As we saw in the proof of theorem 4, f is an extreme point in the unit sphere of A since the range of f contains infinitely many scalars of modulus 1. Now we need to show that f is not an extreme point in the unit sphere of the closure of A. The set E does not separate the plane and has no interior, consequently by Mergelyan's theorem any continuous function on E is the uniform limit of polynomials [1]. Given the function h(x, y)=x(1-x) for y=0 and h(x,y)=0 for $y\neq 0$, there is a sequence $g_n(z) = \sum a_{mn} z^m$ converging uniformly to h on E and since h(0,0) = 0, we may take $g_n(0) = 0$ for all n. Then $g_n(f)$ is a Cauchy sequence in A and so converges to a function g in the closure of A which is not zero. Since

$$|f(s)\pm g(s)| = |f(s)\pm h(\operatorname{Re}f(s),\operatorname{Im}f(s))| \leqslant 1,$$

 $||f\pm g|| \leq 1$ and f is not extreme in the unit sphere of the closure of A.

References

- [1] L. Carleson, Mergelyan's theorem on uniform polynomial approximation, Math. Scand. 15 (1964), p. 167-175.
 - [2] N. Dunford and J. Schwartz, Linear operators, Part I, New York 1958.
- [3] D. J. H. Garling, Weak Cauchy sequences in normed linear spaces, Proc. Camb. Phil. Soc. 60 (1964), p. 817-819.
- [4] A. Pelezyński and Z. Semadeni, Spaces of continuous functions (III), Studia Math. 18 (1959), p. 211-222.
- [5] R. Phelps, Extreme positive operators and homomorphisms, Trans. Amer. Math. Soc. 108 (1963), p. 265-274.
- [6] W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), p. 39-42.

UNIVERSITY OF CALIFORNIA, IRVINE

Recu par la Rédaction le 29. 1. 1968

Lebesgue and Lipschitz spaces and integrals of the Marcinkiewicz type

RICHARD L. WHEEDEN* (New Brunswick, N. J.)

§ 1. Introduction. A theorem of Zygmund [16] states that for $1 the <math>L^p$ -norm of

$$(Mf)(x) = \left(\int_{0}^{2\pi} \left| \frac{F(x+t) + F(x-t) - 2F(x)}{t} \right|^{2} \frac{dt}{t} \right)^{1/2}$$

satisfies

$$|Mf||_{
u}\leqslant A_{
u}||f||_{
u}$$

and, if $\int_{0}^{2\pi} f(x)dx = 0$,

$$||f||_p \leqslant A_p ||Mf||_p$$

where

$$F(x) = \int_{a}^{x} f(u) \, du.$$

The integral Mf is called the (first) Marcinkiewicz integral of F and is related in a rather natural way to the Hilbert transform of f. In fact, proceeding formally.

$$\begin{split} \int\limits_{-\infty}^{\infty} f(x-t) \, \frac{dt}{t} &= -\int\limits_{0}^{\infty} \left[f(x+t) - f(x-t) \right] \frac{dt}{t} \\ &= -\int\limits_{0}^{\infty} \frac{d}{dt} \left[F(x+t) + F(x-t) - 2F(x) \right] \frac{dt}{t} \\ &= -\int\limits_{0}^{\infty} \left(\frac{F(x+t) + F(x-t) - 2F(x)}{t} \right) \frac{dt}{t} \, . \end{split}$$

It was exactly this relation which led Stein in [9] to define an n-dimensional version of the Marcinkiewicz integral (1). Let $\Omega(z)$, $z \in E_n$,

^{*} Research supported by a National Science Foundation Postdoctoral Fellowship.

⁽¹⁾ For another generalization of Mf to E_n , see [11].

be homogeneous of degree zero, sufficiently smooth and satisfy

$$\int\limits_{\Sigma} \Omega(z')dz' = 0,$$

where z'=z/|z| for $|z|\neq 0$ and Σ is the unit sphere in E_n . Again proceeding formally, the singular integral

$$\int_{E_n} f(x-z) \frac{\Omega(z')}{|z|^n} dz = \omega_n \int_0^\infty \left[\int_{\mathcal{L}} f(x-tz') \Omega(z') dz' \right] \frac{dt}{t}
= \int_0^\infty \frac{d}{dt} (F_x(t)) \frac{dt}{t} = \int_0^\infty \left(\frac{F_x(t)}{t} \right) \frac{dt}{t},$$

where

$$F_x(t) = \int\limits_{|z| < t} f(x-z) \frac{\Omega(z')}{|z|^{n-1}} dz.$$

In analogy with the 1-dimensional situation, Stein set

$$\mu(f)(x) = \left(\int_0^\infty \left| \frac{F_x(t)}{t} \right|^2 \frac{dt}{t} \right)^{1/2}$$

and proved that for sufficiently smooth Ω satisfying (1.1) and certain values of p, 1 ,

$$\|\mu(f)\|_p \leqslant A_p \|f\|_p.$$

He proved, moreover, that for 1

$$||f||_p\leqslant A_p\sum_{i=1}^n ||\mu_i(f)||_p,$$

where $\mu_i(f)$ is formed from

$$F_x^{(j)}(t) = \int\limits_{|z| > t} f(x-z) \, rac{z_j'}{|z|^{n-1}} \, dz \, .$$

Stein's results were later improved by Hörmander in his paper [8] where the following results are proved.

THEOREM 1. Let $f \in L^p$, $1 \leq p < \infty$, and let Ω be a real-valued function homogeneous of degree zero satisfying (1.1). In addition, let the modulus of continuity $\omega(\delta)$ of Ω on Σ satisfy the Dini condition

$$\int_{0}^{1} \frac{\omega(\delta)}{\delta} d\delta < + \infty,$$

and set

$$\mathscr{F}(x,t) = t^{-\beta} \int\limits_{|z| < t} f(x-z) \frac{\Omega(z')}{|z|^{n-\beta}} dz, \quad \beta > 0,$$

$$\mu(f)(x) = \left(\int\limits_0^\infty |\mathscr{F}(x,t)|^2 \frac{dt}{t} \right)^{1/2}.$$

Then the transformation $f \to \mu(f)$ is bounded from L^1 into weak L^1 and from L^p into L^p , 1 .

Conversely,

Theorem 2. If $f \in L^p$, 1 , then

$$||f||_p\leqslant A_{p,\beta,m}\sum ||\mu_j(f)||_p$$

where $\mu_i(f)$ is formed from

$$\mathscr{F}_{j}(x,t) = t^{-\beta} \int\limits_{|z| \le t} f(x-z) \frac{\Omega_{j}(z')}{|z|^{n-\beta}} dz,$$

 $\{\Omega_j\}$ being a normalized basis for the spherical harmonics of a fixed degree $m,\ m \neq 0.$

The restriction in Theorem 2 to the spherical harmonics is stronger than is absolutely necessary and for a more general statement we refer the reader to [8].

