

46



- [5] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canadian J. Math. 1953, p. 129-173.
- [6] R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc. 48 (1940), p. 516-541.
- [7] H. Rosenthal, Projections onto translation invariant subspaces of  $L^{n}(G)$ , Memoirs Amer. Math. Soc. 63 (1966).
  - [8] W. Rudin, Fourier analysis on groups, 1962.
  - [9] G. Šilov, Homogeneous rings of functions, A. M. S. Translation 92 (1953).
- [10] B. Wells, Weak compactness of measures, Proc. Amer. Math. Soc. (to appear).

UNIVERSITY OF CALIFORNIA, BERKELEY UNIVERSITY OF OREGON, EUGENE

Reçu par la Rédaction le 28. 12. 1967

## Hypoelliptic and entire elliptic convolution equations in subspaces of the space of distributions (II)

bv

## Z. ZIELEŹNY (Wrocław)

In part I of this work (see [5]) we showed how to define in a general manner hypoelliptic and entire elliptic convolution operators in subspaces of the space of distributions. We also characterized hypoelliptic and entire elliptic convolution operators in the space  $\mathscr{S}'$  of tempered distributions.

The purpose of this paper is to study hypoelliptic convolution operators in the space  $\mathscr{K}'_1 (= \Lambda_{\infty})$  of distributions of exponential growth introduced by Sebastião e Silva [4] and Hasumi [1].

The space  $\mathcal{C}'_{c}(\mathscr{K}'_{1}:\mathscr{K}'_{1})$  of convolution operators in  $\mathscr{K}'_{1}$  (which is a space of distributions) was characterized in [1] and its topological properties were investigated in [6].

Using the notation of [5] we define  $\mathscr{EK}'_1$  to be the set of all  $C^{\infty}$ -functions  $f \in \mathscr{K}'_1$  such that, for every  $S \in \mathscr{C}'_c(\mathscr{K}'_1 : \mathscr{K}'_1)$ , the convolution S \* f is a  $C^{\infty}$ -function and  $S \to S * f$  is a continuous mapping from  $\mathscr{C}'_c(\mathscr{K}'_1 : \mathscr{K}'_1)$  into the space  $\mathscr{E}$  of all  $C^{\infty}$ -functions in  $\mathbb{R}^n$ . Then a distribution  $S \in \mathscr{C}'_c(\mathscr{K}'_1 : \mathscr{K}'_1)$  is said to be *hypoelliptic* in  $\mathscr{K}'_1$ , if every solution  $U \in \mathscr{K}'_1$  of the convolution equation

$$S*U = F$$

· is in  $\mathscr{E}\mathscr{H}'_1$ , when  $F \in \mathscr{E}\mathscr{H}'_1$ ; in that case equation (1) is also called *hypoelliptic* in  $\mathscr{H}'_1$ .

As a supplement of the standard notation (see [3] and [5]) we use  $N^n$  as the set of all points in  $R^n$ , whose coordinates are non-negative integers; we write N and R instead of  $N^1$  and  $R^1$  respectively. Furthermore, we denote by  $P^n$  ( $Q^n$  resp.) the set of all points  $p=(p_1,\ldots,p_n)$  ( $q=(q_1,\ldots,q_n)$  resp.) such that  $p_j=1$  or -1 ( $q_j=1$  or 0 resp.). In particular,  $Q^n$  contains the points  $\mathbf{1}=(1,1,\ldots,1)$  and  $\mathbf{0}=(0,0,\ldots,0)$ .

For a point  $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$  we sometimes write  $x = (x', x_n)$ , where  $x' = (x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$ . Also, for  $x = (x_1, \ldots, x_n)$  and  $\xi = (\xi_1, \ldots, \xi_n)$  in  $\mathbb{R}^n$  we use the product  $x\xi = (x_1\xi_1, \ldots, x_n\xi_n)$  beside the scalar

product  $x \cdot \xi = x_1 \xi + \ldots + x_n \xi_n$ . The same notation applies to points in  $C^n$ , which are denoted by z = x + iy or  $\zeta = \xi + i\eta$ ,  $x, y, \xi, \eta \in R^n$ .

Given an  $a \in R$ , a > 0,  $I_a$  stands for the open cube in  $R^n$  with center at the origine and side 2a, i.e.

$$I_a = \{x = (x_1, ..., x_n) \in \mathbb{R}^n : |x_i| < a, j = 1, ..., n\};$$

 $\bar{I}_a$  is the closure of  $I_a$ .

A horizontal strip in  $C^n$  around  $R^n$  of width b > 0 is defined as

$$V_b = \{z = (z_1, ..., z_n) \in C^n : |\mathscr{I}z_j| \leq b, \ j = 1, ..., n\}.$$

We constantly make use of the function

$$\sigma_b(z) = \sum_{n \in P^h} e^{b p \cdot z} = \prod_{j=1}^n \left( e^{b z_j} + e^{-b z_j} \right),$$

where  $z = (z_1, \ldots, z_n) \epsilon C^n$  and  $b \epsilon R$ .

1. The basic spaces. For the convenience of the reader we characterize briefly the basic spaces used in this paper.

 $\mathscr{K}_1$  is the space of all  $C^{\infty}$ -functions  $\varphi$  in  $R^n$  such that  $\sigma_k(x)D^r\varphi(x)$  is bounded in  $R^n$ , for every  $k \in N$  and  $r \in N^n$ . The topology in  $\mathscr{K}_1$  is defined by the system of semi-norms

$$v_k(q) = \sup_{x \in R^{B_1}|r| \le k} \sigma_k(x) |D^r \varphi(x)|, \quad k = 0, 1, \dots$$

Then  $\mathcal{X}_1$  is a Fréchet nuclear space ([1], proposition 1).

