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To gee that I~* is continuous, let B be open X/H. Then
I(B) = u(p~*(B)). Now p~'(B) =[B] is a collection of cosets in X
and is open; we want to show I(B) = «([B]} is open. Suppose x,cF,
2y, A weu([B]). Because @, — # type I, there is an f = 0 in % such that
o [(@, 1), (@, )] >0 and since weu([B]), (¢,f)e[B], thus (m.,f) is
eventually in [B] and @, is eventually in %([B]). Thus u([Bl) = I(B)
is open in F.

Conclusion. Some of the unresolved questions with respect to the
sequential topology for type I convergence are as follows. First what
is the connection between convergence in the topology and type II con-
vergence. If @, L 2 and the regularizing sequence f, , such that f, £ f#0
and fn@, £ fm, can be chosen so that fe%,, then Theorem 4 gshows that
in fact @, — @ in the topology. If a regularizing sequence with fe%, can
be chosen, then, in particular, lima(2,) < a(#). A reasonable conjecture
is that if x, g z 0, then , - o if and only if iﬁa(mn) < a(?).

If O is such that O ~ By is open in By for each feZ— {0}, then O
is open in F. An unresolved question is: if ¥ is such that ¥V ~ By contains
an open neighborhood of the origin in B; for each fe.— {0} does V neces-
sarily contain an open neighborhood of the origin in ¢

Is ¥ Hausdortf?
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Reflexivity and summability: the Nakano I(p;) spaces
by

D. WATERMAN*, T. ITO, F. BARBER, and J. RATTI (Detroit)

1. A classical theorem of Banach and Saks asserts that every bounded
sequence in L,, p >1, has a subsequence whose (C, 1) means converge.
Nighiura and Waterman [4] showed that a Banach space is reflexive if
and only if, for every bounded sequence, there is a summability method T'
of a particular kind and a subsequence whose 7-means converge (either
weakly or strongly). This has been discussed further by Singer [7], Pel-
czytski [5], and Waterman [8].

In his review [6] of the paper of Nishiura and Waterman, Sakai
raised the following question: Is there a reflexive spaee for which (C, 1)
is not the suitable method? Klee [1] attempted to answer this and showed
that certain I(p;)-spaces of Nakano contained bounded sequences with
no (€, 1) summable subsequences. In section 2 we will show that these
spaces exhibit a more striking property, namely that, for any regular
method T or any regular* method 7™ of Zygmund [10], p. 202-205, there
exists a bounded sequence without 7 (Z*)-summable subsequences.
However, as we will show in section 3, it is precisely these I(p;)-spaces
which are not reflexive. Thus the question of Sakai remains unanswered.
The result in section 3 was stated in our review [9] of [1].

2. Let {p;} be a sequence of real numbers, 1 < p; < co. Then I(p:)
denotes the set of all real sequences % = {f;} such that

0

1
D)t < oo
Pi

i=1

for some « >0 depending on z. We adopt the convention that, for a func-
tion f of a finite real variable, the value at oo is given by

f(o0) = limf(w).

U—>00

* Supported in part by National Science Foundation Grant GT7358.
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Then I(p;) is a linear space and if we define the modular

>y 1
m(z) = Z? ;7%
1 1

o] = inf{l/a: a >0 and m(az) <1},

and

then I(p;) is a Banach space with ||-|| as norm ([2] and [3], § 89).

A useful observation, which is easily verified, is that |z < 1 if and
only if m(z) < 1.

We will now suppose, as did Klee [1], that limsupp; = co. Let
(¢mn) be a regular* summability method, that is,

(i) lim 2 Conn = ly

NM—s00 T
(ii) im ¢y = 0 for every m.

M—s00
Let {¥..} be an increasing sequence of integers such that

00

e

N=N

<%

if N >N,, and set

1 for n>Ny,
Kmn = .
0  otherwise.

Let {p;} be a subsequence of {p:} such that by, =T for every k.
We now define

piPm

0 otherwise,

[ for me{i},
U, =

and let ¥ = {am}, ¥n = {Kmntms}. Then Yn =y coordinatewise. Also

m(y[2) = Y 27"k <1,
1
Implying yel(p;) with |yl <2 and yael(ps) with [ya] <2. Let {Un,} De
a subsequence of {y,}. We will show that the means of {y, } do not con-
verge to the coordinatewise limit Y.
It {tn} is the sequence of (6mn)-means of {9n,}, then

Y—1p = {ai (1_ Zm‘Kmucma)}
and, for 1 >0, -

oo

mly =2 = 3 (11— 3 Ky tpul 3%,

k=1 a=1

icm°
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Consider the term in this sum with 4 — M. We have

oo
2, Eain oo = 3oy
a=1 Qed

where A = {a: n,> Ny}. If M is chosen so large that n, > Ny implies
a > Np,, then

i ZKM”acm“l < %-
a=1
Thus
([ 1= 3 Eatn,oma | 12)° > 1 /222,
a=]
and
1> m{(y—tn)[3) > (12272
requires 4 > %, implying
ly—tmll > %.
3. We shall now establish the following result:
TerOREM. The space 1(p;) is reflexive if and only if
1 < liminfp; < imsupp; < co.
Our proof of this result requires two lemmas. In the following, the
symbol o~ will denote isomorphism, nof isometry.
Lemma 1. If limsupp; = oo, then I(p;) contains a subspace iso-
morphic to 1°.
Proof. Without loss of generality, we may assume that pi =4 for
all 4. Then if wel(p;) and ||z <1, we have

4l = sup |3l <1,
13
for if, for some ¥, |3y| > 1, then
1 1
2‘“‘”11’” > >1,
D PN

implying m(z) > 1, a contradietion.
Conversely, if z<l® and |#], < %, then

m(@) < X< ety < 3ty = e (1~ Joll) < 1.