The purpose of this paper is to study Marcinkiewicz type integrals formed from hypersingular integrals rather than singular integrals. The hypersingular integral

$$\int\limits_{E_{\alpha}} \left[f(x-z) - f(x) \right] \frac{\Omega(z')}{|z|^{n+\alpha}} dz,$$

0 < a < 2, may be written (by changing to polar coordinates z = tz')

$$\int\limits_{0}^{\infty}\frac{d}{dt}\left(F_{x}(t)\right)\frac{dt}{t^{a+1}}=(a+1)\int\limits_{0}^{\infty}\left(\frac{F_{x}(t)}{t^{a+1}}\right)\frac{dt}{t},$$

where

$$F_x(t) = \int\limits_{|z| < t} \left[f(x-z) - f(x) \right] \frac{\varOmega(z')}{\left| z \right|^{n-1}} \, dz \, .$$

It then seems natural to consider L^p -norms of

$$\left(\int\limits_0^\infty \left|rac{F_x(t)}{t^{a+1}}
ight|^2rac{dt}{t}
ight)^{1/2}$$

or, more generally, L^{ν} -norms of

$$\left(\int\limits_0^\infty \left|\frac{\mathscr{F}(x,\,t)}{t^a}\right|^2 \frac{dt}{t}\right)^{1/2},$$

where

$$\mathscr{F}(x,t) = t^{-\beta} \int\limits_{|z|=t} \left[f(x-z) - f(x) \right] \frac{\Omega(z')}{|z|^{n-\beta}} \, dz.$$

Before proceeding, we introduce some standard notation. Given a measurable function $g(x,t), x \in E_n, 0 < t < \infty$, write (see [8])

$$X^{p}T^{2}y = \left(\int\limits_{\mathcal{L}_{0}^{\infty}}\left(\int\limits_{0}^{\infty}|g\left(x,t
ight)|^{2}rac{dt}{t}
ight)^{p/2}dx
ight)^{1/p}$$

for $1 \leq p < \infty$. If $f \in L^p$, $1 \leq p < \infty$, define $J^u f$ by

$$(J^a f)^{\wedge}(x) = (1 + |x|^2)^{-a/2} \hat{f}(x),$$

where ^ denotes the Fourier transform in the sense of tempered distributions, the Fourier transform of an integrable function being defined

$$\hat{f}(x) = (2\pi)^{-n/2} \int_{E_{-x}} f(z) e^{-l(x\cdot z)} dz$$
.

 J^af is called the Bessel potential of order a of f and it is known that for 0 < a < 2, $J^af = f * G_a$, where $G_a \ge 0$ and $G_a \epsilon L^1(E_a)$. We denote by L^a the class of all L^p -functions $f = J^a \Phi$, where $\Phi \epsilon L^p$, and write $\Phi = J^{-a}f$, $||f||_{p,a} = ||\Phi||_p$. For a discussion of the L^p_a -spaces, see [1] and [3]. We will prove the following companion results to Theorems 1 and 2:

THEOREM 3. Let $f \in L_a^p$, 0 < a < 2, $1 \le p < \infty$, and

$$\mathscr{F}(x,t) = t^{-\beta} \int\limits_{|z| < t} \left[f(x-z) - f(x) \right] \frac{\mathcal{Q}(z')}{\left|z\right|^{n-\beta}} \, dz$$

for $\beta > 0$, where $\Omega \in L^1(\Sigma)$ and for $1 \leqslant \alpha < 2$

(1.2)
$$\int_{\Sigma} z'_j \, \Omega(z') \, dz' = 0, \quad j = 1, \dots, n.$$

Then

$$X^{p}T^{2}(t^{-a}\mathcal{F}(x,t)) \leqslant c\|f\|_{p,a}, \quad 1$$

and

$$\left|\left\{x:T^2\left(t^{-a}\mathscr{F}(x,\,t)\right)>s\right\}\right|\leqslant \frac{c}{a}\,\|f\|_{1,a}\,\left({}^2\right)$$

with c independent of f.

THEOREM 4. Let $f \in L^p$, $1 , and suppose each <math>X^p T^2 (^{-a} \mathcal{F}_j (x, t)) < + \infty$, where

$$\mathscr{F}_j(x,t) = t^{-\beta} \int_{|z| < t} [f(x-z) - f(x)] \frac{\Omega_j(z')}{|z|^{n-\beta}} dz,$$

 $0 < \alpha < 2$, $\beta > 0$, and $\{\Omega_j\}$ is a normalized basis for the spherical harmonics of a fixed degree m, $m \neq 1$ when $1 \leqslant \alpha < 2$. Then $f \in L^n_a$ and

$$\|f\|_{p,a}\leqslant c\Big[\sum_{j}X^{p}T^{2}ig(t^{-a}\mathscr{F}_{j}(x,\,t)ig)+\|f\|_{p}\Big]$$

with c independent of f.

In view of the statements of Theorems 1 and 2 it is natural to ask if these theorems have versions when $X^{p}T^{2}(t^{-a}\mathscr{F}(x,t))$ is replaced by $T^{q}X^{p}(t^{-a}\mathscr{F}(x,t))$, where for $1 \leq p \leq \infty$

$$T^qX^pg(x,t)=\left(\int\limits_0^\infty\|g(x,t)\|_p^qrac{dt}{t}
ight)^{1/q},\quad 1\leqslant q<\infty,$$

$$T^{\infty}X^{p}g(x,t) = \sup_{t} \|g(x,t)\|_{p}.$$

The answer is yes if we replace the Lebesgue spaces L^n_a by the Lipschitz spaces $\Lambda(a,p,q)$ studied in [13]. For the sake of simplicity, we shall define $\Lambda(a,p,q)$ only when $0 < a < 2, \ 1 \le p,q \le \infty$. There are many equivalent definitions for these spaces (see [13], p. 421) but for our purposes the most natural one is in terms of the Poisson integral

$$f(x,t) = \int_{E_n} f(x-z) \frac{t}{(t^2 + |z|^2)^{(n+1)/2}} dz$$

of f. We say that a function $f \in L^{n}(E_{n})$ belongs to A(a, p, q), 0 < a < 2, $1 \leq p, q \leq \infty$, if

$$T^q X^p (t^{2-\alpha} f_{tt}(x,t)) < + \infty,$$

and write $||f||_{a,p,q} = ||f||_p + T^q X^p (t^{2-a} f_{tt}(x,t))$. For the properties of the A(a, p, q)-spaces we refer the reader to [13] and [14]. We will prove the following two theorems:

THEOREM 5. Let $f \in A(a, p, q)$ for $0 < a < 2, 1 \le p, q \le \infty$. If Ω satisfies the hypothesis of Theorem 3, then

$$T^q X^p(t^{-a}\mathscr{F}(x,t)) \leqslant c ||f||_{a,p,q}$$

with c independent of f.

⁽²⁾ $|\{...\}|$ denotes the measure of the set $\{...\}$.

THEOREM 6. Let $f \in L^p$, $1 , and suppose each <math>T^q X^p(t^{-a}\mathscr{F}_f(x,t))$ $< + \infty$, where $1 < q < \infty$, 0 < a < 2 and the $\mathscr{F}_f(x,t)$ are as in Theorem 5. Then $f \in A(a,p,q)$ and

$$\|f\|_{a,p,q}\leqslant c\Big[\sum_{i}T^{q}X^{p}\big(t^{-a}\mathscr{F}_{j}(x,\,t)\big)+\|f\|_{p}\Big]$$

with c independent of f. The theorem is valid for $1 \leq p, q \leq \infty$ if m = 0.

Although we will always restrict a to the range 0 < a < 2, Theorems 3-6 have analogues for larger a and we will indicate what they are. Given an integer $k \ge 1$, let $f \in L^p_{k-1}$. If $v = (v_1, \ldots, v_n)$, where the v_j are nonnegative integers, $|v| = v_1 + \ldots + v_n$, $v! = v_1! \ldots v_n!$, $z^r = z_1^{v_1} \ldots z_n^{v_n}$, then for $|v| \le k-1$, let $f_v(x)$ be the L^p -function which is the derivative of f of order v. For k-1 < a < k+1 and $\beta > 0$, let

$$\mathscr{F}(x,t) = t^{-\beta} \int\limits_{|z| < t} \left[f(x+z) - \sum_{|v| \leqslant k-1} rac{f_v(x)}{v!} z^v \right] rac{\Omega\left(-z'
ight)}{|z|^{n-\beta}} dz \, ,$$

where Ω is a real-valued function which is homogeneous of degree zero and integrable over Σ and, in addition, satisfies for $k \leq \alpha < k+1$

$$\int\limits_{\Sigma} z'^{\nu} \Omega(z') \, dz' = 0$$

for all ν with $|\nu| = k$. Theorems 3-6 are concerned with the case k = 1 of this set-up and it is clear what their analogues are for other k, e.g., if $f \in L^n_{\sigma}$, then $X^p T^2 (t^{-\alpha} \mathscr{F}(x, t)) \leq c ||f||_{p,a}$, etc.