The dual  $\mathscr{K}_1'$  of  $\mathscr{K}_1$  is the space of distributions of exponential growth. A distribution T is in  $\mathscr{K}_1'$  if and only if T can be represented in the form

$$T = D^r [\sigma_u(x) f(x)],$$

where  $r \in \mathbb{N}^n$ ,  $\mu \in \mathbb{R}$  and f is a bounded, continuous function on  $\mathbb{R}^n$  ([1], proposition 3). Under the strong topology  $\mathscr{K}'_1$  is a complete Montel space.

The space  $\mathscr{C}_c(\mathscr{K}_1':\mathscr{K}_1')$  of convolution operators in  $\mathscr{K}_1'$  can be characterized as follows ([1], proposition 9). A distribution S is in  $\mathscr{C}_c(\mathscr{K}_1':\mathscr{K}_1')$  if and only if, for every  $k \in \mathbb{N}$ , S can be represented as a finite sum of derivatives of continuous functions, whose products with  $\sigma_k(x)$  are bounded in  $\mathbb{R}^n$ . The topology of  $\mathscr{C}_c(\mathscr{K}_1':\mathscr{K}_1')$  is that induced in  $\mathscr{C}_c(\mathscr{K}_1':\mathscr{K}_1')$  by the space  $\mathscr{L}_b(\mathscr{K}_1',\mathscr{K}_1')$ ; it makes  $\mathscr{C}_c(\mathscr{K}_1':\mathscr{K}_1')$  into a complete Montel space (see [6]).

Note that the convolution S\*T can be defined even if neither S nor T is in  $\mathcal{O}'_c(\mathscr{K}'_1:\mathscr{K}'_1)$ . If e.g. for  $\mu<\nu$ ,  $\sigma_{\nu}S$  and  $\frac{1}{\sigma_{\mu}}$  T are bounded distri-

butions, then one can find continuous functions  $F_r, r \in \mathbb{N}^n, |r| \leq k$ , and G such that

(2) 
$$S = \sum_{|r| \leqslant k} D^r F_r, \quad T = D^s G$$

and the convolutions  $F_r*G$  exist in the usual sense. Then we set

$$S*T = \sum_{|r| \leq k} D^{r+s}(F_r*G).$$

One can show that the convolution S\*T so defined does not depend on the representation (2).

The set  $\mathscr{E}\mathscr{K}_1'$  can be identified with the dua  $1\mathscr{C}_c(\mathscr{K}_1':\mathscr{K}_1')$  of  $\mathscr{C}_c(\mathscr{K}_1':\mathscr{K}_1')$  similarly as in the case of the set  $\mathscr{E}\mathscr{S}'$  (see [5], p. 322). Thus  $\mathscr{E}\mathscr{K}_1'$  consists of all  $C^{\infty}$ -functions f such that one can find a  $k \in N$  satisfying the condition

$$D^r f(x) = O(\sigma_k(x))$$

as  $|x| \to \infty$ , for all  $r \in \mathbb{N}^n$  ([6], theorem 10).

For a function  $\varphi \in \mathcal{K}_1$ , its Fourier transform

$$\hat{\varphi}(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i \xi \cdot x} \varphi(x) \, dx$$

can be extended over  $C^n$  as an entire function such that

$$w_k(\hat{arphi}) = \sup_{\xi \in V_k} (1 + |\xi|)^k |\hat{arphi}(\xi)| < \infty, \hspace{5mm} k = 1, 2, \ldots$$

The space  $K_1$  of all entire functions with the latter property corresponds to  $\mathcal{K}_1$  under the Fourier transform. If the topology in  $K_1$  is defined by the system of semi-norms  $w_k, k = 1, 2, ...$ , then the Fourier transform is a topological isomorphism of  $\mathcal{K}_1$  onto  $K_1$  ([1], proposition 4).

The dual  $K_1'$  of  $K_1$  is the space of Fourier transforms of distributions from  $\mathscr{K}_1'$ . For a distribution  $T \in \mathscr{K}_1'$  its Fourier transform  $\hat{T}$  is defined by the Parseval equation

$$\hat{T}_{\varepsilon} \cdot \varphi \left( \xi \right) = T_{x} \cdot \varphi \left( -x \right).$$

 $K_1'$  is provided with the strong topology. Then the Fourier transform is a topological isomorphism of  $\mathcal{K}_1'$  onto  $K_1'$ .

The Fourier transform  $\hat{S}$  of a distribution  $S \in \mathcal{O}'_c(\mathscr{K}'_1 : \mathscr{K}'_1)$  is a  $C^{\infty}$ -function extendable over  $C^n$  as an entire function; moreover, for every  $k \in \mathbb{N}$  there exists an  $l \in \mathbb{N}$  such that

$$\sup_{\zeta \in \mathcal{V}_k} \frac{|\hat{S}(\zeta)|}{(1+|\zeta|)^l} < \infty$$

Studia Mathematica XXXII, z. 1



(see [1], propositions 8 and 9, or [6], theorem 3). Also, for  $S \in \mathcal{O}'_c(\mathcal{K}'_1 : \mathcal{K}'_1)$  and  $T \in \mathcal{K}'_1$  we have the formula

$$\widehat{S*T} = \hat{S}\hat{T}$$

where the product on the right-hand side is well defined in  $K'_1$ .

