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As we saw in the proof of theorem 4, f is an extremne point in the unit
sphere of A since the range of f contains infinitely many scalars of modulus 1.
Now we need to show that f is not an extreme point in the unit sphere
of the closure of 4. The set I does not separate the plane and has no
interior, consequently by Mergelyan’s theorem any continuous funetion
on F is the uniform limit of polynomials [1]. Given the funetion i{w, y)
=a(l—z) for y =0 and h{z,y) =0 for y # 0, there is a sequence
ga(2) = Sty 2™ converging uniformly to b on J and since A (0, 0) = 0,
we may take g,(0) = 0 for all n. Then g,(f) is & ‘auchy sequence in 4
and so converges to a function ¢ in the closure of A which is not zero.
Since

If(8) £ g(s)] = | [(s) £ (Ref(s), Imf(s)) =< 1,

If£gll <1 and f is not extreme in the unit sphere of the closure of A.
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Lebesgue and Lipschitz spaces and integrals of the Marcinkiewicz type
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RICHARD L. WHEEDEN* (New Bruunswick, N. J.)

§ 1. Introduction. A theorem of Zygmund [16] states that for
1< p < os the L”-norm of

TR ) fPe—t)—2F (2) * dt\?

M) () = bl oL il LAl ool A Rl

e =] t )

i
satisfies
Hyf”u < Au‘.:f}in

and, if fvf(.T)d.r =0,
0

1l < ApIALS,
where

£
F(r) = ff(u,)du.
0
The integral Mf is called the (first) Marcinkiewicz integral of F and

is related in a rather natural way to the Hilbert transform of f. In fact,
proceeding formally,

[ 1o=05 =~ [ ot n—sa—n15

~d a
— [ S P+ Fla—)—2P ()]
0

I

[

B n_j(‘ﬁ(F(.;;+t)+F(;c—t)-21f’(m) a
t t
0

It was exactly this relation which led Stein in [9] to define an
n-dimensional version of the Marcinkiewicz integral (). Let £(2), zeH,,

* Research supported by a National Science Foundation Postdoctoral Fellowship.
(1) For another generalization of 2Mf to En, see [l1].
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be homogeneous of degree zero, sufficiently smooth and satisfy

(1.1) [Qhae =0,

where 2 = z/|2| for |2| # 0 and X is the unit sphere in F,. Again pro-
ceeding formally, the singular integral
at
4 (Zz]
i

ff(”b——z) J(Iz”) dz—-w“f [ff z—12')

P N E AN
= J Gt T= )

where

In analogy with the 1-dimensional situation, Stein set

p(f)(a) = ({

and proved that for sufficiently smooth 2 satisfying (1.1) and certain
values of p,1 < p < oo,

Flt)

t R

2 dt )1/2.

les (Dl < Azl 1l
He proved, moreover, that for 1 < p < oo

Il < 4y X ()l
J=1

where u;(f) is formed from

0= | flo—

|9t

’

Wl

Stein’s results were later improved by Hérmander in his paper [8]
where the following results are proved.
TuEOREM 1. Let feL”, 1 < p < oo, and let Q be a real-valued function

homogeneous of degree zero satisfying (1.1). In addition, let the modulus
of continuity w(d) of 2 on X satisfy the Dini condition

1
f w;a) 48 < + oo,
0

icm
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and set
- 2(2)
F(2,t) =t* ff(m—z) Py dz, p>0,

12 <t

#if) ) = (Jn |F (v, t)lz%?)l"z.

0
Then the transformation f— u(f) is bounded from L' inio weak L'
and from LP into L”, 1 <p < oco.
Conversely,
THEOREM 2. If feL”, 1 < p < oo, then

!zf”D 1‘1 —Au B 2, “u) f)iun

where p;(f) is formed from

2;(')

e

File, ) =1 | fla—2)
|2 <t
{82} being @ normalized basis for the spherical harmonics of a fixed degree
m, m #= 0.

The restriction in Theorem 2 to the spherical harmonies is stronger
than is absolutely necessary and for a more general statement we refer
the reader to [8].

The purpose of this paper is to study Marcinkiewicz type integrals
formed from hypersingular integrals rather than singular integrals. The
hypersingular integral

f[fx

0 < a < 2, may be written (by changing to polar coordinates z = {2")

at ~ L) d
) = (1) [ (0]
[}

0(2)

()] e @2

where
0Q(2)

i dz.