We would like to emphasize that the novelty of Theorems 3-6 is that we have assumed Ω is merely integrable. For $0 < \alpha < 1$ and bounded Ω or for $1 \le \alpha < 2$ and bounded even Ω , Theorems 3 and 5 are simple corollaries of stronger results of Strichartz [12] and Taibleson [13] respectively. (See the remarks at the end of sections 2 and 3.)

In proving the theorems we depend very heavily on the methods developed in [9], [8], [2] and [13], and in many cases our proofs are just slight modifications of those given there. Moreover, we require familiarity with the basic facts in the theory of the L^n_a and $\Lambda(a, p, q)$ -spaces.

§ 2. Proof of Theorem 5. We begin with Hardy's classical inequality.

LEMMA 1. Let h(t) be a non-negative function defined on $0 < t < \infty$. Given $\gamma \neq 0$, let

$$H(s) = \int\limits_{0}^{s} h(t) dt$$
 for $\gamma < 0$

and

$$H(s) = \int_{s}^{\infty} h(t) dt$$
 for $\gamma > 0$.

Then

$$\left[\int\limits_0^\infty \left(s^{\gamma} H\left(s\right)\right)^{\! q} \frac{ds}{s}\right]^{\! 1/q} \leqslant \frac{1}{|\gamma|} \left[\int\limits_0^\infty \left(s^{\gamma+1} H\left(s\right)\right)^{\! q} \frac{ds}{s}\right]^{\! 1/q}$$

for $1 \leq q \leq \infty$.

For a proof see [7], p. 239-246.

Let $f \in L^p$, $1 \le p \le \infty$, and let f(x, y), $x \in E_n$, y > 0, be its Poisson integral. Given $\varepsilon > 0$, repeated integration by parts yields

$$f(u, \varepsilon) = \int_{-\tau}^{t} y f_{yy}(u, y) dy - t f_{y}(u, t) + \varepsilon f_{y}(u, \varepsilon) + f(u, t)$$

so that

$$\begin{split} &\int\limits_{|z|< t} \left[f(x-z,\varepsilon)-f(x,\varepsilon)\right] \frac{\Omega(z')}{|z|^{n-\beta}} \, dz \\ &= \int\limits_{\varepsilon}^{t} y \, dy \int\limits_{|z|< t} \left[f_{yy}(x-z,y)-f_{yy}(x,y)\right] \frac{\Omega(z')}{|z|^{n-\beta}} \, dz - \\ &- t \int\limits_{|z|< t} \left[f_{y}(x-z,t)-f_{y}(x,t)\right] \frac{\Omega(z')}{|z|^{n-\beta}} \, dz + \varepsilon \int\limits_{|z|< t} \left[f_{y}(x-z,\varepsilon)-f_{y}(x,\varepsilon)\right] \times \\ &\times \frac{\Omega(z')}{|z|^{n-\beta}} \, dz + \int\limits_{|z|< t} \left[f(x-z,t)-f(x,t)\right] \frac{\Omega(z')}{|z|^{n-\beta}} \, dz = I_{1} + I_{2} + I_{3} + I_{4}. \end{split}$$

By Minkowski's inequality, the L^p -norm of I_1 with respect to x does not exceed

$$2\int\limits_0^ty\,\|f_{yy}(x,\,y)\|_p\,dy\int\limits_{|z|< t}\frac{|\varOmega(z')|}{|z|^{n-\beta}}\,dz=ct^\beta\int\limits_0^ty\,\|f_{yy}(x,\,y)\|_p\,dy$$

since $\Omega \epsilon L^1$.

If $z = \rho z'$, then

$$f_{\nu}(x-z,\varepsilon) - f_{\nu}(x,\varepsilon) = \int_{0}^{\varepsilon} \frac{d}{dr} [f_{\nu}(x-rz',\varepsilon)] dr$$
$$= -\sum_{j=1}^{n} z'_{j} \int_{0}^{\varepsilon} f_{\nu x_{j}}(x-rz',t) dr$$

and by Minkowski's inequality, the L^p -norm of I_2 with respect to x does not exceed

$$t \sum_{j=1}^{n} \|f_{yx_{j}}(x, t)\|_{p} \int_{|z| < t} \frac{|\varOmega(z')|}{|z|^{n-\beta-1}} dz \leqslant ct^{\beta+2} \sum_{j=1}^{n} \|f_{yx_{j}}(x, t)\|_{p}.$$

The L^n -norm of I_3 is majorized by

$$\|2arepsilon\|f_y(x,\,arepsilon)\|_p\int\limits_{|z|\leqslant t}rac{|\mathcal{Q}(z')|}{|z|^{n-eta}}\,dz\leqslant carepsilon t^eta\|f_y(x,\,arepsilon)\|_p$$

R. L. Wheeden

since $\Omega \in L^1(\Sigma)$. To estimate the L^p -norm of I_4 , suppose first 0 < a < 1 and write

$$f(x-z,t)-f(x,t) = \int_{0}^{t} \frac{d}{dr} [f(x-rz',t)] dr,$$

 $z = \rho z'$. Arguing as for I_2 ,

$$||I_4||_p \leqslant ct^{\beta+1} \sum_{j=1}^n ||f_{x_j}(x,t)||_p.$$

If, on the other hand, $1 \le a < 2$, then Ω is orthogonal to polynomials of degree 1 by assumption, and I_4 is not changed if we replace f(x-z,t)-f(x,t) in the integrand by

$$f(x-z, t) - f(x, t) + \sum_{j=1}^{n} z_{j} f_{x_{j}}(x, t)$$

$$= -\sum_{j=1}^{n} z_{j}' \int_{0}^{z_{j}} [f_{x_{j}}(x-rz', t) - f_{x_{j}}(x, t)] dr$$

$$= -\sum_{j=1}^{n} z_{j}^{r} \int_{0}^{\varrho} dr \int_{0}^{r} \frac{d}{ds} [f_{x_{j}}(x-sz',t)] ds = \sum_{j=1}^{n} z_{i}^{r} \int_{0}^{\varrho} dr \int_{0}^{r} f_{x_{i}x_{j}}(x-sz',t) ds.$$

Hence,

$$\|I_4\|_p \leqslant c t^{eta+2} \sum_{i,j} \|f_{x_i x_j}(x\,,\,t)\|_p\,.$$

Collecting these estimates in the case $1 \le a < 2$, we see the L^{n} -norm of

$$t^{-\beta} \int_{|z| \le t} [f(x-z, \varepsilon) - f(x, \varepsilon)] \frac{\Omega(z')}{|z|^{2b-\beta}} dz$$

is majorized by a constant times

$$\int\limits_{0}^{t}y\,\|f_{yy}(x\,,\,y)\|_{p}dy\,+\,t^{2}\,\sum\|f_{yx_{f}}(x\,,\,t)\|_{p}\,+\,\epsilon\,\|f_{y}(x\,,\,\epsilon)\|_{p}\,+\,t^{2}\,\sum\,\|f_{x_{f}x_{f}}(x\,,\,t)\|_{p}\,.$$

Since $f(x, \epsilon)$ is the Poisson integral of f and $\epsilon ||f_y(x, \epsilon)||_p$ tends to zero with ϵ (see [13], p. 426) it follows that

For $q < \infty$,

$$T^q X^pig(t^{-a}\mathscr{F}(x,t)ig) = \left(\int\limits_0^\infty (t^{-a}\|\mathscr{F}(x,t)\|_p)^q rac{dt}{t}
ight)^{1/q}$$

and by Hardy's inequality

$$\left(\int_{0}^{\infty} \left[t^{-a} \int_{0}^{t} y \|f_{yy}(x, y)\|_{p} dy\right]^{q} \frac{dt}{t}\right)^{1/q} \leqslant \frac{1}{a} \left(\int_{0}^{\infty} \left[t^{2-a} \|f_{tt}(x, t)\|_{p}\right]^{q} \frac{dt}{t}\right)^{1/q}$$

$$= \frac{1}{a} T^{q} X^{p} \left(t^{2-a} f_{tt}(x, t)\right) \leqslant \frac{1}{a} \|f\|_{a, p, q}.$$