2. Hypoelliptic operators in  $\mathscr{K}_1$ . Necessary condition. We prove a necessary condition for a convolution operator  $S \in \mathcal{O}'_c(\mathscr{K}_1':\mathscr{K}_1')$  to be hypoelliptic in  $\mathscr{K}_1'$ . The proof is based on an idea similar to that used in [5] for convolution operators in  $\mathscr{S}'$ . We begin with a lemma.

Lemma 1. Let T be a distribution, whose Fourier transform  $\hat{T}$  is of the form

$$\hat{T} = \sum_{j=1}^{\infty} a_j \, \delta_{(j\zeta)},$$

where the  $_{i}\zeta = _{i}\xi + _{i}\eta \epsilon C^{n}$  satisfy conditions

$$|_{j}\zeta| > 2|_{j-1}\zeta| > 2^{j}, \quad |_{j}\eta| \leqslant B,$$

and a; are complex numbers such that

$$a_i = O(|_j \zeta|^{\mu})$$

for some  $\mu \in N$ ; then the series in (3) converges in  $K_1'$ . We assert that  $T \in \mathscr{EK}_1'$  if and only if

$$a_j = o(|_j \zeta|^{-\nu}),$$

for every  $v \in N$ .

Proof. By virtue of equality (3) and condition (5),

$$T=\sum_{j=1}^{\infty}a_{j}e^{2\pi ix\cdot_{j}\xi},$$

where the series converges in  $\mathscr{K}'_1$ . If the coefficients  $a_l$  satisfy condition (6), then the last series and all its term-by-term derivatives converge uniformly in  $\mathbb{R}^n$  on dividing by  $e^{B|x|}$ . Consequently T is in  $\mathscr{E}\mathscr{K}'_1$ .

Conversely, assume that T is a function from  $\mathscr{E}\mathscr{K}_1'$ . Then, for every  $v \in N$  and every  $\varphi \in \mathscr{K}_1$ ,

$$e^{2\pi i u \cdot x} \Delta^{\nu} T_x \cdot \varphi(-x) \to 0$$

as  $|u| \to \infty$ ,  $u \in C^n$ ,  $|\mathcal{I}u| \le B$ ;  $\Delta^v$  is the iterated Laplace operator. Hence, passing to the Fourier transform, we see that

(7) 
$$\tau_u[(\zeta \cdot \zeta)^{\nu} \hat{T}_{\zeta}] \cdot \hat{\varphi}(\zeta) = \sum_{j=1}^{\infty} a_j (j\zeta \cdot j\zeta)^{\nu} \hat{\varphi}(j\zeta - u) \to 0,$$

as  $|u| \to \infty$ ,  $u \in C^n$ ,  $|\mathscr{I}u| \leqslant B$ . We fix a function  $\varphi \in \mathscr{K}_1$  such that

$$|\hat{\varphi}(0)| \geqslant 1.$$

Suppose now that condition (6) is not satisfied. Then there is a  $\varrho > 0$  and a  $\nu_0 \in N$  such that

$$(9) |j\zeta|^{2\nu_0} |a_j| \geqslant \varrho$$

for a subsequence of  $\{a_i\}$ , which we may take as the whole sequence without loss of generality. Also, since  $\hat{\varphi} \in K_1$ ,

(10) 
$$\hat{\varphi}(\zeta) = O(|\zeta|^{-\mu - 2\nu_0 - 1}),$$

as  $|\zeta| \to \infty$ ,  $\zeta = \xi + i\eta \epsilon C^n$ ,  $|\eta| \leqslant B$ .

We set now  $ju = j\zeta$ . Making use of (4), (5) and (10) we obtain the estimation

$$\sum_{\substack{j=1\\j\neq k}}^{\infty} a_j ({}_j\zeta\cdot{}_j\zeta)^{*_0} \hat{\varphi} \left({}_j\zeta - {}_k u\right) = O(2^{-k}).$$

On the other hand, conditions (8) and (9) imply that, for sufficiently large k,

$$\left|a_{k}
ight|\left|_{k}\zeta\cdot_{k}\zeta
ight|^{v_{0}}\left|\hat{arphi}\left(0
ight)
ight|\geqslantrac{arrho}{2}.$$

This contradicts the convergence (7). Our assertion is thus established.

Remark. The above lemma is a generalization of lemma 1 in [5], which can be obtained by setting B=0.

THEOREM 1. If a distribution  $S \in \mathcal{O}'_c(\mathcal{K}'_1 : \mathcal{K}'_1)$  is hypoelliptic in  $\mathcal{K}'_1$ , then for every  $B \geqslant 0$  there are constants a and A such that the Fourier transform  $\hat{S}$  of S satisfies the condition

$$(11) |\hat{S}(\zeta)| \geqslant |\zeta|^{\alpha} for \zeta = \xi + i\eta \epsilon C^{n}, |\eta| \leqslant B, |\xi| \geqslant A.$$

Proof. Suppose that condition (11) is not satisfied. Then there exists a  $B \geqslant 0$  and a sequence of points  ${}_{j}\zeta = {}_{j}\xi + i{}_{j}\eta \,\epsilon \,C^{n}$ , defined as in lemma 1, such that

The series

$$\sum_{j=1}^{\infty} \delta_{(j\zeta)}$$

converges in  $K_1'$  to  $\hat{U}$ , say. Hence  $U \in \mathcal{K}_1'$  and, by lemma 1, U is not in  $\mathscr{E}\mathcal{K}_1'$ . But the convolution S\*U can be transformed according to the formula

$$\widehat{S*U} = \hat{S}\hat{U} = \sum_{j=1}^{\infty} \hat{S}_{(j\zeta)} \delta_{(j\zeta)}.$$



Applying now inequality (12) and once more lemma 1 we conclude that S\*U is in  $\mathscr{E}\mathscr{K}_1'$ . Thus S is not hypoelliptic in  $\mathscr{K}_1'$ , q.e.d.