[17@—a—f(a)

It then seems natural to consider L”-norms of

i

Fa(t)

ta-(-l

2 q\ M2
0
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»
or, more generally, L -norms of

where

12t

Before proceeding, we infroduce some standard notation. Given
a meastrable function g(e, t), wel,, 0 <t < oo, write (see [8])

) o a\re e
X“”_(j :( ’ (f ‘!](‘,,-’t)‘:’. - ) (“.)
o t
x, 0

for 1< p < oo If fel”, 1 < p < oo, define J*f by
(DM (@) = (1-F 213 f (@),

where * denotes the Fourier transform in the sense of tempered distri-
butions, the Iourier transtorm. of an integrable function being defined

fla) = (2m)"? ff(c)c"“‘z)tlz.
"“”&

Jaf is called the Bessel potential of order « of f and it is known that
for 0 < a< 2, J =f*@,, where G, > 0 and G,<L'(F,). We denote
by Li the class of all I’-functions f = J°®, where ®e<L”, and write
@ = J7f, ifll,. = |2],. For a discussion of the LY-spaces, see [1] and [3].
We will prove the following companion results to Theorems 1 and 2:

TurorEM 3. Let feLl,0 <a <2, 1 <p < oo, and

‘ s : L L)
‘%(‘1” 1) =1 [f(.’)?—.?) _f('”)] j;ln—/f dz
|2t e
Jor >0, where QeL'(Z) and for 1 Lu <2
(1.2) [0 =0, j=1,..,n.
Then

anvz(ru‘g;-(w’ D) <6l flpey 1 <P < oo,

and

e fp—dgpi ., . € ¥ 9
J{w:l”(t J(w,t)) >S}| ‘m“s'“f“m (%)
with ¢ independent of f.

() 1{..-}| denotes tho measure of the st {...}.

icm°®
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Conversely,

TurortM 4. Let fel”,1 < p < co, and suppose each XPT*(~°F;(x, 1))
< 4 oo, where
2')
—dz,

3 r 0.
Zr =17 [ ife—a—fo) 2
|at =l <

0<a<?2 p>0,and {Q;}is a normalized basis for the spherical harmonics
of a fired degree m,m #=1 when 1 <a<<2. Then feLi and

Wil < | X X" T2 (1% (2, 1)+ 1171,
7

with ¢ independent of f.
In view of the statements of Theorems 1 and 2 it is natural to ask

if these theorems have versions when X"T°(t™°# (x,1)} is replaced by
TUXP(t7"F (x, 1)), where for 1 <{p < co

P - . .
X, ) = ([ o, 05T, 1<,

i

™ XPg(2, 1) = supllg (@, )l

The angwer is yes if we replace the Lebesgue spaces L% by the Lip-
schitz spaces A(a,p, g) studied in [13]. For the sake of simplicity, we
shall define A(«a,p, q) only when 0 < a <2, 1<p,q< co. There are
many equivalent definitions for these spaces (see [13], p. 421) but for
our purposes the most natural one is in terms of the Poisson integral

flo ) = [ o) o de

(t‘l_{__ 1212)(11‘1-1)/2
of f. We say that a function feL”(E,) belongs to Aa,p, q), 0 < a <2,
1<p,q < oo, if

TIIX”(lr?'Aﬂf,KJ?, t)) < + oo,
and write |fllne = Ifl T/ X7 {8 "fule, 1)). For the propertieg of the
A(e, p, g)-spaces we refer the reader to [13] and [14]. We will prove
the following two theorems:

TurOREM 5. Let fed(a,p,q) for 0 <a<2, L<p,g<oo If 2
satisfies the hypothesis of Theorem 3, then

TX(tF (2, 1)) < 6] e

with ¢ independent of f.
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TuroreM 6. LetfeI”,1 < p < oo, and suppose each T" X (=% (s, 1)
< 4+ oo, where 1 < ¢ < oo, 0 < u<<2 and the F;(x,t) are as in Theo-
rem 5. Thenfed(a,p,q) and

Wl < [2 X" (0

with ¢ independent of f. The theorem is valid for 1 < p,q << oo if m = 0.

Although we will always restrict a to the range 0 < « < 2, Theorems
3-6 have analogues for larger « and we will indicate what they are. Given
an integer k& > 1, let fely ;. If » = (v, ..., »,), where the »; are non-
negative integers, [v| = v;+...+w, ol =vl...0!, & =2]l...2», then
for |v| < k—1, let f,(@) be the L”-function W]uoh is the dulv.nwe of f
of order ». I‘or b—1 < a<k+1 and § >0, let

=1 f[f(.’v—]—z)— f:(f)_zf]f? —#)

lzl<t

(@, 1)+ 171,

F(x, t)

Iri<k—1

where £ is a real-valued function which is homogeneous of degree zero
and integrable over X and, in addition, satisfies for & < « < k41

fz'“!?

for all » with |»| = %k, Theorems 3-6 are concerned with the case & = 1
of this set-up and it iy clear what their analogues are for other ky e.g.,
if feLl, then X*T°(t~ “Flu, 1)) <ollflpa, ebe.