Since a < 2 (see [13], p. 420)

$$\left(\int\limits_{a}^{\infty} \left[t^{2-a}\|f_{lx_{j}}(x,\,t)\|_{p}\right]^{q} \frac{dt}{t}\right)^{1/q} \leqslant c\,\|f\|_{a,p,q}$$

and

$$\left(\int\limits_{0}^{\infty} \left[t^{2-a} \|f_{x_{i}x_{j}}(x, t)\|_{p}\right]^{q} \frac{dt}{t}\right)^{1/q} \leqslant c \|f\|_{a, p, q}$$

which proves Theorem 5 for $1 \leqslant a < 2$, $q < +\infty$. For $q = \infty$

$$T^{\infty}X^{p}(t^{-a}\mathscr{F}(x,t)) = \sup_{t} (t^{-a}||\mathscr{F}(x,t)||_{p})$$

and the argument is the same using the $q=\infty$ version of Hardy's inequality. Finally, for 0< a< 1 only the part of the argument concerning I_4 requires comment. The contribution of $\|I_4\|_p$ to $\|\mathscr{F}(x,t)\|_p$ is at most

$$t\sum_{j}\|f_{x_{j}}(x,t)\|_{p}$$

and the theorem follows from [13], p. 420, and the fact that

$$T^{q}X^{p}(t^{1-a}f_{t}(x, t)) \leqslant ||f||_{a,p,q}$$

when 0 < a < 1 ([13], p. 421).

Remarks. (1) The argument we have given above differs only slightly from that used in proving part of Theorem 4 of [13]. In fact, if we were willing to allow Ω to be bounded when $0 < \alpha < 1$ or bounded and even when $1 \le \alpha < 2$, then Theorem 1 has stronger versions which follow easily from [13]. For example, we can replace $\mathscr{F}(x,t)$ by

$$t^{-\beta} \int_{|z| < t} |f(x+z) - f(x)| \frac{dz}{|z|^{n-\beta}} \quad \text{for } 0 < \alpha < 1$$

Studia Mathematica XXXII, z. 1

and by

$$t^{-\beta}\int\limits_{|z|< t}|f(x+z)+f(x-z)-2f(x)|\,\frac{dz}{|z|^{n-\beta}}\quad \text{ for } 1\leqslant \alpha<2$$

and the conclusion of Theorem 1 remains valid.

(2) In case p = q = 2,

$$\Lambda(a, 2, 2) = L_a^2$$
 and $T^2 X^2 (t^{-a} \mathcal{F}(x, t)) = X^2 T^2 (t^{-a} \mathcal{F}(x, t))$

Hence Theorem 5 includes the p=2 version of Theorem 3.

§ 3. Proof of theorem 3. The proof of theorem 3 follows the well-known method in [2] (see also [9], [8] and [13]). We begin with two lemmas. L_0^{∞} denotes the space of bounded functions with compact support.

LEMMA 1. For $\Phi \in L_0^{\infty}$, let

$$(A\Phi)(x,t) = \int_{E_{x}} \Phi(y)Q(x-y,t)\,dy.$$

If $T^2Q(x,t)$ is finite for almost all x and both

(a)
$$X^2 T^2 A \Phi \leq c \|\Phi\|_2$$

and

(b)
$$\int_{|x| \ge \lambda d} T^2 [Q(x-y, t) - Q(x, t)] dx \le c$$

independently of d for |y| < d and sufficiently large fixed λ , then

$$X^p T^2 A \Phi \leqslant c \|\Phi\|_p$$

for $\Phi \in L_0^{\infty}$ and 1 .

Lemma 1 is a special case of theorem 2 of [2].

Lemma 2. If $\Phi \epsilon L^p$, $1 \leqslant p < \infty$, then for 0 < a < n, $J^a \Phi = \Phi * G_a$, where

(a) $G_a \geqslant 0$, $\int G_a(x) dx < \infty$

and

(b) G_a is infinitely differentiable for $x \neq 0$, and

$$\left|rac{\partial^{
u}}{\partial x^{
u}}G_a(x)
ight|\leqslant c_{a,
u}|x|^{a-n-|
u|}\quad for\quad |
u|\geqslant 0\,.$$

For a proof, see for example [5], p. 191-192.

If $\Phi \in L_0^{\infty}$, $f = J^{\alpha} \Phi$ and

$$t^{-a}\mathscr{F}(x,\,t;f) = \int\limits_{E_n} [f(x-z) - f(x)] K(z,\,t) \, dz,$$

where $K(z,t) = t^{-a-\beta} |z|^{\beta-n} \Omega(z')$ for |z| < t and K(z,t) = 0 otherwise, we may interchange the order of integration to obtain

$$t^{-a}\mathcal{F}(x,t;f) = \int \Phi(y)Q(x-y,t)\,dy = (A\Phi)(x,t),$$

$$Q(x,t) = K_a(x,t) = \int \{G_a(x-z) - G_a(x)\} K(z,t) dz.$$

It is a simple matter to show that for any c > 0

$$\int\limits_{|x|>c} T^2 K_a(x,t) dx < \infty,$$

since, if for example $1 \leq \alpha < 2$, then

$$K_a(x, t) = \int\limits_{|z| < c/2} \left\{ G_a(x-z) - G_a(x) + \sum_{j=1}^n z_j G_a^{(j)}(x) \right\} K(z, t) dz + \int\limits_{|z| > c/2} \left\{ G_a(x-z) - G_a(x) \right\} K(z, t) dz,$$

where $G_a^{(j)} = \partial G_a/\partial x_j$.

But

$$(3.1) T^2K(z,t) = \frac{|\varOmega(z')|}{|z|^{n-\beta}} \left(\int_{|z|}^{\infty} \frac{dt}{t^{2\alpha+2\beta+1}} \right)^{1/2} = c |\varOmega(z')||z|^{-n-\alpha}.$$

Hence

$$T^{2}K_{a}(x,t) \leqslant c \int_{|z| < c/2} |G_{a}(x-z) - G_{a}(x) + \sum_{z_{j}} Z_{j}G_{a}^{(j)}(z)| \frac{|Q(z')|}{|z|^{n+a}} dz +$$

$$+c\int\limits_{|z|>c/2}\left\{G_a(x-z)+G_a(x)\right\}\frac{|\mathcal{Q}(z')|}{|z|^{n+a}}\,dz.$$

The last integral on the right is clearly integrable over |x|>c>0. By lemma 2 and the mean value theorem, the first is majorized in |x|>c by a constant times

$$|x|^{-n-2+a}\int\limits_{|z|< c/2}|z|^2rac{|\Omega(z')|}{|z|^{n+a}}\,dz.$$

Since a < 2, it is integrable over |x| > c > 0. Hence if we apply lemma 1, we will obtain

$$(3.2) X^p T^2 (t^{-a} \mathscr{F}(x, t; f)) \leqslant c_p ||f||_{p,a}$$

for $1 if we show that for large fixed <math>\lambda$,

$$(3.3) \qquad \qquad \int\limits_{|x|>\lambda d} T^2 \left[K_a(x-y\,,\,t) - K_a(x\,,\,t) \right] dx \leqslant c$$

for |y| < d, with c independent of d (3). Once (3.2) and (3.3) are proved, it will be easy to remove the restriction $f = J^a \Phi$ for $\Phi \in L_0^\infty$.

⁽³⁾ To verify (a) of lemma 1, we use theorem 5 for p=2. However, theorem 3 for p=2 can be proved directly by Parseval's formula. See section 4.

In proving (3.3) we will consider separately the cases 0 < a < 1 and $1 \le a < 2$. Let us take $1 \le a < 2$ and indicate later the changes necessary when 0 < a < 1.