If a partial differential operator with constant coefficients, i.e. an operator of the form  $\phantom{a}$ 

$$S = P(D)\delta,$$

where P(D) denotes a polynomial of derivation and  $\delta$  the Dirac measure, is hypoelliptic in  $\mathscr{X}'_1$ , then it is hypoelliptic in  $\mathscr{D}'$ . This follows from theorem 1 and a theorem of Hörmander ([2], p. 99, theorem 4.1.3).

3. Two lemmas. The following two lemmas are necessary for our investigations in the next section.

LEMMA 2. Let  $\gamma(\zeta)$  be a function defined in the horizontal strip  $V_b$  as

$$\gamma(\zeta) = \begin{cases} 0 & \textit{for } \xi = \Re \zeta \, \epsilon I_a, \\ 1 & \textit{otherwise}. \end{cases}$$

Then, for every  $p \in P^n$ ,

(13) 
$$\int_{\nu_{p}} \gamma(\zeta) e^{2\pi i \zeta \cdot x} d\zeta = \frac{1 - e^{-2\pi i p \cdot x}}{(2\pi i)^{n} x^{1}} \prod_{j=1}^{n} \left( e^{2\pi i a x_{j}} - e^{-2\pi l a x_{j}} \right),$$

where  $l_p = l_{p_1} \times l_{p_2} \times \ldots \times l_{p_n}$  and  $l_{p_j}$  consists of three line segments: from -a to  $-a+ibp_j$ , from  $-a+ibp_j$  to  $a+ibp_j$  and from  $a+ibp_j$  to a.

Proof. We use the contours  $l_p^1 = l_{p_1}^1 \times \ldots \times l_{p_n}^1$  and  $l_p^2 = l_{p_1}^2 \times \ldots \times l_{p_j}^2$ , where  $l_{p_n}^1$  is the line segment from  $-a + ibp_j$  to  $a + ibp_j$  and  $l_{p_j}^2 = l_{p_j}^2 \times \ldots \times l_{p_j}^2$  consists of two line segments from -a to  $-a + ibp_j$  and from  $a + ibp_j$  to a.

The lemma will be proved by induction on the number of variables n. For n=1, let  $\gamma_1$  be the function of one variable, which corresponds to  $\gamma$ . Then we have

$$\int_{l_n^1} \gamma_1(\zeta) e^{2\pi i \zeta \cdot x} d\zeta = 0$$

and

$$\int\limits_{l_{o}^{2}}\gamma_{1}(\zeta)\,e^{2\pi i\zeta\cdot x}d\zeta=\frac{1-e^{-2\pi bp\cdot x}}{2\pi ix}\,(e^{2\pi iax}\!-e^{-2\pi lax})\,,$$

where p=1 or -1. Thus equality (13) is satisfied in case of one variable. In order to perform the induction step we use the points x',  $\zeta'$ , p',  $\mathbf{1}' \in C^{n-1}$  as defined in the introduction. We also write e.g.  $l_{p'} = l_{p_1} \times l_{p_2} \times$ 

 $... \times l_{p_{n-1}}$  and denote by  $\gamma_{n-1}$  the function of n-1 variables corresponding to  $\gamma$ . Then one can easily verify that, for every  $p \in P^n$ ,

$$\begin{split} (14) \qquad & \int\limits_{l_{p}} \gamma(\zeta) \, e^{2\pi i \xi \cdot x} \, d\zeta \\ & = \int\limits_{l_{p'}} \gamma_{n-1}(\zeta') \, e^{2\pi i \xi' \cdot x'} \, d\zeta' \, \int\limits_{l_{p_{n}}} e^{2\pi i \xi_{n} x_{n}} d\zeta_{n} + \int\limits_{l_{p'}} e^{2\pi i \xi' \cdot x'} \, d\zeta' \, \int\limits_{l_{p_{n}}^{2}} e^{2\pi i \xi_{n} x_{n}} d\zeta \, . \end{split}$$

Assume now that equality (13) is true for n-1 variables, i.e.

$$\int\limits_{\mathbf{l}_{p'}} \gamma_{n-1}(\zeta') e^{2\pi i \zeta' \cdot x'} d\zeta' = \frac{1 - e^{-2\pi b p' \cdot x'}}{(2\pi i)^{n-1} (x')^{1'}} \prod_{j=1}^{n-1} \left( e^{2\pi i a x_j} - e^{-2\pi i a x_j} \right).$$

Then the right-hand side of (14) can be transformed into the form

$$\begin{split} &\frac{1-e^{-2\pi bp\cdot x}}{(2\pi i)^{n-1}(x')^{1'}} \prod_{j=1}^{n-1} \left(e^{2\pi iax_j} - e^{-2\pi iax_j}\right) \frac{e^{-2\pi bp_n x_n}}{2\pi ix_n} \left(e^{2\pi iax_n} - e^{-2\pi iax_n}\right) + \\ &+ \frac{1}{(2\pi i)^{n-1}(x')^{1'}} \prod_{j=1}^{n-1} \left(e^{2\pi iax_j} - e^{-2\pi iax_j}\right) \frac{1-e^{-2\pi bp_n x_n}}{2\pi ix_n} \left(e^{2\pi iax_n} - e^{-2\pi iax_n}\right) \\ &= \frac{1-e^{-2\pi bp\cdot x}}{(2\pi i)^n x^1} \prod_{j=1}^{n} \left(e^{2\pi iax_j} - e^{-2\pi iax_j}\right), \end{split}$$

which shows that equality (13) holds also for n variables, q.e.d.