We would like to emphasize that the novelty of Theorems 3-6 is
that we have assumed £ is merely integrable. For 0 < « < 1 and bounded Q
or for 1 < a < 2 and bounded even Q, Theorems 3 and 5 are simple
corollaries of stronger results of St1lcha1t7 [12] and Taibleson [13] respec-
tively. (See the remarks at the end of sections 2 and 3.)

In proving the theorems we depend very heavily on the methods
developed in [9], [8], [2] and [13], and in many cases our proofs are
just slight modifications of those given there. Moreover, we require fam-
iliarity with the Dasic facts in the theory of the L? aald A(a, p,y q)-8paces.

Yd2' =0

§ 2. Proof of Theorem 5. We begin with ITavdy’s clagsical inequality.

Lmvma 1. Let h(t) be a non-negative function defined on 0
Given y =% 0, let

<t < o0,

8

H(s)= [ht)d@t for y <0
0
and

= [h@at  for y>o.

icm
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Then
22} o
. ds e 1 Yia
[j (s H (s))" ] *[f s H (s ]
i i L
for 1 < q < oo

For a proof see [7], p. 239-246.
Let feL”, 1 <p < oo, and let f(x,y), xcE,, y> 0, be its Poisson
integral. Given & > 0, repeated integration by parts yields
4

fleye) = [ yfy(w, 9)ay—1fy (u, O+ efy (w, &)+ Fu, 1)
so that ‘
2(2)
[flo—e, e)—f(z, E)]“IZIT;?
lzl<t
- ' 2(2)
= [yt [ Unta—2, 91— fwlan] gy e
e 1z|<t
—t [ Thlo—e, 0w, 0k date [ [fla—z, el—file )%
lzl<t l ] lzl<t

(nz?ﬁ dz+ | [fla—z,)—f(z, )] P Ifz ,?ﬂlz =I+I,+I;+1,.
|zI lef<t
By Minkowski’s inequality, the L”-norm of I, with respect to x
does not exceed
[2@)

[2"7

i
2 [ yltwlo, ity [ S de = ot f Y, D)oy

lel<t
since QeI
If z = p2/, then

4
a . , )
fle—z, &) —fyla,e) = [ = [fyle—rz, e)lds
o
= — v J fw x—rz, tydr

7=1 0
and by Minkowski’s inequality, the Z”-norm of I, with respect to # does
not exceed

n Q , n
E 3 Ul Dl [ g e < e 7_5_3 e (0
=1 =1

le|<t I#l


GUEST


80 R. I.. Wheeden
The L"-norm of I, is majorized by

" l(’( )[ 1z (‘[V,ﬁ:l/- (’I‘ ")H
2e | fy (2 )lly J |2 ‘w“ﬁ dz =< eel™||fy (@, #)llp
leg=d
sinee QeZ'(X). To estimate the I'-norm of I,, suppose first 0 << ¢ < 1
and write

f(r (2, 1) = f ar r—rz', t)]dr,
z = p2'. Arguing as for I,,
n
MEally < et Dy, Dl
F=1

If, on the other hand, 1<l « <2, then £ is orthogonal to poly-
nomials of degree 1 by assumption, and I, is not changed if we replace
fle—z, t)—f(r, 1) in the integrand by

3
G
fla—z, )= f(a, 0+ Y afy @, 0

=1

S \1 /f[[r (=12, 1) — fa; (2, )] dr

7.—=l
. N T
= —_Z,,,J dr J [ fo, (v —s2', )]s = Ezfz,’ J (Z‘i"J Sogey (20— 82, 1) ds.
0 [
Hence,

1]l < Ciﬂi'zznfx,:mj( )
[

Collecting these estimates in the case 1 <
-norm of

a <2, we see the L

Q !
" f [fle—a,e)—f(z, £)] 2(,,,23, dz

&)<t { ‘

is mm]'orized by a constant times

j Y, Y@y 8 D) s 0y Dl e 1@y Nyt D W forgey 2, Ol

Since f(z, &) is the Poisson integral of f and &||f,(x, ¢)|l, tends to
zero with ¢ (see [13], p. 426) it follows that

1 (@, Dl < [ f Ylfw (@, Plpdy+2 Y ey @ Dt 8 3 faey (5 o] -
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For g < oo,

