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Diese eigentlich selbstverstandliche Vorausse‘vzung ist in [1] vergessen
worden, man findet sie aber bei Ditkin und Prudmkov.[?].. Man kénnte
jetzt zwar daran denken, die Vermutung von Mikusifiski durch eine
einfache Abénderung des Beispiels (3) zu widerlegen, doch scheint dies
unmoglich zu sein, da fiir dieses Beispiel die Existenz von Nullteflern
(bei der gewohnlichen Multiplikation) wesentlich ist.

Aus der Existenz des Gegenbeispiels von Frau Sindig (beziiglich
der gewohnlichen Multiplikation) geht noech hervor, daBl die Beweise
der Spezialfille T und IIT in [1] nur einen lokalen Charakter besitzen,
die Aussagen also nur fiir hinveichend kleine A-Intervalle bewiesen sind.
Will man globale Aussagen fiir alle vorkommenden 4 haben, so sind noch
Zusatzbetrachtungen erforderlich. _

AuBerdem ist im Fall I noch die Voraussetzung hinzuzufiigen, daB
die dort vorkommenden Laplace-Integrale beztiglich 1 gleichmifig
existieren.
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The minimal norm problem
and Pontriagin’s maximum principle for Banach spaces (I) -
by

GRAZYNA TOPOROWSKA (WARBZAWAY)

1. Introduction. Balakrishnan [1] discusses some classes of eontrol
problems, in which the state and input or control variables are allowed
to range in Banach spaces. The equation considered in a general case
is of the form

‘”(t) =f(w(t)1 u(t), 7),

where, for each t, u(f) and z(t) are values in a Banach space. For the
linear case we have

(6] a(t) =F(@(®), u(®), 1) = AW)e@)+BH)u(t)+2(),

where 2 (?) and z(t) for each i belong to a Banach space X, u(f) — a control —
for each t belongs to another Banach space X,, A(f) and B (?) are linear
operators for each ¢, B(t): X, — X, for each ¢ is a bounded operator,
and A(f): X; - X, for each ¢ is a closed operator (not necessarily hounded)
with domain dense in X,.

Balakrishnan in his work discusses the minimal norm problem for
a particular case of equation (1), i.e. for

@) b(t) = Aw(t)+ Bu(b),

where 4 and B are constant operators and, besides, the operator 4 is
the generator of a strongly eontinuous semigroup S(t) of bounded oper-
ators (see [3] and [5]). The solution of equation (2) is of the following
form:

12
z(t) = 8()z(0)+ [ (t—0)Bu(o)do.
[}
The minimal norm problem consists in finding a control w,(f) with
a corresponding state x,(f) such that

o (T) =yl = min fja(T)—y]]
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for a fixed final time ¢t = T and with a fixed y ¢ X;. Besides, the following
constraint is imposed on the contirol %(2): consider the space B,(X,; [0, T])
of strongly measurable functions w(-): [0, T] — X, such that

T
[Pt < eo  for a fixed p (1< p < oo).
[

We assume that the control «(-) belongs to a closed bounded convex
set 'C c B,(Xs; [0, T]). Balakrishnan proved Pontriagin’s maximum prin-
ciple (see [4]) for a problem posed as above for equation (2).

This paper is concerned with the minimal norm problem for an
equation with the right-hand side not necessarily linearly dependent
on a control, of form

@ (t) = Aw()+ B(t, u(t))
with the initial value z(0) = #, and shows the validity of Pontriagin’s
maximum principle for such problems.
2. The minimal norm problem and Pontriagin’s maximum principle.

Consider the equation

dx(t)

(1) i Aw(t)+B(t, u(t)

with the initial value
& (0) = Py,

where 2(-) is a function defined in the interval [0, 7] with wvalues in
a Banach space Xy, #(-) — a control — is a function defined in the in-
terval [0, 7] with values in a Banach space X, and Bochner integrable
in [0,7T], 4: X, > X, — a linear operator — is a generator of a C,
strongly continuous semigroup S(t) (see [B], chap. III), and B(-, ") is
a mapping of [0, T1x X, into X, such that

19 for every fixed weX, the element B(f, u) of X, is a function of
the variable ?, strongly measurable on the interval [0, T7,

20 it is strongly differentiable by the second variable on [0, T]x X,
‘and the partial derivative B,(t, u) depends on the variable »in the operator
norm in #(X,, X,) and is bounded in the operator norm.