LEMMA 3. Let  $f(\xi)$  be a function defined for  $\xi = \xi + i\eta \, \epsilon \, V_b$ , which is analytic for  $\xi \, \epsilon \, R^n \setminus \bar{I}_a$ , continuous for  $\xi \, \epsilon \, R^n \setminus I_a$  and vanishes for  $\xi \, \epsilon \, I_a$ . Furthermore, let  $l_p, \, p \, \epsilon \, P^n$ , be the contours from lemma 2. Then consider the function

$$v(z,t) = \sum_{p \in \mathbb{P}^n} \left[ rac{e^{2\pi b p \cdot (z-t)}}{\sigma_{2\pi b}(z-t)} - rac{e^{2\pi b p \cdot z}}{\sigma_{2\pi b}(z)} 
ight] \int\limits_{t_p} f(\zeta) e^{2\pi i \zeta \cdot (z-t)} d\zeta \, ,$$

which is analytic for  $z \in V_c$ , c < 1/4b, and  $t \in \mathbb{R}^n$ . We assert that

(15) 
$$v(z,t) = \frac{1}{\sigma_{2\pi b}(z)\sigma_{2\pi b}(z-t)} \sum_{p \in P^n} \sum_{q \in Q^n \setminus \{1\}} e^{2\pi bpq \cdot s} \times \\ \times \left[ e^{-2\pi bp(1-q) \cdot t} - e^{2\pi bp(1-q) \cdot t} \right] \int_{L^{\infty}} f(\zeta + ibpq) e^{2\pi i \zeta \cdot (s-t)} d\zeta;$$

54

 $l_{p,q} = l_{p_1,q_1} \times ... \times l_{p_n,a_n}$  and  $l_{p_j,q_j}$  is either  $l_{p_j}$  or the segment of the  $x_j$ -axis from -a to a, depending on whether  $q_j = 0$  or  $q_j = 1$ .

Proof. Let  $d_j$  denote the segment of the  $x_j$ -axis from -a to a and  $d=d_1\times\ldots\times d_n$ . We also write  $d'=d_1\times\ldots\times d_{n-1},$   $l_{p',q'}=l_{p_1,q_1}\times\ldots\times l_{p_{n-1},q_{n-1}}$ , etc.

The lemma will be proved again by induction on n. In case n = 1 we obtain

$$v(z,t) = \frac{1}{\sigma_{2\pi b}(z)\,\sigma_{2\pi b}(z-t)} \sum_{p=\pm 1} \left[e^{-2\pi b p \cdot t} - e^{2\pi b p \cdot t}\right] \int\limits_{l_p} f(\zeta)\,e^{2\pi i\zeta\cdot(z-t)} d\zeta\,,$$

which is the desired formula (15), since q = 0.

For the general case of n variables we first observe that

$$\begin{split} & (16) \quad v(z,t) = \frac{2^{2n-1}}{\sigma_{2\pi b}(\mathbf{0}',z_n)\sigma_{2\pi b}(\mathbf{0}',z_n-t_n)} \times \\ & \times \sum_{p \in P^n} \left\{ e^{2\pi b p_n z_n} \left[ \frac{e^{2\pi b p' \cdot (z'-t')}}{\sigma_{2\pi b}(z'-t',0)} - \frac{e^{2\pi b p' \cdot z'}}{\sigma_{2\pi b}(z',0)} \right] \times \\ & \times \int_{l_{p'} \times d_n} f(\zeta',\zeta_n+ibp_n) \, e^{2\pi i \zeta \cdot (z-t)} \, d\zeta + e^{-2\pi b p_n l_n} \times \\ & \times \left[ \frac{e^{2\pi b p' \cdot (z'-t')}}{\sigma_{2\pi b}(z'-t',0)} - \frac{e^{2\pi b p' \cdot z'}}{\sigma_{2\pi b}(z',0)} \right]_{l_p} f(\zeta) \, e^{2\pi i \zeta \cdot (z-t)} \, d\zeta + \frac{e^{2\pi b p' \cdot z'}}{\sigma_{2\pi b}(z',0)} \times \\ & \times \left[ e^{-2\pi b p_n l_n} - e^{2\pi b p_n l_n} \right]_{l_n} f(\zeta) \, e^{2\pi i \zeta \cdot (z-t)} \, d\zeta \right\}. \end{split}$$