We have

$$egin{aligned} K_a(x-y\,,\,t) - K_a(x\,,\,t) &= \int \left\{ G_a(x-y-z) - G_a(x-y) - G_a(x-z) +
ight. \ &+ G_a(x) \right\} K(z\,,\,t) \, dz = \int\limits_{|z| < d} + \int\limits_{|z| > d} = A + B \,. \end{aligned}$$

Using the orthogonality of $\Omega(z')$ and z'_i ,

$$egin{aligned} T^2A &\leqslant T^2\int\limits_{|z|< d} \left\{ G_a(x-y-z) - G_a(x-y) + \sum_{j=1}^n z_j G_a^{(j)}(x-y)
ight\} K(z,\,t) dz + \ &+ T^2\int\limits_{|z|< d} \left\{ G_a(x-z) - G_a(x) + \sum_{j=1}^n z_j G_a^{(j)}(x)
ight\} K(z,\,t) dz \,, \end{aligned}$$

where $G_a^{(j)} = \partial G_a / \partial x_j$. Since |y| < d, these two terms are essentially of the same form and we consider the second. By the mean-value theorem and Lemma 2 above,

$$\left| G_a(x-z) - G_a(x) - \sum z_j G_a^{(j)}(x) \right| \leqslant c \frac{|z|^2}{|x|^{n+2-a}}$$

for |z| < d, $|x| > \lambda d$. Hence

$$\int\limits_{|x|>\lambda d}T^2Adx\leqslant c\int\limits_{|x|>\lambda d}\frac{dx}{|x|^{n+2-a}}\,T^2\left(\int\limits_{|z|< d}|z|^2\,|K(z\,,\,t)|\,dz\right).$$

From (3.1) we obtain

$$\int\limits_{|x|>\lambda d} T^2 A \, dx \leqslant c \int\limits_{|x|>\lambda d} \frac{dx}{|x|^{n+2-a}} \int\limits_{|z|< d} \frac{|\mathcal{Q}(z')|}{|z|^{n+a-2}} \, dz = O(d^{n-2}) \, O(d^{2-a}) = O(1)$$

since $\Omega \in L^1(\Sigma)$ and a < 2.

We now write

$$\begin{split} B &= \int\limits_{|z|>d} \left\{ G_a(x-y-z) - G_a(x-y) - G_a(x-z) + G_a(x) \right\} K(z,\,t) \, dz \\ &= \int\limits_{d<|z|<|x|/2} + \int\limits_{|z|\geqslant|x|/2} = B_1 + B_2 \,. \end{split}$$

Write the integrand of B_1 as K(z, t) times

$$\begin{split} \left\{ G_a(x-y-z) - G_a(x-z) + \sum_{j=1}^n y_j G_a^{(j)}(x-z) \right\} - \\ - \left\{ G_a(x-y) - G_a(x) + \sum_{j=1}^n y_j G_a^{(j)}(x) \right\} - \sum_{j=1}^n y_j \{ G_a^{(j)}(x-z) - G_a^{(j)}(x) \}. \end{split}$$

Since |z| < |x|/2 in B_1 and $|y| < d \le |x|/\lambda$, the first two terms above are $O(|y|^2/|x|^{n+2-a})$ and the third is $O(|y||z|/|x|^{n+2-a})$. Hence for |y| < d,

$$\begin{split} \int\limits_{|x|>\lambda d} T^2 B_1 dx &\leqslant c \int\limits_{|x|>\lambda d} \frac{dx}{|x|^{n+2-a}} T^2 \int\limits_{d<|z|<\frac{|x|}{2}} (d^2+d|z|) |K(z,t)| \, dz \\ &\leqslant c d^2 \int\limits_{|x|>\lambda d} \frac{dx}{|x|^{n+2-a}} \int\limits_{|z|>d} \frac{|\Omega(z')|}{|z|^{n+a}} \, dz + \\ &+ c d \int\limits_{|x|>\lambda d} \frac{dx}{|x|^{2t+2-a}} \int\limits_{d<|z|<\frac{|x|}{2}} \frac{|\Omega(z')|}{|z|^{n+a-1}} \, dz \end{split}$$

by (3.1). Here

$$d^{2}\int_{|x|>2d}\frac{dx}{\left|x\right|^{n+2-a}}\int_{|z|>d}\frac{\left|\Omega\left(z'\right)\right|}{\left|z\right|^{n+a}}dz=O(1)$$

and

$$\begin{array}{c} d\int\limits_{|x|>\lambda d} \frac{dx}{\left|x\right|^{n+2-a}} \int\limits_{d<|z|<|x|/2} \frac{\left|\varOmega(z')\right|}{\left|z\right|^{n+a-1}} \, dz \leqslant d\int\limits_{|z|>d} \frac{\left|\varOmega(z')\right|}{\left|z\right|^{n+a-1}} \, dz \int\limits_{|x|>2|z|} \frac{dx}{\left|x\right|^{n+2-a}} \\ \leqslant cd\int\limits_{|z|>d} \frac{\left|\varOmega(z')\right|}{\left|z\right|^{n+1}} \, dz = O(1). \end{array}$$

Next

$$B_2 = \int\limits_{|z|>|x|/2} \{G_a(x-y-z) - G_a(x-y) - G_a(x-z) + G_a(x)\}K(z,t) dz$$

and the part

$$\{G_a(x-y)-G_a(x)\}\int_{|z|>|x|/2}K(z,t)dz$$

has T^2 -norm majorized by a constant times

$$\frac{d}{|x|^{n+1-a}} \int\limits_{|z|>|x|/2} \frac{|\Omega(z')|}{|z|^{n+a}} \, dz = c \frac{d}{|x|^{n+1}},$$

whose integral over $|x|>\lambda d$ is bounded. Finally, the remaining part of B_2 is

$$\int\limits_{|z|>|x|/2} \{G_a(x-y-z)-G_a(x-z)\}K(z,t)dz = \int\limits_{\substack{|z|>|x|/2\\|x-z|>2d}} + \int\limits_{\substack{|z|>|x|/2\\|x-z|<2d}} = B_2'+B_2''.$$

Since |x-z|>2d in B_2' and |y|< d, it follows from the mean-value theorem and (3.1) that

$$T^2B_2'\leqslant cd\int\limits_{\stackrel{|z|>|x|/2}{|z-z|>2d}}\frac{|\varOmega(z')|}{|x-z|^{n+1-a}}\,\frac{dz}{|z|^{n+a}}.$$

In this domain of integration $|x-z| \le |x| + |z| < 3|z|$. Hence choosing $0 < \delta < 1$ (then $\delta < a$),

$$T^2B_2^{\prime}\leqslant cd\int\limits_{\substack{|z|>|z|/2\ |x-z|>2d}}rac{|arOmega(z^{\prime})|}{|x-z|^{n+1-\delta}}rac{dz}{|z|^{n+\delta}}$$

so that

$$\int\limits_{|x|>\lambda d} T^2 B_2' dx \leqslant c d \int\limits_{|z|>\lambda d/2} \frac{|\Omega(z')|}{|z|^{n+\delta}} dz \int\limits_{|x-z|>2d} \frac{dx}{|x-z|^{n+1-\delta}} = O(1).$$

In $B_2^{\prime\prime}$, we estimate

$$\int\limits_{\substack{|z|>|x|/2\\|z-z|<2d}}G_a(x-y-z)K(z,t)\,dz,\qquad \int\limits_{\substack{|z|>|x|/2\\|x-z|<2d}}G_a(x-z)K(z,t)\,dz$$

separately. Consider for example the second. Its T^2 -norm is less than a constant times

$$\int\limits_{\substack{|z|>|x|/2\\|x-z|<2d}}\frac{|\Omega(z')|}{|x-z|^{n-\alpha}}\,\frac{dz}{|z|^{n+\alpha}}\,,$$

whose integral over $|x| > \lambda d$ is less than

$$\int\limits_{|z|>\lambda d/2}\frac{|\varOmega(z')|}{|z|^{n+\alpha}}\,dz\int\limits_{|x-z|<2d}\frac{dx}{|x-z|^{n-\alpha}}=O(1)\,.$$

This completes the proof for $1 \le a < 2$. For 0 < a < 1, the only changes necessary are those in the arguments for A, B_1 and B_2' . In A and B_1 we would not introduce the auxiliary terms $\sum z_j G_a^{(j)}(x)$, etc., but majorize $G_a(x-y-z)-G_a(x-y)$ and $G_a(x-z)-G_a(x)$ in A by $O(|z|/|x|^{n+1-a})$ and $G_a(x-y-z)-G_a(x-z)$ and $G_a(x-y)-G_a(x)$ in B_1 by $O(|y|/|x|^{n+1-a})$ for |z|<|x|/2. In B_2' , we would pick $0 < \delta < a$ (then $0 < \delta < 1$). In particular, the argument would not require that Ω be orthogonal to polynomials of degree 1 for 0 < a < 1. This completes the proof of (3.3).