‘We shall discuss the problem of minimizing the functional

@) [l (L) —yll,

where yeX,; is a fixed element.
Let the pair (mn(t), uo(t)) satisfy equation (1) and let the state ,(f)
corresponding to the control uy(f) minimize the given functional (2).
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The solution of equation (1) is of the form

: t
(3) () = 8(W)a(®)+ [ S(t—s)B(s, u(s))ds
0
since the solution of non-homogeneous equation
' ' do(t)
o = Ax(t)+o(f)

4
2(t) = 8 (0)+ [ 8(1—s)v(s)ds.
0
In our case we have a Bochner integrable B(s, u(s)) instead of v(s).
We now disturb the control «(¢) by putting u,(t)+ edu(t). Let the
state Z(t) correspond to this disturbed control. We shall prove that

4) Z (1) = @y (1) + b2 (1) + 0y(e),
where dz(t) satisfies the equation:
(8) ﬂ%it—) = Az (t)+ But, uo (1)) Su(?).

By assuming that the state Z(t) corresponds to the comtrol u,(?)+-
+ edu(t) we have

% = AZ(8)+ Bt, uo(t) + e0u(?))

and %(t), from (3), is of the form

1
®) (1) = SHF(0)+ [ S(t—8)B(s, u(s) +edu(s))ds,

z(0) = ;.
Tor every fixed te[0, T] the element B (i, uy(t)+odu(f) from X,

is a function of the variable ¢ in [0, ¢] with a continuous derivative
7‘% [B(t, o)+ odult))] = Bult, uo(t)+ adu (1)) du(?)
by differentiation of a composite funetion. Hence
(1) Bt uo(t) +edu(t)) — Bt, uo(t)) :jB{,(t, o (1) + adu(t)) su(t) do
1
= [ f Bl (£, %o(t) +aau(z))¢za] Su(t).
0
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Since the solution of equation (1) is the state 2,(f) corresponding
to the control u,(f), it is of the form .

@o(f) = 8 (t) @ (0 +f6’t—s (s, uo(8))ds,
,(0) = @y,

and hence, from (6) and the above equality

11
= [ 8(t—s)[B
[

E(0) = 2,(0) = &,

(s, o (8)+ £du(s)) — Bs, uy(s))] ds,

and then from (7) we have

£ 8
B(t)—ao(t) = [ St—s)[[ Buls, uols)+ aau(s))cza] Su(s)ds.

On the other hand, since dz(t) satisfies equation (5) and dx(0) =0,

t)nfSt—sB (s, wo(s)) Su(s)ds.

Therefore

Z(t)— %(t)— &da(t)

._fS(t—s UB 8, wg(8)+ odu(s)) do—eBy (s, uq(s)) | du(s)ds

=f S(t—s) {f [By(s, ue(8)+ odu(s))— Bu(s, u,(s))] da} du(s)ds

Now, let
M= supl!S ®l,

K. (s) —iulgllB (85 %o( )+ 08w (8)) — Bu (s, wo(8))llacy, xy)-
‘With the above denotations, for ¢e[0, T]
7
(8) |mm-mm~wmm&<ﬂhjx 180 (8)]x,ds
From the assumed continuity of the partial derivative B, (¢, u)

by 4, we have
(9) LmK,(s) =0
&0

for every se[0, T1.
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K. (s )1smbou.udedfunct10n, since we assumed that By, (f, %) is bounded,
and therefore H,(s)[|ou(s)| is an integrable function. Let us note that

it is non- demea%mg by e Hence from (9) and Lebesgue’s theorem we
have that
r
Lm [ K,(s)]8u(s) x,ds = 0.
&0 -

From this equality and from (8) we can see that
[ (1) — 2 (t) — eb2 (1) 1x, < 0(e)

for all £¢[0, T, where o(e) does not depend on t. The above inequality
can be written as a condition equivalent to (4), that is
Z(t) = iy (1) + e62(1) + 0g(e)
where
i Joe(e)] _
&0 &
uniformly with respect to ¢ in [0, T7.