In fact, by Cauchy's integral theorem,

$$\int\limits_{l_{p'}\times l_{p_{n}}^{2}}f(\zeta)e^{2\pi i\zeta\cdot(z-t)}d\zeta=\int\limits_{d'\times l_{p_{n}}^{2}}f(\zeta)e^{2\pi i\zeta\cdot(z-t)}d\zeta$$

identically in z and t. Hence we infer that

$$\sum_{p \notin P^n} \left[ \frac{e^{2\pi b p \cdot (z'-t')}}{\sigma_{2\pi b}(z'-t',0)} - \frac{e^{2\pi b p \cdot z'}}{\sigma_{2\pi b}(z',0)} \right] \int\limits_{l_p \times l_{p,-}^2} f(\zeta) \, e^{2\pi i \zeta \cdot (z-l)} \, d\zeta \equiv 0$$

and consequently

$$\begin{split} &\sum_{p \in P^n} e^{4\pi b p_n z_n - 2\pi b p_n t_n} \left[ \frac{e^{2\pi b p' \cdot (z'-t')}}{\sigma_{2\pi b}(z'-t',0)} - \frac{e^{2\pi b p' \cdot z'}}{\sigma_{2\pi b}(z',0)} \right] \int\limits_{l_p} f(\zeta) \, e^{2\pi i \zeta \cdot (z-t)} \, d\zeta \\ &= \sum_{p \in P^n} e^{2\pi b p_n z_n} \left[ \frac{e^{2\pi b p' \cdot (z'-t')}}{\sigma_{2\pi b}(z'-t',0)} - \frac{e^{2\pi b p' \cdot z'}}{\sigma_{2\pi b}(z',0)} \right] \int\limits_{l_p' \times d_n} f(\zeta', \zeta_n + ibp_n) \, e^{2\pi i \zeta \cdot (z-t)} \, d\zeta. \end{split}$$

Formula (16) follows immediately by application of the latter equality.

Suppose now that equality (15) is true for n-1 variables. Then we obtain

$$(17) \sum_{p \in \mathbb{P}^{n}} \left\{ e^{2\pi b p_{n} z_{n}} \left[ \frac{e^{2\pi b p' \cdot (z'-t')}}{\sigma_{2\pi b}(z'-t',0)} - \frac{e^{2\pi b p' \cdot z'}}{\sigma_{2\pi b}(z',0)} \right] \times \right.$$

$$\times \int_{l_{p'} \times d_{n}} f(\zeta', \zeta_{n} + ibp_{n}) e^{2\pi i \xi \cdot (z-t)} d\zeta + e^{-2\pi b p_{n} l_{n}} \times$$

$$\times \left[ \frac{e^{2\pi b p' \cdot (z'-t')}}{\sigma_{2\pi b}(z'-t',0)} - \frac{e^{2\pi b p' \cdot z'}}{\sigma_{2\pi b}(z',0)} \right]_{l_{p}} f(\zeta) e^{2\pi i \xi \cdot (z-t)} d\zeta \right\}$$

$$= \frac{2}{\sigma_{2\pi b}(z',0) \sigma_{2\pi b}(z'-t',0)} \sum_{p \in \mathbb{P}^{n}} \sum_{q' \in Q^{n-1} \setminus \{1\}} \left\{ e^{2\pi b (p'q' \cdot z' + p_{n} z_{n})} \times \right.$$

$$\times \left[ e^{-2\pi b p' (\mathbf{l}'-q') \cdot t'} - e^{2\pi b p' (\mathbf{l}'-q') \cdot t'} \right] \times$$

$$\times \int_{l_{p'} \cdot q' \times d_{n}} f(\zeta' + ibp' q', \zeta_{n} + ibp_{n}) e^{2\pi i \xi \cdot (z-t)} d\zeta +$$

$$+ e^{2\pi b (p'q' \cdot z' - p_{n} l_{n})} \left[ e^{-2\pi b p' (\mathbf{l}'-q') \cdot t'} - e^{2\pi b p' (\mathbf{l}'-q') \cdot t'} \right] \times$$

$$\times \int_{l_{p'} \cdot q' \times d_{n}} f(\zeta' + ibp' q', \zeta_{n}) e^{2\pi i \xi \cdot (z-t)} d\zeta.$$

Moreover,

$$\begin{split} \sigma_{2\pi b}(z'-t',\,0)\,e^{2\pi bp'\cdot z'} \\ &=\,2\,\sum_{q'\in Q^{n-1}} \exp\left\{2\pi bp'\,q'\cdot z' + 2\pi bp'\,q'\cdot (z'-t') + 2\pi bp'\,(\mathbf{1}'-q')\cdot t'\right\} \end{split}$$

and therefore

(18) 
$$\sum_{p \in P^{ll}} \frac{e^{2\pi b p' \cdot z'}}{\sigma_{2\pi b}(z', 0)} \left[ e^{-2\pi b p_{n} t_{n}} - e^{2\pi b p_{n} t_{n}} \right] \int_{l_{p}} f(\zeta) e^{2\pi i \zeta \cdot (z-t)} d\zeta$$

$$= \frac{2}{\sigma_{2\pi b}(z', 0) \sigma_{2\pi b}(z'-t', 0)} \sum_{p \in P^{n}} \sum_{q' \in Q^{n-1}} e^{2\pi b p' q' \cdot z' + 2\pi b p' (1'-q') \cdot t'} \times$$

$$\times \left[ e^{-2\pi b p_{n} t_{n}} - e^{2\pi b p_{n} t_{n}} \right] \int_{l_{p'}, q' \times l_{p_{n}}} f(\zeta' + ibp' q', \zeta_{n}) e^{2\pi i \zeta \cdot (z-t)} d\zeta.$$

Combining (16) with (17) and (18) we conclude that equality (15) holds also for n variables, q.e.d.

Corollary. For every  $r, s \in N^n$ , v(z, t) satisfies the growth condition

(19) 
$$\sup \frac{|\sigma_{2\pi b}(z) D_z^r D_t^N v(z,t)|}{\sigma_{2\pi b}(t)} < \infty,$$

where the supremum is taken over all  $z \in V_c$ , c < 1/4b, and  $t \in \mathbb{R}^n$ .