00

TXN(F (@, 1)) = ( [ @17 (@, oy "th)Uq

and by Hardy’s inequality

(fm [1, "Ufty]fw(w, 9 )Ell,dgz/]q—?—)w < %([fc (" [fule, t)”p]q%t‘)]/q

0

1 o 1
= ;TqXp(tu Julz, t)) < " [ llam.q

Since a <2 (see [13], p. 420),

R L A
(f e Uy, O] < el

and

g i qt\e
(J 2ttty 00,2 5) " < e

«
which proves Theorem 5 for 1 < a < 2, ¢ < 4 oo, For ¢ = oo

TOXP (™ F (i, 1)) = sup ("|F (x, 1))
t

and the argument is the same using the ¢ = oo version of Hardy’s ine-
quality. Finally, for 0 < « < 1 only the part of the argument concer-
ning I, requires comment. The contribution of |1,lj, to [|# (x, t)|, is at
most

£ 2 ey, Ol
?
and the theorem follows from [13], p. 420, and the fact that

TIIX“(’k“ft(m: f)) < | fllapoa
when 0 < <1 ([13], p. 421).

Remarks. (1) The argunent we have given above differs only slightly
from that used in proving part of Theorem 4 of [13]. In fact, if we were
willing to allow £ to be bounded when 0 < a <1 or bounded and even
when 1 < a <2, then Theorem 1 has stronger versions which follow
easily from [13]. For example, we can replace % (x,?) by

dz
-t B ) )] e
t M.LU(LH 2)— fl(x)] PG for 0 <a<1

Studia Mathematica XXXII, z 1 &
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and by

de
o [ Ifleta+flo—a)—2f@) g fr1<a<2
iz <t
and the conclusion of Theorem 1 remains valid.
(2) In case p =q = 2,
A(a,2,2) =L and TX("F(a,1) = XTI ([17"F(z,1)).
Hence Theorem 5 includes the p = 2 version of Theorem 3.

§ 3. Proof of theorem 3. The proof of theorem 3 follows the well-
known method in [2] (see also [9], [8] and [13]). We begin with two
lemmas. LY denotes the space of bounded functions with compact support.

Levma 1. For @ ey, let
= fdﬁ(y)@(w—y,t)dy.

If T*Q(x,t) is finite for almost all x and both
(a) X2T2A¢ < ¢||D|ls

and
) [ TQa—y,1)—Q(x t)]dz < ¢

1224
independently of d for |y| < d and sufficiently large fived A, then
XPT*AD < ¢||D,
for @eLy and 1 < p < oo.
Lemma 1 is a special case of theorem 2 of [2].

LeMmA 2. If @elP,1 < p < oo, then for 0 < a<mn, J°@ = DxG,,
where
(a) G = 0, [Go(x)dw < oo
and
(b) @, s infinitely differentiable for » =0, and
ivGu(m) < cu,vlm.lu_nmm Jor [v| =2 0.
0

For a proof, see for example [57], p. 191-192.
If OeLy, f=J"D and

o F (@, t) = [[fle—2)—2))K (2, 1)de,
. Ey,
where K(z,1) = t““’ﬂ]z]ﬂ"‘!)( 'y for || <t and K(z,t) = 0 otherwise,
we may mterchange the order of mtegmtlon to obtain

°F (@, 13 f) = f@ —y, t)dy = (AD)(z, 1),

icm
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where
Q@,1) = Ku(2, 1) = [{Gulr—2)— G (2)} K (2, ) d.
It is a simple matter to show that for any ¢ >0
[ PR (z,t)dz < o,
121>e
since, if for example 1 < a < 2, then

R (z,)= | {G (2—2)— Gl i‘z,.eg)(x)}lr(z,t)dwr

l2j<e/2

+ f {6l —2)— G, (2)} K (2, 1) dz,

12j>c/2
where GY) = 0G,/dx;.
But
2 QG a
3.1 T°K(z,1) = —_— = P Ratcd
(3.1) v (2,9 o ? (]g,f tﬂa-}-ﬁﬁ—rl) c|R(=") |2} .
Hence,
TK,(z,1) < Gy (20— 2) — (J_) )I
Q(z
e f{G (2= 2)+ i )}’ @l g
=502 I2]

The last integral on the right is clearly integrable over |z| > ¢ > 0.
By lemma 2 and the mean value theorem, the first is majorized in 2| > ¢
by a constant times
2 [2(2)]

—n—2+a
I |2* N

dz.

|z

zi<cr2

Since o < 2, it is integrable over |z > ¢ > 0.
Hence if we apply lemma 1, we will obtain

(8.2) P F (2,4 1) < eplffpa

for 1 < p < co if we show that for large fixed 2,

(3.3) [ TRy, 1)~ Ka(a, 9]do < o
| >2d

for |y| < d, with ¢ independent of d (*). Onee (3.2) and (3.3) are proved
it will be easy to remove the restriction f=J°D for ¢eL°° T

(®) To verify (a) of lemma 1, we use theorem 5 for p = 2. However, theorem 3
for p = 2 can be proved directly by Parseval’s formula. See section 4.


