

Reflexivity and summability, II*

by

DANIEL WATERMAN (Detroit)

In the preceding note with T. Nishiura [2] our principal interest was the question: Is reflexivity of a Banach space equivalent to a summability property? This question and the others considered arose from the classical theorem of Banach and Saks on (C,1)-summability and L_p -spaces. We answered this question affirmatively by showing that a Banach space B is reflexive if and only if for every bounded sequence there is a regular essentially positive summability method T and a subsequence whose T-means converge (either weakly or strongly).

Singer has raised the problem of reducing the requirements on the summability method and has shown [4] that the requirement of essential positivity may be omitted. The result which we now present gives somewhat more information.

Modifying slightly our previous notation [2], we will say that a Banach space B has property \mathscr{S} (w \mathscr{S}) if for every bounded sequence in B there is a summability method T and a subsequence such that the T-means of the subsequence converge strongly (weakly).

Letting $T=(c_{mn})$, the class of convergence-preserving methods, i.e., those methods which sum every convergent sequence, is characterized by the following conditions:

(i)
$$\sum_{n=1}^{\infty} |c_{mn}| < H < \infty$$
 for every m ;

(ii)
$$\sum_{n=1}^{\infty} c_{mn} \to c$$
 as $m \to \infty$;

(iii)
$$c_{mn} \rightarrow c_n$$
 as $m \rightarrow \infty$ for every n .

Here, of course, c and c_n are finite. A convergence preserving method is regular, i.e., it sums every convergent sequence to its ordinary sum, if and only if c=1 and $c_n=0$ for all n.

A method will be called almost regular* if it satisfies (ii), (iii), and

(iv)
$$c \neq \sum_{n=1}^{\infty} c_n$$
,

^{*} This research was supported by National Science Foundation Grant GP 7358.

the latter sum being supposed convergent. The $regular^*$ methods (T^* in the notation of Zygmund [6], p. 202-205), are almost regular* with c=1 and $c_n=0$ for all n. Although these methods need not preserve convergence, they are of considerable analytic interest. The most familiar example of a method which is regular*, but not regular, is Lebesgue summability ([1], p. 15-18).

We prove the following

THEOREM. In a Banach space B, property w $\mathscr S$ with almost regular* T implies reflexivity, and reflexivity implies $\mathscr S$ with positive row-finite column finite regular T.

Proof. The second part of the result was proved in our first paper [2], p. 55. Turning to the first part, we note that inserting columns of zeros into T does not affect (ii)-(iv). Since we do not require T to be the same for all sequences, we may then omit the consideration of the subsequence from our definitions of $\mathscr S$ and w $\mathscr S$ and suppose instead that the T-means of the given sequence converge.

Let $\{\Phi_i\}$ be a Schauder basis for a subspace E of B with the property

$$\left\|\sum_{i=1}^n \Phi_i\right\| < M < \infty$$
 for all n .

If, in addition, we had

$$\inf \|\Phi_i\| > 0,$$

this basis would be said to have property P ([5], p. 354).

According to our hypothesis, there is an almost regular* method $T=(c_{mn})$ and a point $x=\sum b_i \Phi_i$ such that the T-means of

$$x_n = \sum_{i=1}^n \Phi_i$$

converge weakly to x. We have, proceeding formally,

$$t_m = \sum_{n=1}^{\infty} c_{mn} x_n = \sum_{i=1}^{\infty} \left(\sum_{n=i}^{\infty} c_{mn} \right) \Phi_i.$$

To verify this last equality, we show that the series involved are strongly equi-convergent. We have

$$\left\|\sum_{i=1}^{N} \left(\sum_{n=i}^{\infty} c_{mn}\right) \varPhi_{i} - \sum_{n=1}^{N} c_{mn} \left(\sum_{i=1}^{n} \varPhi_{i}\right)\right\| = \left\|\sum_{i=1}^{N} \left(\sum_{n=i}^{\infty} c_{mn}\right) \varPhi_{i} - \sum_{i=1}^{N} \left(\sum_{n=i}^{N} c_{mn}\right) \varPhi_{i}\right\|$$

$$= \left\|\sum_{i=1}^{N} \varPhi_{i} \sum_{n=N+1}^{\infty} c_{mn}\right\| < M \left\|\sum_{n=N+1}^{\infty} c_{mn}\right| > 0 \text{ as } N \to \infty.$$

Thus

$$\sum_{i=1}^{\infty} \left(\sum_{m=i}^{\infty} c_{mn} - b_i \right) \Phi_i \to 0 \quad \text{weakly as } m \to \infty,$$

implying that, for each i,

$$\lim_{m\to\infty} \left(\sum_{n=i}^{\infty} c_{mn} - b_i\right) = \left(c - \sum_{n=1}^{i-1} c_n\right) - b_i = \mathbf{0}.$$

Then (iv) implies

$$\liminf_{i o\infty}|b_i|>0$$
 .

Since $\sum b_i \Phi_i$ converges, we have

$$\inf_i \|\varPhi_i\| = 0$$

and therefore $\{\Phi_i\}$ does not have property P. From a theorem of Singer [5], p. 362, we know then that E is reflexive. Pelczyński [3] has shown that the reflexivity of a Banach space is equivalent to the reflexivity of each of its subspaces which has a Schauder basis. Hence B is reflexive.

References

[1] N. K. Bary, A treatise on trigonometric series, Vol. II, New York 1964.

[2] T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963), p. 53-57.

[3] A. Pełczyński, A note on the paper of I. Singer, ibidem 21 (1962), p. 371-374.

[4] I. Singer, A remark on reflexivity and summability, ibidem 26 (1965),p. 113-114.

[5] - Basic sequences and reflexivity of Banach spaces, ibidem 21 (1962),
 p. 351-369.

[6] A. Zygmund, Trigonometric series, Vol. I, Cambridge 1959.

DEPARTMENT OF MATHEMATICS WAYNE STATE UNIVERSITY

Reçu par la Rédaction le 17. 1. 1968