Assume now that equality (13) is true for n—1 variables, i.e.
__, =bp’. & f—1

. 1— .
ey 2Tl [ e "r-w.r A_nzm:j .
f’)’nvl(g Ye das (2= rl)l' I ] )
Ly i=1

Then the right-hand side of (14) can be transformed into the form

1 g2 it N — 2bD Ty . .
. (GZWLUJ?J' e—""’l(l}']) (827:101",_ e-—-ﬂnlﬂ.l‘“)_;_
(2w Ha")" I Oridty,
n-l —2mbp,,,
1 amier amiar; 1—e™ 7 aniax, —aniax,
T ¢ — g7 ) e (T T — 0 )
+ (2mi)" 2 [_! ( ) i, (
i=
. n
1_0—2:1111n», i -~
—_ 5 — (gl..za:oj___ eaﬂma\t])’
(2ri)"w 11

which shows that equqlity (13) holds also for n variables, g.e.d.
Lrania 3. Let f(S) be a function defined for &= &+ineVs, which

is analytic for EeR”\Ia, continuous for &eR"™ I, and vanishes for £el,.

Furthermore, let 1, peP", be the contours from lemma 2. Then consider

the function
ambp-(z—1) arxbp-2

¢ ¢ ., w r(Z— =
LR Pt ]Jf~ e,
peP b

which is analytic for zeV,, ¢ < 1/4b, and teR". We assert that

- -nbpqz
(15) vl 1) = 7.:1,(2 Gamp{2—1) Z >—‘

pePn qsq"'\{l)

X [ea2nbz)(1—q).i_ 62nbp(1—q)-t:l ff(:+ ibpq) 67,1—.ic<(s—t)dc;

lﬂr‘l
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lpg = bpyg Xoo e Xlp, g, and Ly o i either L, or the segment of the -awis
from —a to a, depending on whether q; =0 or ¢; = 1.

Proof. Let d; denote the segment of the x;-axis from —a to ¢ and
d=d; X...Xd,. We also write d' = d;X...X dy_1, g
X lﬂn—l In—17 ete.

The lemma will be proved again by induction on n. In case n = 1
we obtain

(=, 1) = o )G o th Z [e~2nb17$ 2o t] fj zmc(ht)dé‘
! ‘2l

1) sl

= l?’l 7y Xeee X

which is the desired formula (15), since ¢ == 0.
For the general case of n variables we first observe that;

2271— 1

v(z, 1) = - e X
Uan(o ’ zn)[’mb(o’y zn_tn)
2mbp’.a"
X § { gﬂn(mnzn[ e 4 ; ] X
for= Oam (2" —1 0) Oz (2 0)

x f F(&y Lat-ibpy) g =l AL+ e ™Pnin x

(16)

2nbp’ (7'~ ')

' xdy,
eznbph(z'——t') einbp 2 21thp’ 5’
- | Jramesas £,
Tarp (z -1, 0) Oond (z 0) Tonl (z 0

X [642-:1)17,,}” ‘77\:111)" n] ff 2mc -(3—1) dC}

iy

In fact, by Cauchy’s integral theorem,
f f(C)ez"it'(z"t)dC — f f()e
byl

%
Py,
identically in 2 and t. Hence we infer that

] f f zm(:(z I)dé. =0

2rig- (23— 1) at

2mhp’- (2= 1) 2mbp’ 2’

Dlite=s -2
O'znb(zl—tly 0) 0o (%

DeP? L ’\l
»
and consequently
2rbp’ (3" " b’z
TPy 2rbppty, € e i PRLuACEy
—— f E-har
pr Gamp (2 —1 , 0) ‘7210 & 7
anp (e 1" ) onbp’.y .
— mbpnzn[ [4 . ] ff(c/ é. _l pr )ngic'(z"l)dc
E o z — t T T 1 6uT n o
= 2rid 0) e (2, 0) Ly,

Formula (16) follows immediately by application of the Ilatter
equality.