To remove the restriction in (3.2) that $f = J^a \Phi$, $\Phi \in L_0^\infty$, we argue as follows. Given $f \in L_a^p$, $f = J^a \Phi$, choose $\Phi_m \in L_0^\infty$ with $\|\Phi - \Phi_m\|_p \to 0$. Write $f_m = J^a \Phi_m$, $A \Phi_m = t^{-a} \mathscr{F}(x, t; f_m)$ and $A \Phi = t^{-a} \mathscr{F}(x, t; f)$. Then $A \Phi_m$ is a Cauchy sequence in $X^p T^2$ norm, and there exists $g \in X^p T^2$ with $X^p T^2 (A \Phi_m - g) \to 0$. In particular, $X^p T^2 g \leqslant c \|f\|_{p,a}$ and it is enough to show that $g = A \Phi$ for almost all (x, t). However, for fixed t,

$$\|A\varPhi_m - A\varPhi\|_p \leqslant 2 \|f_m - f\|_p t^{-\alpha - \beta} \int_{|z| < t} \frac{|\Omega(z')|}{|z|^{n - \beta}} dz \leqslant ct^{-\alpha} \|f_m - f\|_p.$$

On the other hand, since $X^pT^2(A\Phi_{m_k}-g)\to 0$ there is a subsequence m_k' of m_k with $T^2(A\Phi_{m_k}-g)\to 0$ almost everywhere. For such x, there is a subsequence m_k'' of m_k' with $A\Phi_{m_k'}\to g$ for almost all t. It follows that

 $g=A\Phi$ for almost all $(x,t),t\geqslant \delta.$ Since δ is arbitrary, the proof is complete.

It remains only to prove the weak-type conclusion of theorem 3 for p=1. Although p=1 is not considered in [2], it is easy to check that theorem 3 for p=1 is a corollary of (3.3) and the case p=2 of theorem 3. We omit the proof.

Remark. In case Ω is bounded and $0 < \alpha < 1$ or Ω is bounded and even and $1 \le \alpha < 2$, theorem 3 has a stronger conclusion due to Strichartz [12]. In fact, the conclusion remains true if we replace $\mathscr{F}(x,t)$ by

$$t^{-\beta} \int_{|z| < t} |f(x-z) - f(x)| \frac{dz}{|z|^{n-\beta}}, \quad 0 < \alpha < 1,$$

and by

$$t^{-\beta}\int\limits_{|z|< t}|f(x+z)+f(x-z)-2f(x)|\frac{dz}{|z|^{n-\beta}}, \quad 1\leqslant \alpha<2.$$

The method we followed in proving theorem 3 has the same general outline as that used by Strichartz.

§ 4. Proof of theorems 4 and 6. One can obtain theorem 4 as a corollary of theorem 4 of [2]. However, since theorem 4 of [2] does not apply directly to theorem 6, we will follow a method which can be applied to either theorem 4 or theorem 6.

For $f \in L^2$,

$$(Bf)(x, t) = \int [f(x-z)-f(x)]K(z, t) dz,$$

where $K(z,t)=t^{-a-\beta}|z|^{\beta-n}\Omega(z')$ for |z|< t and K(z,t)=0 otherwise, belongs to L^2 as a function of x for each fixed t>0. Its Fourier transform with respect to x is

(4.1)
$$(Bf)(\hat{x}, t) = \hat{f}(x)k(x, t)$$
, where $k(x, t) = \int K(z, t)[e^{-i(x\cdot z)}-1]dz$.

$$(X^{2}T^{2}Bf)^{2} = \int_{E_{n}} \int_{0}^{\infty} |(Bf)(x,t)|^{2} \frac{dt}{t} dx = \int_{0}^{\infty} \frac{dt}{t} \int_{E_{n}} |(Bf)(\hat{x},t)|^{2} dx$$

$$= \int_{E_{n}} |\hat{f}(x)|^{2} (T^{2}k(x,t))^{2} dx.$$

Since $T^2k(x,t)$ positively homogeneous of degree a in x=|x|x',

$$(4.2) (X^2 T^2 B f)^2 = \int |\hat{f}(x)|^2 |x|^{2\alpha} (T^2 k(x', t))^2 dx.$$

We now observe that $(T^2k(x',t))^2$ is bounded if $\Omega \in L(\Sigma)$ and is orthogonal to polynomials of degree 1 when $1 \leq a < 2$. For

$$|k(x',t)| \leqslant 2t^{-\alpha-\beta} \int\limits_{|z| < t} \frac{|\Omega(z')|}{|z|^{n-\beta}} dz = O(t^{-\alpha})$$

and therefore

$$\int\limits_{1}^{\infty}|k(x',t)|^{2}rac{dt}{t}\leqslant c\int\limits_{1}^{\infty}rac{dt}{t^{2a+1}}<\infty$$
 .

For $0 < \alpha < 1$, $e^{-i(x',z)} - 1 = O(|z|)$ and

$$|k(x',t)|\leqslant ct^{-a-eta}\int\limits_{|z|< t}rac{|arOmega(z')|}{|z|^{n-eta-1}}\,dz=O(t^{1-a})$$

and

$$\int\limits_0^1 |k(x',t)|^2 \, \frac{dt}{t} \leqslant c \int\limits_0^1 \frac{dt}{t^{2a-1}} < \infty.$$

If $1 \le a < 2$, we may replace $e^{-i(x'\cdot z)} - 1$ in the integrand of k by $e^{-i(x'\cdot z)} - 1 + i(x'\cdot z) = O(|z|^2)$ and argue in the same way.

If Ω is a spherical harmonic of degree m, $\Omega=Y_m,\ m\neq 1$ when $1\leqslant \alpha<2$, then

$$k(x',t) = egin{cases} t^{-a-eta} \int\limits_{|z| < t} rac{Y_m(z')}{|z|^{n-eta}} e^{-i(x'.z)} dz, & m
eq 0, \ t^{-a-eta} \int\limits_{|z| < t} rac{Y_0(z')}{|z|^{n-eta}} ig[e^{-i(x'.z)} -1 ig] dz, & m = 0. \end{cases}$$

Changing to polar coordinates $z=\varrho z',\ \varrho=|z|,$ and applying the formula ([6], p. 247 and p. 178)

$$\int\limits_{\Sigma} Y_m(z') e^{-is(x'\cdot z')} dz' = i^m (2\pi)^{\gamma} \frac{J_{m+\gamma}(s)}{s^{\gamma}} Y_m(-x'),$$

where $\gamma = (n-2)/2$ and J_{ν} is the Bessel function of order ν , we obtain

$$k(x',t) = c_m \mu_m(t) Y_m(x')$$

where, for $m \geqslant 1$,

$$\mu_m(t) = t^{-a-eta} \int\limits_0^t arrho^{eta-\gamma-1} J_{m+\gamma}(arrho) darrho$$

and

$$\mu_0(t) = t^{-a-\beta} \int_0^t \varrho^{\beta-1} \left[\frac{J_{\gamma}(\varrho)}{\varrho^{\gamma}} - \frac{1}{2^{\gamma} \Gamma(\gamma+1)} \right] d\varrho.$$