Condition (19) can be proved by estimating the derivatives of each term of the sum in (15). For example, if r=s=0, it is sufficient to show that

$$\frac{1}{\sigma_{2\pi b}(z-qz-t+qt)}\int_{I_{p\cdot q}}f(\zeta+ibpq)\,e^{2\pi i\xi\cdot(z-t))}d\zeta$$

is bounded for every  $p \, \epsilon P^n$ ,  $q \, \epsilon Q^n$ , and to apply the inequality

$$\left| \, rac{e^{2\pi b p q \cdot z}}{\sigma_{2\pi b} (qz - qt)} \, 
ight| \leqslant \sigma_{2\pi b} (qt) \, .$$

The same argument can be used for arbitrary  $r, s \in \mathbb{N}^n$ . We omit the details of the proof.

4. Hypoelliptic operators in  $\mathscr{K}_1'$ . Sufficient condition. We now prove that condition (11) of theorem 1 is also sufficient for a distribution  $S \in \mathscr{O}_c(\mathscr{K}_1' : \mathscr{K}_1')$  to be hypoelliptic in  $\mathscr{K}_1'$ . For this purpose we need an appropriate family of parametrices for S, which we define as follows. Given any b > 0, we say that P is a b-parametrix for S, if the product  $\sigma_{2mb}P$  is a bounded distribution and

$$(20) S*P = \delta - W.$$

where W is a  $C^{\infty}$ -function such that

(21) 
$$\sup_{\xi \in \mathbb{R}^n} \sigma_{2\pi b}(\xi) |D^r W(\xi)| < \infty$$

for all  $r \in \mathbb{N}^n$ .

THEOREM 2. If  $S \in \mathcal{O}'_c(\mathscr{K}'_1 : \mathscr{K}'_1)$  satisfies condition (11), then for every b > 0 there exists a b-parametrix for S.

Proof. By assumption, for every b>0 there is an a>0 and an  $a\in R$  such that

$$|\hat{S}(\zeta)| \geqslant |\zeta|^a,$$

when  $\zeta = \xi + i\eta \, \epsilon \, V_b$  and  $\xi \, \epsilon \, R^n \! \setminus \! I_a$ . We define the function f in  $V_b$  by the formula

(23) 
$$f(\zeta) = \begin{cases} 0 & \text{for } \xi \, \epsilon I_a, \\ \frac{1}{\hat{S}(\zeta)(\xi \cdot \xi)^{\mu}} & \text{for } \xi \, \epsilon R^n \setminus I_a, \end{cases}$$

where  $\mu \in N$  is chosen so large that

$$|f(\zeta)| \leqslant M |\xi|^{-n-1}$$

for some constant M. Condition (22) guarantees that such a  $\mu$  exists. Then the function

$$g(\xi) = \sum_{p \in P^n} f(\xi + ibp)$$

is integrable over  $\mathbb{R}^n$ . Its inverse Fourier transform  $\tilde{g}(x)$  is given by the formula

(25) 
$$\tilde{g}(x) = \sum_{n,ph} e^{2\pi b p \cdot x} \int_{-\infty + ibp}^{\infty + ibp} f(\zeta) e^{2\pi i \zeta \cdot x} d\zeta;$$

 $\tilde{g}(x)$  is continuous and bounded in  $\mathbb{R}^n$ .

But  $f(\zeta)$  is analytic for  $\xi \in R^n \setminus \bar{I}_a$ , continuous for  $\xi \in R^n \setminus I_a$  and satisfies condition (24). Therefore, by repeated application of Cauchy's integral theorem, integration in (25) along the lines  $\xi_j + ibp_j$ ,  $-\infty < \xi_j < \infty$  (j = 1, ..., n), can be replaced by integration along the real lines and the quadrangles with vertices at -a,  $-a + ibp_j$ ,  $a + ibp_j$ , a, in the indicated direction. It also has to be observed that, except for the integral over  $R^n$ , integration along a real line can be reduced to the segment from -a to a, again by Cauchy's integral theorem. This procedure leads to the formula

(26) 
$$\frac{\tilde{g}(x)}{\sigma_{2\pi b}(x)} = \int\limits_{\mathbb{R}^n} f(\xi) e^{2\pi i \xi \cdot x} d\xi + \sum\limits_{p \in \mathbb{P}^n} \frac{e^{2\pi b p \cdot x}}{\sigma_{2\pi b}(x)} \int\limits_{l_p} f(\zeta) e^{2\pi i \xi \cdot x} d\zeta,$$

where the contours  $l_{\rho}$  are those defined in lemma 2.

We assert that

(27) 
$$P = \left(-\frac{\Delta}{4\pi^2}\right)^{\mu} \left(\frac{\tilde{g}}{\sigma_{2\pi b}}\right)$$

is a b-parametrix for S. In fact, P satisfies the growth condition for a b-parametrix, i.e.  $\sigma_{2\pi b}P$  is a bounded distribution. Furthermore, by virtue of (26), P is a sum of the distribution

$$P_1 = \left(-\frac{\Delta}{4\pi^2}\right)^{\mu} \tilde{f},$$

where  $\tilde{f}$  is the inverse Fourier transform of f, and the function

$$P_2(x) = \left(-\frac{\Delta}{4\pi^2}\right)^{\mu} \sum_{n \in \mathbb{P}^n} \frac{e^{2\pi b p \cdot x}}{\sigma_{2\pi b}(x)} \int_{l_p} f(\zeta) e^{2\pi i \zeta \cdot x} d\zeta,$$

which belongs to  $\mathscr{EK}'_1$ .