Consider now space B,(X,; [0, T]) of strongly measurable functions
u(t) with range in X, and such that

r
[ u@)Ifdt < oo for a fixed p (1 <p < o).
[}

Now let in our case the convex bounded set C <= B,(X,; [0, T])
be the set of controls. Let us introduce an operator A, mapping the set €
into X, and assigning to every control u (-) the final state #(T) of the
solution #(-) corresponding to that control. This operator shall be defined

as follows:
T

(10) Au(-) = 8(T)w( +jS(_T s)B(s, u

8(T)x(0) is atixed point in X,. Therefore practically our attention
in this discussion shall be concentrated on the integral operator.

From our assumptions we know that (z,(t), u,(t)) satisties equation
(1) and minimizes the given functional (2). This implies that the point
(L) = 4 (u(,( ) is a boundary point of A(C). Let us consider a set of
disturbed controls {u,(-)+edéu(-)}, where du(-) is an admissible control,
i.e. there exists an g, > 0 such that %,(-)4-e6u(-) is also an element of ¢
provided that 0 < & < ;. It can be seen that the set K of admissible
controls forms & cone with vertex in 0. To make it clear, we have to prove
that if 6,% and d,u are admissible controls and 1, and A, are non-negative
numbers, then

Ot = Ay 810+ Ay S

is also an admissible control.
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If 6, and ,u are admissible controls, then ,by definition, there
exist & >0 and & >0 such that w,+&dueC for 0<& <e and
s+ SyueC for 0 <&’ < e,. When A, = 4, = 0, d3% = 0 is obviously
an admissible control. If A,+ 4, > 0, then gy = (1;/e;+ Aofes) ™" is a well-
defined positive number. Let o; = A;/e;5; then «; >0 and a0, =1.
When 0 < & < &g, %o+ 885 '6;0;% is an element of ¢ for ¢ =1,2, and
this implies, because of the convexity of C, that

o+ 05U = ay (g 887 " &, 0,%) + g (g e85 ep Oq%) €C.

Therefore d,% is an admissible control. Obviously C < ue(-) v K.
The functional (2) defines a certain sphere § with centre in v,

8 = {z: lle—yl| < m},
‘where
m = inf||du—y||.
weC

Suppose m > 0. By the assumption that x,(T) = Au,(-) minimizes,
the functional (2) we know that this point is a boundary point of § and —
by the definition of 4 — a boundary point of the set 4(C). According
to (4) we know that operator A has a weak differential in w,(-), which
will be denoted by 4’. With this denotation we have, for every admissible
control du,

A(uﬂ(')%—sdu(-)) = A(uo(-)) +A.gbu(-)+o(e),

where 0(c) = or(e) and 4’ is a linear operator assigning to the admissible
control Ju the element ’
T
A'du = [ 8(T—s)Bi(s, ug(s)) ou(s)ds.
0

‘We shall now prove that

1) [A(K)+2,(T)] ~ Int S = @.

A’ iy a linear operator, whence it transforms a cone into a cone and
a vertex into a vertex. Suppose (11) is not true. Then there exists a direction
0z (T) corresponding to the control éu(-) and entering the interior of S.
The curve corresponding to that direction, o (T)+e6w(T) (e = A (uy+- £ou))
is tangent to the direction ¢z(T). Thus the corresponding point

#(T) = 2y(T)+ ed2(T)+or(e)

belongs to the interior of S (Int §) provided that ¢ > 0 iy small enough.
But, on the other hand, @(T)eA(C). Therefore

4(0) ~ Int§ # @,

icm°
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whieh is a contradiction, since if it were so, the couple (x4(t), uo(t)) would
not be the optimal solution. Thus we must have

[A(E)+5,(T)] ~ IntS = G.