We observe that the coefficients c_m and the multipliers $\mu_m(t)$ depend only on the degree of Ω and not on Ω itself. Hence since $T^2k(x',t)$ is finite $(m \neq 1 \text{ when } 1 \leq \alpha < 2)$,

$$(4.3) (T^2 k(x',t))^2 = C_m Y_m^2(x').$$

For $f \in L_{\epsilon}^{\epsilon}$

$$(X^2T^2Bf)^2 = (Bf, Bf) = \langle B^*Bf, f \rangle,$$

where $\langle \cdot, \cdot \rangle$ is the inner product between L^2_{-a} and L^2_a . Taking successively for Y_m each element $Y_{m,j}$ of an orthonormal basis for the spherical harmonics of a fixed degree m, $m \neq 1$ if $1 \leq a < 2$, denoting by $B_j = B_{m,j}$ the corresponding operator and adding over j, we obtain

$$\left\langle \sum B_{j}^{*}B_{j}f,f\right\rangle =C_{m}\int\left|\hat{f}\left(x\right)\right|^{2}\left|x\right|^{2a}dx$$

from (4.2), (4.3) and the fact that $\sum_{j} Y_{m,j}^2$ is a constant depending on m ([6], p. 243). Since $B_j^* B_j$ is self-adjoint, we may polarize this identity to get

$$\left\langle \sum B_{f}^{*}B_{j}f,g\right
angle =C_{m}\int\widehat{f}(x)\overline{\widehat{g}}(x)\left|x\right|^{2a}dx$$

for $f, g \in L_a^2$.

LEMMA 1. For $\delta > 0$,

$$(1+|x|^2)^{\delta/2}=|x|^{\delta}d\hat{\sigma}+d\hat{\tau}$$
,

where $d\hat{\sigma}$ and $d\hat{\tau}$ denote Fourier transforms of finite measures $d\sigma$ and $d\tau$. See [10], p. 103.

If [,] denotes the inner product in L^2 , Parseval's formula and Lemma 1 give

$$\begin{split} [J^{-a}f, J^{-a}g] &= \int \hat{f}(x) \overline{\hat{g}}(x) (1 + |x|^2)^{2a/2} dx \\ &= \int \hat{f}(x) \hat{g}(x) |x|^{2a} d\hat{\sigma} dx + \int \hat{f}(x) \overline{\hat{g}}(x) d\hat{\tau} dx \end{split}$$

for $f, g \in L^2_a$. Incorporating the constant C_m in $d\sigma$, we obtain for such f and g

$$[J^{-a}f, J^{-a}g] = [J^{a}\sum B_{j}^{*}B_{j}(f*d\sigma), J^{-a}g] + [J^{a}(f*d\tau), J^{-a}g]$$

and since $g \in L_a^2$ is arbitrary,

(4.4)
$$J^{-a}f = J^a \sum_j B_j^* B_j (f * d\sigma) + J^a (f * d\tau)$$
 for $f \in L_a^2$.

If we consider $B = B_p$ as an operator from L_a^p to X^pT^2 , its adjoint B_p^* is bounded from $X^{p'}T^2$ to $L_{-a}^{p'}, 1/p+1/p'=1$. Thus in (4.4), $B_i^*B_i$ $=B_{j,2}^*B_{j,2}$ and we note that for $f \in L_a^p \cap L_a^2$, $B_2^*B_2f = B_{\nu'}^*B_{\nu}f$. For if U(x, t) is infinitely differentiable and has compact support in $E_n \times (0, \infty)$, it is easy to see that

$$B_2^* U = B_{\nu'}^* U = \iint [U(x-z,t) - U(x,t)] K(-z,t) dz \frac{dt}{t}.$$

By approximating, $B_2^* U = B_{\nu}^* U$ for $U \in X^2 T^2 \cap X^{\nu} T^2$. But if $f \in L^p_a \cap L^2_a$, then $B_a f = B_a f \in X^2 T^2 \cap X^p T^2$.

In particular, if $f \in L^p_a \cap L^2_a$, $1 , then <math>B^*_{i,2}B_{i,2}(f * d\sigma)$ $=B_{i,\nu'}^*B_{i,\nu}(f*d\sigma)$ in (4.4) and taking L^{ν} -norms,

$$\|f\|_{p,a} = \|J^{-a}f\|_p \leqslant c \sum X^p T^2 B_j(f*d\sigma) + \|f*d\tau\|_{p,-a}.$$

For fixed t, $B_i(f*d\sigma) = (B_if)*d\sigma$ by (4.1) so that

$$X^p T^2 B_i(f * d\sigma) \leqslant c_\sigma X^p T^2 B_i f$$

by Young's theorem. Therefore, for $f \in L_a^p \cap L_a^2$

(4.5)
$$||f||_{p,a} \leqslant c \left[\sum_{j} X^{p} T^{2} B_{j} f + ||f||_{p} \right].$$

It follows from Theorem 3 and an approximation argument that (4.5) holds for any $f \in L_a^p$.

Finally suppose $f \in L^p$, $1 , and each <math>X^p T^2 B_j f < + \infty$, where $\{Y_{m,i}\}$ is a normalized basis for the spherical harmonics of degree m, $m \neq 1$ when $1 \leqslant a < 2$. To prove $f \in L^p_a$, let $f_{\delta} = f * \Phi_{\delta}$, where $\Phi_{\delta}(x)$ $=\delta^{-n}\Phi(x/\delta), \ \delta>0, \ \Phi\geqslant 0,$ is a rapidly decreasing function (i.e., a member of the Schwartz space of testing functions) and $\int \Phi dx = 1$. Then $f_{\delta} \in L_a^p$ for each $\delta > 0$ and

$$(B_j f_\delta)(x, t) = \int (B_j f)(x - y, t) \Phi_\delta(y) dy$$

for almost all (x, t), so that

$$X^{p}T^{2}B_{j}f_{\delta} \leqslant (X^{p}T^{2}B_{j}f)\int \Phi_{\delta}(y)\,dy = X^{p}T^{2}B_{j}f.$$

By (4.5), $||f_{\delta}||_{p,a}$ is uniformly bounded in $\delta > 0$ by

$$e\Big[\sum X^pT^2B_jf+\|f\|_p\Big].$$

The fact that $f \in L^p_\alpha$ and $||f||_{p,\alpha}$ is bounded by the expression above follows exactly as in [15], section 2.

The proof of Theorem 6 is practically the same as that of Theorem 4 and we shall be brief. Since $\Lambda(a, 2, 2) = L_a^2$ and $T^2X^2 = X^2T^2$, (4.4) is true for $f \in \Lambda(a, 2, 2)$. If we consider $B = B_{pq}$ as an operator from

 $\Lambda(a, p, q)$ to $T^q X^p$, its adjoint B_{pq}^* is bounded from $T^{q'} X^{p'}$ to $\Lambda(-a, p', q')$. 1/p+1/p'=1, 1/q+1/q'=1, $1 < p, q < \infty$, these being the dual spaces of $T^q X^p$ and $\Lambda(\alpha, p, q)$ resp. (see [14]). Moreover, for $f \in \Lambda(\alpha, p, q)$ A(a, 2, 2), $B_{22}^*B_{22}f = B_{p'q'}^*B_{pq}f$ by the same kind of argument earlier. In particular, taking $\Lambda(0, p, q)$ -norms in (4.4),

$$(4.6) ||f||_{a,p,q} \leqslant c \sum T^a X^p B_j(f*d\sigma) + ||f*d\tau||_{-a,p,q}$$

$$\leqslant c \left[\sum T^a X^p B_j f + ||f||_p \right]$$

by [13], p. 437. A simple approximation argument and Theorem 5 show that (4.6) holds for any $f \in \Lambda(\alpha, p, q)$.