Now, in view of (23) and the definition of  $\gamma(\zeta)$  in lemma 2,

$$(\widehat{S}*P_1)(\xi) = \widehat{S}(\xi)(\xi \cdot \xi)^{\mu} f(\xi) = \gamma(\xi),$$

and so

where

$$W_1(x) = \int e^{2\pi i \xi \cdot x} d\xi = \frac{1}{(2\pi i)^n x^1} \int \int_{-1}^{n} \left( e^{2\pi i a x_j} - e^{-2\pi i a x_j} \right).$$

 $S*P_1 = \delta - W_1$ 

Next we define the function h(x, t) on  $R^{2n}$  as

$$h(x,t) = \sum_{p \in P^n} \frac{e^{2\pi b p \cdot x}}{\sigma_{2\pi b}(x)} \int_{I_p^p} f(\zeta) e^{2\pi i \zeta \cdot (x-t)} d\zeta.$$

For any fixed  $x \in \mathbb{R}^n$ , h(x, t) is in  $\mathscr{E}_1$  as a function of t. Moreover,

(29) 
$$\left( -\frac{\Delta_t}{4\pi^2} \right)^{\mu} S_t \cdot h(x, t) = \sum_{p \in P^n} \frac{e^{2\pi b p \cdot x}}{\sigma_{2\pi b}(x)} \int_{t_p} \gamma(\zeta) e^{2\pi i \zeta \cdot x} d\zeta$$

$$= W_1(x) - \frac{1}{(\pi i)^n x^1 \sigma_{2\pi b}(x)} \int_{t-1}^n (e^{2\pi i a x_j} - e^{-2\pi i a x_j}),$$

by equality (23) and lemma 2.

On the other hand,

(30) 
$$(S*P_2)(x) = \left(-\frac{\Delta_t}{4\pi^2}\right)^{\mu} S_t \cdot [h(x,t) + v(x,t)],$$

where v(x, t) is the function from lemma 3.

But

$$W_2(x) = \left(-\frac{\Delta_t}{4\pi^2}\right)^{\mu} S_t \cdot v(x, t)$$

is a  $C^{\infty}$ -function, which satisfies condition (21), by the corollary following lemma 3. Thus from (28), (29) and (30) we conclude that P satisfies equation (20) with the function

... 
$$W(x) = W_2(x) - \frac{1}{(\pi i)^n x^1 \sigma_{2\pi b}(x)} \prod_{j=1}^n (e^{2\pi i a x_j} - e^{-2\pi i a x_j}),$$

which has the desired properties.

THEOREM 3. If  $S \in \mathcal{C}'_c(\mathscr{X}'_1 : \mathscr{X}'_1)$  and, for every b > 0, there exists a b-parametrix for S, then S is hypoelliptic in  $\mathscr{X}'_1$ .

Proof. Assume that U is a solution in  $\mathscr{X}'_1$  of the equation

$$S*U=F$$
,

where  $F \in \mathscr{E}\mathscr{K}_1'$ . Then there exists a  $k \in N$  such that  $\frac{1}{\sigma_{2\pi k}} \cdot U$  is a bounded distribution and

$$\sup_{x \in \mathbb{R}^n} \frac{1}{\sigma_{2\pi k}(x)} |D^r F(x)| < \infty$$

for every  $r \in \mathbb{N}^n$ .

Let now P be a b-parametrix for S, b > k, and W the corresponding function in (20). Note that P and W may not be in  $\mathscr{C}_c(\mathscr{K}_1':\mathscr{K}_1')$ . Still we can write

(31) 
$$U = U * \delta = U * (S * P) + U * W,$$

where the convolutions with U on the right-hand side are well defined (see section 1). Moreover,

$$U*(S*P) = (U*S)*P = F*P$$

and the last term belongs to  $\mathscr{EK}'_1$ . Also U\*W is obviously in  $\mathscr{EK}'_1$ . Thus U is, in fact, in  $\mathscr{EK}'_1$ , q.e.d.

Combining theorem 2 and theorem 3 we obtain

THEOREM 4. A distribution  $S \in \mathcal{C}'_c(\mathcal{K}'_1 : \mathcal{K}'_1)$  satisfying condition (11) is hypoelliptic in  $\mathcal{K}'_1$ .

In view of theorem 1 we can now state the following corollary:

COROLLARY. Condition (11) is necessary and sufficient for a distribution  $S \in \mathcal{C}'_{+}(\mathcal{K}'_{1} : \mathcal{K}'_{1})$  to be hypoelliptic in  $\mathcal{K}'_{1}$ .

## References

- M. Hasumi, Note on the n-dimentional tempered ultra-distributions, Tôhoku Math. Journal 13 (1961), p. 94-104.
- [2] L. Hörmander,  $\it Linear partial differential operators, Berlin-Göttingen-Heidelberg 1964.$ 
  - [3] L. Schwartz, Théorie des distributions I/II, Paris 1957/1959.
- [4] J. Sebastião e Silva, Les fonctions analytiques comme ultra-distributions dans le calcul opérationnel, Math. Ann. 136 (1958), p. 58-96.
- [5] Z. Zieleźny, Hypoelliptic and entire elliptic convolution equations in subspaces of the space of distributions (I), Studia Math. 28 (1967), p. 317-332.
- [6] On the space of convolution operators in  $\mathcal{K}_1'$ , Studia Math. 31 (1968), p. 219-232.

Reçu par la Rédaction le 2. 1. 1968