icm°®

Convolution equations 55

Suppose now that equality (15) is true for n—1 variables. Then

we obtain
2mbp (2 1) anhp'.z"
(17) \—" I oa—blinznli € . . - € , ] X
=0 o2& 1, 0) (7 0)
a f FUZ, Curt ibp,) €7 ET0 AL 4 6 F Pl 5
lp';_dn
eﬂr.lru'.(z'—t') ez.—:byk =z . .
g =\ 2L (E-T) 75
X - o | J e d }
I:Uixb(zl "_t'y 0) 0‘2,:1,(2 ’ O)]I f( 3
D
— _.W,_,__.._?i.___ . v v {e‘lnb(p'qtz'f Dy %) %
- J— P
Crzﬁz,(;a s O)O'n-.b( t, 0) ]:P-‘Jl =
% [e—szp'(l'—q').l’_ ei:bn‘(l'« q’)-t’] %
,‘ s 1 3 . omit(z— 1
* J F(E+1ibp' 'y Latibpa)e™ a0+
bp"g Xy
+ eznh(]l'q’.z'*pnf“) [e;nnbp‘(l‘_q’).l"_ eznbp'(r_q').p] X
x [ gy, tyemetae,
Ipg'*1p,
Moreover,
anbp’z’

Ora(e’ —1', 0) €

=2 2 exp{2=bp’' ¢

g1

2 2mbp g (2 — 1)+ 2u:bp’ 1'—q)-t}

and therefore

250p"E B ir.(a
(18) Y! [g_zszn!n_ szbunfn] J £(8) P f)dc
LJ (o} r.b( 0) 1
neP? ”
— - 2 : - ez:dm’q’c' Fambp (1~ ')t %
ooy (2’5 0) Oamy (7' — 1, 0)

PPt et 1
20t ] { FlE by ¢, Ly N s,

I

< [B” Zr:bpnfn_v_"g
Zp ' X
Combining (16) with (17) and (18) ‘we conclude that equality (15)
holds also for n variables, g.e.d.
COROLLARY. For every 7,seN", v(z, ) sat?sfzes the growth condition
o2 (2) D Djv (2, 1) <

Taa(l) R

Py

(19) sup

where the supremum is taken over all zeVe, 6 < 1/4b, and te<R". .
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Condition (19) can be proved by estimating the derivatives of each
term of the sum in (15). For example, if 7 = s = 0, it is sufficient to
show that

1

b ZmC(N—-{) 7
am(a_qz—H—qt ff (E4-ibpg)e 't

1] o

is bounded for every peP", ge@”, and to apply the inequality

TN |

¢
| < oy (1) -

Tom (G2 — qt)

The same argument can be used for arbitrary »,seN”. We omit
the details of the proof.

4. Hypoelliptic operators in ;. Sufficient condition. We now prove
that condition (11) of theorem 1 is also sufficient for a distribution
Se@, (7 : A7) to be hypoelliptic in #7. For this purpose we need an
appropriate family of parametrices for 8, which we define as follows.
Given any b > 0, we say that P is a b-parametriz for 8, if the product
oy P 18 a bounded distribution and

(20) 8+P = 6—W,
where W is a C®-function such that

(21) supa,nb( D'W(E)] < oo

for all reN™.

THEORENM 2. If Se0,(X';: A7) satisfies condition (11), then for every
b > 0 there ewists a b-parametriz for 8.

Proof. By assumption, for every b > 0 there is an a > 0 and an
aeR such that
(22) NGNS
when { = &+ineV, and &eR™I,. We define the function fin V, by
the formula,

0 for £el,,

(23) flo) = 1
=  for £eR"\I,,
S0

where uxeN is chosen so large that

(24) FO < ajg=-t

icm
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for some constant M. Condition (22
Then the function

) guarantees that such a u exists.

g(&) = D'f(e+ibp)
peP?
is integrable over R". Its inverse Fourier transform g (z) is given by the
formula

oo+ibp
(25) g ((T) — E ez:bpu: f(‘:) Eznzz;.zd:;
peP? —oo+1bp

g (x) is continunous and bounded in R".