GUEST


icm

. Wheeden

84 R.

In proving (3.3) we will consider separately the cases 0 <a <1
and 1 < a< 2. Let us take 1 < a < 2 and indicate later the changes
G,‘(’I - ”) +‘

= A+B
-d

necessary when 0 < o<1
We have

Ey(o—y,t)— Ku(o,t) = [ {6,
+ Gu( )

—y—r)—G.(z—y)—
K= [ +

1z« d |

Using the orthogonality of £2(z') and =z,
w
450 (0 — g/)} K(z, )dz+

PAST | {Gla—y—2)—Clz—y)+
lef<a i1
+1° [ G (r—2)—Gu(2)+ Tz,GS.” )} K (e, t)dz,
g= 1
these two terms are essentially

et<d
where G = 06,/dx;. Since |y| < d,
of the same form and we consider the second. By the mean-value theorem

| ‘n 2 ln

and Lemma 2 above,
t G lz—2)— G (z)— 2 26D (2)| <

for |2| < d, |@] > Ad. Hence
(!
T Adw < ¢ f I [,ff,_a T2< f 4| I (2 |(z~)
|2]d

1#154d
From (3.1) we obtain
d (= . .
f T Ads < e ! “(I e — 0@0(@ = oq)
x| >2d |ri>2d [ r lel<d | |
since QeL'(X) and a <
‘We now write
B = [ {Gfo—y—2)—Gulr—y)—G.lo—2)+G.(0) K (2, t)de
lel>d
= + = B,+B,.
a<iel<izl2  |elzlaie
Write the integrand of B, as K(z,t) times
{Gg(mvyw)—Gu(w—z)Jr ___5;1/;05{" (w—z)} -
=
n i n
—{te— =@+ 3 560 @) — 3 5;{60 (@ —2)— G ()
7=1 J=1

85
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/4, the first two terms above

Since |2 << |#]/2 in B, and [y} < d < |
are O(|y*/; r("*“‘") and the third is O(ly, 2| /{x/" ©*~¢). Hence for jy| < d,
- de 2
TByr<e [ —0 1 f (@+ajz) K (2, 1) dz
ri>2d {r{>id de s e
. dr ~ Q)
<ed? f e J "],Tn-ﬁ' dz-+
riZad a1
dr 12(2")|
+ed e
,r“:[‘dl I n fvm ‘zin—‘ru—l
e decjzi
by (3.1). Here
~ A rR2()
d? - *%,v»f L )~ dz = 0(1)
.L‘J 2_a _y{nTu
Ty Ak a7
and
dz 1Q(z r dx
a T —as ‘Zi’ <d . 3
lry Sad lx}n‘ d<|zje|ri2 “z‘l 1 '.1 o 1 ;;';‘:zxz] Ix%""ﬁ*
r 122
< ed J -;[z L% dz = 0(1).
2 =d i
Next
By= [ {Gula—y—2)=Cula—y)—Cla—2)+ G2} K (2, )
2] > 4r1j2
and the part
Gula—y)—Gu(@)} [ K(z,dz
212
has T*-norm majorized by a constant times
d 12(2")] d
.;’Jﬂf'u dz = Cixlﬁr‘%l»’

L4 1-a
| I
whose integral over |r| > Ad is bounded. Finally, the remaining part of

= B,+B,.

B, is
2] > 1|2
111__z1[<\9d

[ (G (e—y— ) — G (e — )} K (2, 2 =
Since |r—z2| > 2d in B, and |y| < d, it follows from the mean-value

J
I/

theorem and (3.1) that
2 1t 1022 dz
I°B, <cd ————r
: o=
12| >1x/2
[.z:_z|>"d

nia "
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In this domain of integration |z —z| < |#|+ |2 << 3|2|. Hence choosing
0 < d<1 (then 6 < a),

r f-Q(z’)I dz

T*B, < ed - s
12| J}z\'z |m—z[l ’zf e

!arv:zl;'_rd
80 that
2 dx
T*Bydx < od 12 (.2’ dz = 0(1)
[ |e—z2|"!
11> 2d 12 = Adj2 |23 2 2d