It is clear then that, as vector spaces, I(p;) and I are identical and,
further,
#lall < ll2lles < 21l
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for all # since, for & #(0,0,...),

x L1
’”(2!194\00) =Z o

implying 2 ||l > {#]| and similarly,

2
m(——-w ) >1,
1lleo
implying 2[lo] > . Thus Upy) 22 1,

LevMuA 2. If imsup p; < oo, then U(po)* o= U(qi), where 1/pi+1]g; = 1.
Proof. Let 1/p+1/¢g =1, 1 < p < oo. Then

vy

4]
2supty,

1 1
ts] <= 17+ —Is|*
fis] < 7 7 .
with equality if and only if ¢ = |s/*"!. Thus, for every s,
1 .
1 s|® = sup {ts— — [t —o < t < oo}.
q p

Let y = {s;}el(g:), © = {t;} l(p;). Then, letting 7 denote the modular
corresponding to 1(gs),

D i < Y 3 i = me)+my).

There are a, f# >0 such that m(aw) and 7(fy) are finite, implying

D) aBltusil < m(aw)+M(fy) < oo

or
2 [£:8;] << co.
Thus, for every yel(g:), we can define a linear functional f, on I(p;)
by
fu(@) = 2’@81-
If b = fym = fyllyll, then
Ih(@)| < m(z)+m(y/lyl)
implying
’ [} = sup{R(z)i : o] <1} <2
and 8o

I1Fll < 21l

icm
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Thus y —f, is a continnous 1-1 mapping of I(g;) into I(p;)*.

Next we show that this mapping is onto. Suppose fel(p)* and
Ifll < 1. Let ¢' denote the sequence which has 1 in the 4-th place and 0
elsewhere and let s; = f(¢"). Then

N

N N
S’i &)™ = sup {Z 18— Zi [t —co < t; < 00}
-1'/ q: - o i A t

< sup {f{#)—m(z) : wel(p:)} <1.

To justify this last inequality, we consider two cases, first supposing
flefl < 1. Then , :

f(@)—m(@) < [If]- kel —m (@) < [la]] < 1.

It is clear that for 0 < a < 1, m(as) < am(x). We also have m{z/|lz])
> 1. Thus for |z >1,

llel] < llaef| m (2 /lj2f)) < m(a),
from which it follows that
f(z)—m(2) <0.

We have then y = {s;}¢l(g:) and m(y) <1.
We now show that {¢'} generates a dense subset of I(p;), implying
f=F, on I(p;). To that end we let [jz] <1; then m(z) <1 and

T

There exist po, and N, such that p; < p, < oo for ¢ > N,. For any
ce(0,1), there is an M, > N, such that, for M > M,,

O 1
= inf.{l/a ta>0 and y_[atilpi<1}.
1{;;{ Ps

o0

1 i Poo mi [Pt
ZE{t,-/s[p<(1/s )Zpi G < 1.

M1 M1
Thus

<e

M
Hw— Ztiei
for M > M.. 1 !

Now we note that we have shown that ||fy| = 1 implies m(y) <1
and, therefore, [ly|] <1. Thus, for any f = f,<l(ps)*, Ifyl > llyll, implying
that the correspondence y «»f, is an isomorphism.

Proof of the theorem. If I(p;) is reflexive, then limsupp; < oo
by lemma 1. Lemma 2 tells us that I(p;)* == 1(¢), implying that 1(g:)
is reflexive. Then limsup ¢; << oo by lemma 1 and, therefore, liminfp; > 1.

Studia Mathematica XXXIIL2 10


GUEST


e ©

icm

146 D. Waterman et alii

Conversely, if 1< liminfp; and limsupp; < oo, then lemma 2- shows
us that I(p:) =2 1{(p:)*™* and, since this isomorphism is the natural imbed-

ding, 1(p;) is reflexive.
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Boundedness in certain topological linear spaces
by

B. A, BARNES* and A. K. ROY (Bombay)

1. Introduction. Throughout this paper we assume that {pr} is
a sequence of real numbers such that 0 < p, << 1 for all k> 1. We also
write this sequence as {p(k)} when this is convenient. Several authors
have considered the topological linear space [(pz) of complex sequences
{bx} with the property that

o({Br}) = X ™™ < oo,
k=1

where the funetion o defines an invariant metric on I(pz) by d({bs}, {az})
= o({bx— az}) (see [4] and the references of [4]). I(px) is & complete metric
linear space with this metric by [4], Lemma 1, p. 423. Most of the interest
in the spaces I(pz) has been confined to the cases where inf pr > 0. Then
l(px) is a locally bounded topological linear spaee in its metric topology
by [4], Theorem 6, p. 430. Also in this case a set is bounded if and only
if it is bounded in metrie by the same theorem. The space I(p;) has quite
different topological properties when inf pz = 0. In this paper we in-
vestigate the bounded sets of I(pz) in the case limp; = 0 and the weakly
bounded sets in I(p;) with a slightly strenger assumption on {p;}. Our
results contrast sharply with those concerning houndedness and weak
boundedness in the case inf p;. > 0. We prove in Section 2 that if limp, = 0,
then a bounded set in I(pz) is always totally bounded. In Section 3, with
a slightly stronger hypothesis on {px}, we prove that a weakly bounded
set in I(pr) is always totally weakly bounded. The last section is devoted
to the consideration of questions concerning boundedness with respect
to k-psendometrics.

After this paper was sent for publication, we learnt that S. Rolewicz
had considered some of the matter presented herein an earlier paper [2].

* The research for this paper was done while this author was a visiting fellow
at Tata Institute of Fundamental Research, Bombay.
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