But f({) is analytic for £eR"\I,, continuous for EfeR™I, and
satisfies condition (24). Therefore, by repeated application of Cauchy’s
integral theorem, integration in (25) along the lines &+ ibp;, — oo
<& <oo(j=1,...,n), can be replaced by integration along the real
lines and the gquadrangles with vertices at —a, —a+ibp;, a+ibp;, a,
in the indicated direction. It also has to be observed that, except for
the integral over R", integration along a real line can be reduced to the
segment from —a to @, again by Cauchy’s integral theorem. This proce-
dure leads to the formula

“*nbp.c

(26) g( ]f(é Jeras s Y " ff #0g
(Pn

[of J~b

where the contours [, are those defined in lemma 2.
We assert that

7 (- A)(e
<2f> 2= (-5l ()

is a b-parametrix for S. In.fact, P satisfies the growth eondition for a
b-parametrix, i.e. ou P is 2 bounded distribution. Furthermore, by virtue
of (26), P is a sum of the distribution

4\ -
P = (— 'E;) f ’
where f is the inverse Fourier transform of f, and the function

ff ryer e gr,

A " 2rbpx
N =P

which belongs to &471.
Now, in view of (23) and the definition of y(¢) in lemma 2,

N\
(8=P)(£) = S(E)(&-£)'F(§) = »(4),
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and so .
(28) S#*P, = 6—W,,
where
. 1 w
Wi x) = Cﬂnis-wd&- _ ” 6zniua:j___e_2ni[w,,‘ .
a(2) I} Gmyal 1 )
a

Next we define the function h(a,t) on R* as

2h L

€ .
Rz, t) = Z _ ff(f)cz’“””")dc_j.
= Gﬂnb(‘l) 5,

De.

For any fixed weR", h(x,) is in &4 as & function of . Moreover,

2rhp.@

‘ Ay \* 3o f _ 4 it g e
(29) (—3—;) Sz, 1) = Zmlfmez g
2

Pl arh

"
- T 7' F

by equality (23) and lemma 2.
On the other hand,
Y 40\ g
(30) (5229 = (=g S thte, 040, 01,
where v(z,t) is the function from lemma 3.
But

W,(z) = (— 4 )”St-v(a;,t)

¢
47c?
is a C*-function, which satisfies condition (21), by the corollary following
1§mma 3. Thus from (28), (29) and (30) we conclude that P satisfies equa-
tion (20) with the function

1 n
v W ()= Wo(n) — e
W= ) (mi)* &' oy ()

(eﬂnf(l.fj — g‘.z“"‘“”j)
F=1
which has the desired properties. '
TueonEM 3. If Se0,(#1:7) and, for every b >0, there ecwists
a b-parametriz for S, then 8§ is hypoelliptic in Ay, e s
Proof. Agsume that U is a solution in #7 of the equation

§xTU =T, .

icm°®
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1
--U is a bounded
Canlk

where Fe &4,. Then there exists a keN such that

distribution and

sup—-l——iD’F(;r)i < oo
Zel Gazp (L)
for every reN"
Let now P be a b-parametrix for 8, > k, and W the correspon-
ding function in (20). Note that P and W may not be in (o7 : #7).
Still we can write )

(31) U=U*d= Ux(8+P)+TxW,

where the convolutions with U on the right-hand side are well defined
(see section 1). Moreover,

Us(8+P) = (U*8)*P = F+P

and the last term belongs to &#. Also U=*1 is obviously in & 1
Thus U is, in fact, in &4, g.ed.

Combining theorem 2 and theorem 3 we obtain

TUROREM 4. A distribution S, (A : 1) satisfying condition (11)
is hypoelliptic in 7.

In view of theorem 1 we can now state the following corollary:

CoROLLARY. Condition (11) is necessary and sufficient for a distri-
bution ScO,(A1: A7) to be hypoelliptic in H'7.
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