In B,’, we estimate

G (e—y—2)K(2,t)dz,
12| > |z)/2 1212 |2
[r—zj<2d |e—zj<2d
separately. Consider for example the second. Its T°-norm is less than
a constant times
Folew)

n—a ] I1L}u7

J:——zl
121 21x)/2
|&—z|<:2d

whose integral over |x| > Ad is less than

© Qe .
lz;n_{.u ~ f |‘L__z‘n—-a - 0(1)

|21 > 2dj2 [e—2|<2d

This completes the proof for 1 <<« < 2. For0 < a < 1, the only
changes necessary are those in the arguments for 4, B, ,md B,. In A
and B; we would not introduce the auxiliary terms Zz]G(a")(w), etc., but
majorize G, (w—y—2)—Go(v—y) and G,(w—2)—G (2) in 4 Dby
O(lal/|#]""*%) and G (@—y—2)—G,(w—2) and G, (o—y)—G.(z) in B,
by O(|yl/lz"+' %) for |2| < |x|/2. In B;, we would pick 0 < § < « (then
0<d<l). In pa,rmcular, the argument would not require that Q he
orthogonal to polynomials of degree 1 for 0 <t « < 1. This completes
the proof of (3.3).

To remove the restriction in (3.2) that f = J"®, $eLy, we argue
as follows. Given feL¥, f = J°®, choose Dy eLy® with [|@ — Dyl -> 0.
Write f,, = J*®,,, A(bm =t""F(x,t; fn) and AP = 17F (w, t; f). Then
A®,, is a Cauchy sequence in l"Tz norm, and there exists g« X”T* with
XPT* (40, —g) — 0. In particular, X?T%g < ¢|lflly,. and it is enough
to show that g = A® for almost all (, 1). However, for fixed i,

4Dy~ AB], < 2|[fm— fllpt~*? f ll ‘n_ < & fm—fllp-

el <t
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Hence [|AD,,— A, - 0 uniformly in ¢ > 6 > 0 and AP, converges
in z-measure to A® uniformly in ¢ > 6 > 0. Thus for all £ > § there is
a single {my} such that AD,, — AP for almost all z. Hence for almost
all x y ADp, — AD for almost all ¢ > 6.

On the other hand, since X”7°(4®,, —g) -> 0 there is a subsequence
my of my with TE(A(I) —g) — 0 almost everywhere. For such z, there
is a subsequence my, of m; with A(D ~ — ¢ for almost all 7. It follows that

g = AP for almost all (z,1),¢> é. Since ¢ is arbitrary, the proof is
complete.

It remains only to prove the weak-type conclusion of theorem 3
for p = 1. Although p =1 is not considered in [2], it is easy to check
that theorem 3 for p = 1 is a corollary of (3.3) and the case p =2 of
theorem 3. We omit the proof.

Remark. In case £ is bounded and 0 < a < 1 or @ is bounded
and even and 1 < « < 2, theorem 3 has a stronger conclusion due to
Strichartz [12]. In fact, the conclusion remains true if we replace # (x, t) by

dz
! flf r—2z)— ylm,_ﬂ) 0<a<1,
=<t
and by
dz
[t +fe—2)—2f(a Igws, 1<a<z.

g <t

The method we followed in proving theorem 3 has the same general
outline as that used by Strichartz.

§ 4. Proof of theorems 4 and 6. One can obtain theorem 4 as a
corollary of theorem 4 of [2]. However, since theorem 4 of [2] does not
apply directly to theorem 6, we will follow a method which can be applied
to either theorem 4 or theorem 6.

For feI?,

Bz, 1) = [[flz—2)

where K(z,1) = 1"*2/"""Q(z') for |2 <¢ and K(z,t) =0 otherwise,
helongs to L? as a function of x for each fixed ¢ > 0. Its Fourier transform
with respect to « is

—f(a)]K(z, t) dza

(B)(x, 1) = flo)k(z, 1)
Fdi .

[(Bf)(, ) ~d—td f—t fl(Bf)(w
0 E,

Ik (o, 1)) dao.

(4.1) , where k(r,t) = fK(z, 1) (e —1]dz.

(X*T° Bfy

“‘v °Hg

-
- oo
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Since T"k(z,t) positively homogeneous of degree « in x = |z,

(4.2) (X*T*Bf)* = j 1F @)™ (T k(! O dov.