We shall now use the following theorem (see [3], theorem 2.6.3):
Let X be a Banach space, A, B = X — convex sets, Int 4 # &,
(Int 4) ~ B = @. Then there exist o functional »*<X* and a constant y
such that o*(Int A) >y and «*(4)>y > a*(B), ie o*(4)>a*(B).
In our case, it follows from (11) that there exists a functional o*e X}
such that. #*(8) > 4™ (4" (K)+e(T)), ie.
o™ (Afug (1)) = 2* (A (B)+ 20(T)),

but, since #* is linear and w*(/l(uo(t))) = o (2,(T)), we have o (A'(K))
< 0, and hence, since dou =u—u, i3 a permissible control for every
1eC and the operator A’ and the functional #* are linear,

(12) (A (ug()) > o (4'(u(-))  for uec.
Note that
A = A 4,0 B (Xy;[0,T]) - X4,
where
(Ayu)(¥) = By(t, uy(t)) u(t)

for u(-) eBy(X,; [0, TT);
T
M0 = [ S(T—s)v(s)dse X,
0

Ay: By(Xy; [0, T]) = X;.

Let us now define y* ag

(13) v = A,
where
A3 By(X7; [0, T]) - By(X3; [0, T1), (i+l _ 1)
AF: X > B (X5 [0, T) P q ’
and

A™ = A7 AT: X7 - By(X3; [0, T);
thus y* B, (X7; [0, TT).
From (12) we have *(4,4,(u,)) > & (4,45 (w)), whence
AT (4, () > AT o (Ay(w),
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that is, from (13), - .
(14) ¥ (A1) = 97 (A ().
Note thati (see [3], the form of the linear functional on B,(X; [0, T

T
7 (4s(w) = [ ["(0), (42(w))(0)]do,

[1]
where . o
(15) : ¥'(0) = 8(T—0)a" ey,

for every o. The value of the functional y"(0) on the clement (4, (u)(o)

is [y*(0), (Ao()(0)].
Then (14) is of the form

7 7
f[y*(g)}(Aﬂ,,,‘)(g)]dgg f (5" (0), (Aeuy)(0)]de  for wed.,

that is .
. ,

()) [ W (0),Bifo, wo(ulo)do < [ [y*(0), Bu((o, uy(o))e(0)] do.
0 0

From (15) we know that #* (o) is continuous and that for every
2eX; we have
¥*(0)(@) = " (8 (1~ 0)2)
and

% o) (&) = — " [A8(T— o) 2] = —A*s* [8{T— o)) = —A*y* (o)

for 0 <o < T and weD(4).
Thus formula (*) may be considered as a mazivium principle.
Note that inequality (14) may also be written in the form

I T
(16) [ (@), w(o)ldo < [ [ (o), up(0)ldo  for ueC,
0 0

where
#(0) = {Bi(o, uy(0))}*8* (T~ o) 2*.

Besides, if we assume that (o, ) — By(o, u) is a continuous mapping
of [0,TIxX, into Z(X,, X,) with a topology of operatior norms, then
if the function u, is bounded and strongly measurable, the function z*
is also bounded and strongly measurable. In partieular, by fhese assump-
tions of regularity of B it follows from (16) that it ¢ is the set of all
strongly measurable funetions with values in Xy, defined on [0, 7'] and
satistying the inequality

esssup [u (o)) < M,
oe[0, 7]
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and in the set ¢ so defined there exists an optimal control u,, then
lu(o)lf = AL for almost all ce[0, T7].

Note that Pontriagin’s maximum DPrinciple can be proved in the same
way for the minimal-time problem, when the set § which we want to
attain is any convex closed set with an interior.

T wish to express my gratitude to Professor 8. Rolewiez for his valuable
help when this work has been written.
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