Suppose now that $f \in L^p$, $1 , and each <math>B_i f \in T^q X^p$, $1 < q < \infty$, where $\{Y_{m,i}\}$ is a normalized basis for the spherical harmonics of degree m, $m \neq 1$ when $1 \leq \alpha < 2$. Let $f_{\delta}(x) = f(x, \delta)$ be the Poisson integral of f. Then $f_{\delta} \in \Lambda(\alpha, p, q)$ for each $\delta > 0$ and since

$$(B_j f_{\delta})(x,t) = \int (B_j f)(x-z,t) \frac{\delta}{(\delta^2 + |z|^2)^{(n+1)/2}} dz,$$

we have

$$T^q X^p(B_j f_\delta) \leqslant T^q X^p(B_j f), \quad \delta > 0.$$

Theorem 6 now follows from (4.6) and [13], p. 426.

That Theorem 6 is true for $1 \leq p, q \leq \infty$ when m = 0 (that is, when $\Omega = 1$) was known by Stein and Taibleson, at least in the case $\beta = n$. For arbitrary $\beta > 0$, we use a method similar to that used in proving Theorem 4, p. 421, of [13]. If $f \in L^p$, $1 \leq p \leq \infty$,

$$f_{yy}(x, y) = \int f(x-z)P_{yy}(y, z)dz = \int [f(x-z)-f(x)]P_{yy}(y, z)dz,$$

where $P(y,z) = y(y^2 + |z|^2)^{-(n+1)/2}$ is the Poisson kernel. Letting

$$G_x(t) = \int\limits_{|z| < t} [f(x-z) - f(x)] \frac{dz}{|z|^{n-\beta}}$$

and changing to polar coordinates,

$$\begin{split} f_{yy}(x,y) &= \int\limits_0^\infty t^{n-\beta} P_{yy}(y,t) \, dG_x(t) \\ &= t^{n-\beta} P_{yy}(y,t) G_x(t)|_{t=0}^\infty - \int\limits_0^\infty G_x(t) \, \frac{d}{dt} \left(t^{n-\beta} P_{yy}(y,t) \right) dt. \end{split}$$

Assuming for the time being that the integrated term is zero,

$$\|f_{\nu
u}(x, y)\|_p \leqslant c \int\limits_0^\infty \|G_x(t)\|_{p-\overline{(y^2+t^2)^{(n+3)/2}}} dt.$$

If $q=\infty$,

$$\|f_{yy}(x,y)\|_p \leqslant cT^{\infty}X^p \left(t^{-a-eta}G_x(t)\right) \int\limits_0^{\infty} rac{yt^{n+a+1}}{(y^2+t^2)^{(n+3)/2}} \, dt \leqslant cy^{a-2}(T^{\infty}X^p Bf),$$
 $Bf = t^{-a-eta}G_x(t).$

If $q < \infty$, then

$$\begin{split} & \left[\int\limits_0^\infty (y^{2-a} \|f_{yy}(x,\,y)\|_p)^q \frac{dy}{y} \right]^{1/q} \leqslant c \left[\int\limits_0^\infty \left(y^{-n-a} \int\limits_0^y \|G_x(t)\|_p t^{n-\beta-1} dt \right)^q \frac{dy}{y} \right]^{1/q} + \\ & + c \left[\int\limits_0^\infty \left(y^{3-a} \int\limits_y^\infty \|G_x(t)\|_p t^{-\beta-4} dt \right)^q \frac{dy}{y} \right]^{1/q} \leqslant c T^q (t^{-a-\beta} \|G_x(t)\|_p) = c T^q X^p Bf, \end{split}$$

by Lemma 1 of section 2.

To show the integrated term is zero for almost all x, it is enough to show that

$$\frac{t^{n-\beta}}{(y^2+t^2)^{(n+3)/2}}\int\limits_{|z|< t}|f(x-z)|\,\frac{dz}{|z|^{n-\beta}}\bigg|_{t=0}^{\infty}=0$$

almost everywhere, since

$$\int\limits_{|z| \le t} |f(x)| \, \frac{dz}{|z|^{n-\beta}} \leqslant c \, |f(x)| \, t^{\beta} \quad \text{ and } \quad |P_{yy}(t,y)| \, \leqslant y/(y^2+t^2)^{(n+3)/2}.$$

If $p = \infty$, then

$$\int\limits_{|z|< t} |f(x-z)| \, \frac{dz}{|z|^{n-\beta}} = O(t^{\beta})$$

and we are done. For large t and $f \in L^p$, $1 \leq p < \infty$,

$$\int\limits_{|z| < t} |f(x-z)| \, \frac{dz}{|z|^{n-\beta}} = \int\limits_{|z| < 1} + \int\limits_{1 < |z| < t} \leqslant M_x + t^\beta \int\limits_{1 < |z| < t} |f(x-z)| \, \frac{dz}{|z|^n},$$

where M_x is finite almost everywhere by Young's theorem and

$$\int_{|z|>1} |f(x-z)| \frac{dz}{|z|^n} < \infty$$

by Hölder's inequality. Hence the integrated term is zero at $t = \infty$ almost everywhere. For small t and $1 \le p < \infty$,

$$\int\limits_{|z|\,<\,t}|f(x-z)|\;\frac{dz}{|z|^{n-\beta_-}}\leqslant \int\limits_{|z|\,<\,1}|f(x-z)|\;\frac{dz}{|z|^{n-\beta}}<\,\infty$$

almost everywhere. Hence the integrated term is zero at t=0 if $n-\beta>0$. If $n=\beta$, then

$$\int\limits_{|z|< t} |f(x-z)| dz = o(1).$$

If $n-\beta < 0$, then

$$\int\limits_{|z| < t} |f(x-z)| \; \frac{dz}{\left|z\right|^{n-\beta}} \leqslant t^{\beta-n} \int\limits_{|z| < t} |f(x-z)| \, dz = o\left(t^{\beta-n}\right).$$

References

[1] N. Aronszajn and K. T. Smith, Theory of Bessel potentials, I, Ann. Inst. Fourier (Grenoble) 11 (1961), p. 385-475.

[2] A. Benedek, A. P. Calderón and R. Panzone, Convolution operators on Banach space valued functions, P. N. A. S., U. S. A., 48 (1962), p. 356-365.

[3] A. P. Calderón, Lebesgue spaces of differentiable functions and distributions, Symp. on Pure Math. 5 (1961), p. 33-49.

[4] - and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), p. 85-139.

[5] — Local properties of solutions of elliptic partial differential equations, Studia.
 Math. 20 (1961), p. 171-225.

[6] A. Erdélyi et al., Bateman manuscript project, Higher transcendental functions, vol. 2, New York 1953.

[7] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge 1959.

[8] L. Hörmander, Estimates for translation invariant operators on L^p -spaces, Acta Math. 104 (1960), p. 93-140.

[9] E. M. Stein, On the functions of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), p. 430-466.

[10] — The characterization of functions arising as potentials, Bull. Amer. Math.
 Soc. 67 (1961), p. 102-104.
 [11] — Singular integrals, harmonic functions, and differentiability properties

of functions of several variables, Symp. Pure Math. 10 (1967), p. 316-335.

[12] R. S. Strichartz, Multipliers on fractional Sobolev spaces, Jour. Math. and Mech. 16 (1967), p. 1031-1060.

[13] M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-space, I, Jour. Math. and Mech. 13 (1964), p. 407-479.

[14] — On the theory of Lipschitz spaces of distributions on Euclidean n-space, II, ibidem 14 (1965), p. 821-839.

[15] R. I. Wheeden, On hypersingular integrals and Lebesgue spaces of differentiable functions, to appear in Trans. Amer. Math. Soc.

[16] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), p. 170-204.

INSTITUTE FOR ADVANCED STUDY and RUTGERS UNIVERSITY

Recu par la Rédaction le 10. 2. 1968