‘We now observe that (Tzk(;/u , t))‘ is bounded if 2L (2) and is ortho-
gonal to polynomials of degree 1 when 1 <<« < 2. For
@)
T

kel

[k (2", 1)] < =0

RS

Fo Fodt
f [k(ay ) s c'f i < 0o,
1 1

For 0 <au<l, e™—1=0() and

and therefore

2
(2, 1)) < et="" ’—L,,lﬁ%'] dz = 0(""%)
|e|<<t
and
o
T
f|/~ a'y )| —— = cj i < oo
0
I 1 << 2 wemay replace ¢ % —1 in the integrand of % by
6D 1 ti(x'2) = O(2|*) and argue in the same way.

If 2 is a spherical harmonic of degree m, £ = Y,,, m 5 1 when
1 <a<2, then

t_a_ﬁ m (z )

g e e, m # 0,
, |21t
k(' 1) = ,
—u-—f ' Yﬂ(z ) - i{z)
t —[e —1]de, m = 0.
JZ'" Vi
LU

Changing to polar coordinates z = g, ¢ = |2|, and applying the
formula ([6], p. 247 and p. 178)

f Yo

where y = (n—2

ix’ J, (s
-w( iy = m('sz)v "‘Hii,;(” ) y’m(“‘m/)a

)/2 and J, iy the Bessel function of order », we obtain

k(w,: t) = Cm/u,m('l) Y‘m(”,)
where, for m =1,
t

pm(t) = t_amﬁf Qﬁﬁy—lJm-i-w(@)dQ
4
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and

i
_ J,{(0) 1
e (F a_;xf go1f Yo\l B N
i) =t ‘ [ o 2"1’(”/+1)]d‘l

0

We observe that the coefficients ¢,, and the multipliers 1n(t) depend
only on the degree of 2 and not on 0 itself. Hence since T2k(ux',1) is
finite (m 1 when 1 < a < 2),

(£.3) (T2, )] = CuTh(a).

For stf,,

(X°1°Bf)* =

(Bf, Bf) = {B*Bf,f>,

where {, . is the inner product between L, and L;. Taking successively
tor Y,, each element Y, ; of an orthonormal basis for the spherical har-
monics of a fixed degree m, m 1 if 1 < a < 2, denoting by B; = B,,;
the corresponding operator and adding over j, we obtain

<_\::B;B1fvf> = anf}f(‘r)l 1) *dx
from (4.2), (4.3) and the fact that > Y;,; is a constant depending on m

B
([6], p. 243). Since B}*Bj is self-adjoint, we may polarize this identity
to get

(B Bif, gy = Co [F(2)§(2) |2 da
for f, geL:.
LEMMA 1. For 0> 0,
(142" = |2’ do+dz,

where do and dt denote Fourier transforms of finite measures do and dr.
See [10], p. 103.
It [,] denotes the inner produet in L
Lemma 1 give

Parseval’s formula and

W, J 7] = [flx)ga
= [F@)i

Incorporating the constant (), in do, we obtain for such f

YL+ 2P d
»rlg“dadd+ff Vg () dide

for f, geLZ.
and g

[, J~g] = [J“ N'BY By(fxdo), J“‘g] + [T (fxdr), I "g]
and since geL? is arbitrary,
(4.4) Jf =J° ) B}
for feLs.

B;(fxdo)+J°(f #d7)
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If we consider B = B,, as an opemtm from L} to X"T? its adjoint
Bj is bounded from X¥'T* to I”,,1/p-+1/p' = 1. Thus in (d.4), BfB,
= Bj,B;, and we note that for feL? ~ L}, ByB.f = B} B,f. 1101 if
Uz, z‘) is infinitely differentiable and has compact support in &, X (0, o),
it is easy to see that

. dt
BiU=BLU = [[[U(a—2,0)— U(x,0)]K(~z,t)d -

By approximating, ByU = By, U for UeX®T®~ X"7* TBut if
fell ~ L., then B,f = B,feX*T* ~ X" T

In particular, if feli~ L, 1<p <oo, then ByB;,(fxdo)
= B}y By,(f+do) in (1.4) and taking L”-norms,

flna = 1T"Flp < ¢ 3] X"T* By(fxdo) + | f xdelly,..-
For fixed t, B;(fxdo) = (B;f)*doc by (4.1) so that
XPTB;(fxdo) < ¢, X" T*B;f
by Young’s theorem. Therefore, for feLl ~ I,
(4.5) flhe < o[ X XPT°Bif+Ifl)-
j

It follows from Theorem 3 and an approximation argument that
(4.5) holds for any feIY.

Finally suppose feL”, 1 < p < oo, and each X*T*B;f < - oo, where
{¥ms} is a normalized basis for the spherical harmonics of degree ,
m #1 when 1 <a<2 To prove feLl, let f5 = f+®,, where ®;(a)
= §7"d(x/d), 6 >0, ® > 0, is a rapidly decreasing function (i.e., a mem-
ber of the Schwaru space of testing functions) and [@dw = 1. Then
faeL? for each 6 > 0 and

(Bifs)(@,1) = [(Bif)(@—y, ) @sly)dy

for almost all (z,t), so that

XV Bify < (XPTByf) [ By (y)dy = XPT*B,f.

By (4.5), |Ifsllp,« 1s uniformly bounded in 6 > 0 by
of 3 X1 B+ 1f1h).

The fact that feLf and |/fll,. is bounded by the expression above
follows exactly as in [15], section 2.

The proof of Theorem 6 is practically the same as that of Theorem 4
and we shall be brief. Since A(a,2,2) = I} and T°X* = X°T% (4.4)
is true for fed(a, 2,2). If we consider B = B, as an operator from

icm°®

Integrals of the Marcinkiewicz type 91

A(a, p, ¢) to T* X7, its adjoint B}, is bounded from 7% X* to A(—a, p', ¢'),
1/p+1/p' =1, 1/q+1/q =1, 1< p,q< oo, these heing the dual spaces
of T°X? and A(a D, q) resp. (see [14]). Moreover, for fed(a,p,q) ~
~ Ala, 2, 2), BuBgof = BlygBy,f by the same kind of argument earlier.
In particular, taking A(0, p, ¢)-norms in (4.4),

(4.6) U lang <o S TP By (frdo)+ If+drll_upa
s

[ D T X" Bif+ (1|
by [13], p. 437. A simple approximation argument and Theorem 5
that (4.6) holds for any feA(a, p, ).

Suppose now that feI”, 1 < p < oo, and each B;feT?X?, 1 < q < oo,
where {¥,,;} is a normalized basis for the spherical harmonics of degree
m, m #1 when 1 < a < 2. Let f;() = f(x, 6) be the Poisson integral
of f. Then fsed(a,p,q) for each 6 >0 and since
' B
QTN

show

Bife,t) = [ (Bif)(a dz,

we have

TQXP Jfé TqXp if): 6> 0.

Theorem 6 now follows from (4. and [13], p. 426.

That Theorem 6 is true for 1 <p,q oo When m = 0 (that is,
when 2 = 1) was known by Stein and Taibleson, at least in the case
B = n. For arbitrary j > 0, we use a method similar to that used in
proving Theorem 4, p. 421, of [13]. If feL”, 1 < p < oo,

ful@,y) = [fle—2)Pyly, 2)dz = [[f(a—2)—f(@)1Pyy, 2)dz
where P(y,?) =y(y‘-‘r]z]‘)‘(’"”" is the Poisson kernel. Letting
" dz ’
J Ha—a—f@l =

jel<t

G:(1) =
and changing to polar coordinates,

fute,0) = [ 0P (0, a0
o

Ul fcr

Assuming for the time being that the integrated term is zero,

=Py, " Py (y, 1) dt.

ytnv -1

Mz, 9y < Cf “G WSW
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If ¢ = oo,

(I fuw (s 1)l < PT&X“ tfq f

0

@41

Jtn }

Tyt )0 b < ey * (T X" Bf),

Bf =t~ "@.(1).
If ¢ < oo, then

ou

WY (e A
[[ 0ttt o2 <[ (o fiaone-r-1ar i

0 ‘ i 0
A a
,(;[j r |G H it Zt) I//] GTH(t-—a»-}?“Gm(t)H”) . U.qu‘?“_lff,
0

by Lemma 1 of section 2.
To show the integrated term is zero for almost all z, it is enough
to show that

o ] oo
G . [ (o2 5], =0
almost everywhere, since
) f ol f,f @I and Pyl )| < gt e,
If p = oo, then
[1fte=a1 55 = o)

lz<t
and we are done. For large ¢ and feL”, 1 <{p < oo,
dz (Z~
[we—atEr= [+ [ <ur [ ipe—s-S
o] #el Lt Lt gl
where M, is finite almost everywhere by Young’s theorem and
fla—2) % < oo
l#=>1 \

by Holder’s inequality. Hence the integrated term is zero at ¢ = oo
almost everywhere. For small ¢ and 1 < p < oo,

dz
flf(@"“z)l Wﬂrﬁgé flf(:v—z - in 5 < 00

le <t |Z<1
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almost everywhere. Hence the integrated term is zero att = 0 if n—p > 0.
If n = p, then
[1fte—2)jaz = o(1).
J2) <t

If n—f < 0, then

. dz n .
[e—ai 5 <o [ ipte—siie = o),
lei<t = g <t
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