e ©
Im STUDIA. MATHEMATICA, T. XXXIII. (1969)

Unbounded integrally positive definite functions
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R. E. EDWARDS (Canberra)

1. Throughout this note @ will denote a Hausdorff locally compact
group, e its neutral element, 1 a chosen left Haar measure on G,
I’ =IP(@, 2), and C, = C,(@) is the set of continuous complex-valued
funetions on G having compact supports. For brevity we shall write dz
in place of di(x) and d(z,y) in place of d(Ax1)(z,y).

Given a seb F of complex-valued measurable funetions on &, a locally
integrable complex-valued funetion ¢ on G will be said to be F-PD
(= F-positive definite) if and only if

(PD) . fa o (v 2) () f (@)l d (@, y) < oo
and
(PD) . fg Py~ o) fW)f (2)d(z,y) > 0

for every fel.
A continuous complex-valued function ¢ on G is said to be (B)-PD
(= pogitive definite in Bochner’s sense) if and only if

(B) Do m) e >0
%7

for every finite complex-valued sequence (o;) and every finite G-valued
sequence (z;). Such a funection is necessarily bounded: |p(z)] < @(e) for
all ze@.

If G happens to be discrete, and if ¥ > 0., any F-PD function is
obviously (B)-PD and therefore belongs to L*. Bven if & is non-discrete,
it is known that any C,-PD function which is essentially bounded on
some neighbourhood of ¢ is equal 1. a. e. to a (B)-PD function (see, for
example, [1], p. 715-720); and that an L*-PD function belongs to L%
(see [1], p. 490 and the proof of Theorem 10.3.3).

Hewitt and Ross [2] have raised the question of the existence of
P-PD functions not in L%, and they have indicated how to construct
Borel functions ¢ on any non-discrete group G which are L*-PD but not
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in L. Here we shall give a somewhat more general discussion referring
to I'-PD functions and a construction leading to a stronger result.
We shall begin with a few simple remarks indicating some special
cases which can be discarded from the outset.
From this point on we assume that G is non-discrete.

2. Some special cases.

2.1. If » = oo, (PD) asserted for every feL® amounts simply to
the demand that the funetion (z, %) — @(y~'@) be integrable for Axi.
Unless @ is compact, this is so only if ¢ = 0 a.e.

On the other hand, if @ is compact, it is evident that an integrable ¢
is Z®-PD provided only that (PD’) holds for each fe L. It is furthermore
easy to see that this is the case if and only if the (generally operator-
valued) Fourier transform ¢ is non-negative. A simple category argument
suffices to show that there exist always functions ¢ of this type which
are not in L™.

In the sequel we may therefore suppose that 1 <» < oco.

2.2. Supposing now that 1 <7< co, general functional analytic
principles ([1], p. 490) show that a locally integrable ¢ is L'-PD if and

only if

(4) froel”  and  ||f*ele < const||f,
and

(a9 (Frolf) =0

for every fe(C,, where »' = r/(r—1) and

(w|v) = fuﬁdl.
é@

In this connection we should perhaps remark that, if feL" for some
7 < oo, then f vanishes off a subset of & which is sigma-finite for A; hence
the function

(@, 9) = oy~ 2)f(9)f(2)
vanishes off a subset of G X @ which is sigma-finite for Ax A (this is & con-
sequence of [1], 4.17.2); consequently the theorems of Fubini and Tonelli
([1], Theorems 4.17.4 and 4.17.8) are applicable and show thal the
appropriate integrals f ... d(z, y) can be replaced by either of the agso-
axe

x
ciated repeated integrals éf {f ... dw}dy and G!f g .o dyYdo.
- ¢

I » =1, then (as was noted in section 1) (A) alone suffices to show
that peL™. Consequently, the interest lies in the case where 1 < 7 < oo.

2.3. If ¢ is compact and 7 > 2, it is evident that any peL® such
that ¢ > 0 is I'-PD, and that there exist many such functions outside I°
(see 2.1).
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On the other hand, if » > 2 and G is non-compact, (A) alone forces ¢
to be zero 1. a. e.: this is proved by Hérmander in case € — B ([4],
Theorem 1.1) and his argument extends at once to any non-compact G.
Accordingly we shall in the sequel be concerned primarily with
the remaining case, where 1 <7 < 2. For this purpose se shall use the
following lemma:

24. LeMMA. Suppose that 1 <r <2 and put a — Y. If ¢ is meas-
urable and gl = lp*la, where ¢* () = p(a™) for all we@, then (A) holds
with const < ||p)lq.

Proof. This is a special case of Young’s inequality; see [3], p. 296,

Theorem (20.18), or, more generally but less directly, [1], p. 655, Theorem
9.5.1.

3. The main result,
3.1. Supposing @ to be non-discrete, let (U,)2., he any sequence

of closed neighbourhoods of ¢ in G and write P — M U.. Put
=1

Fy=U{I:1<r<9).

We describe the construction of functions ¢ on & with the following
properties:
(1) ¢>=0,p=9" ¢is lower semicontinuous, ¢ has a compact support
and vanighes on G ~ Uy;

(2) ¢ is continuous at all points of & ~ P’;
(3) limgp(®) = oo, so that p¢L*;

(4)  eeN{L’:1<p < oo}

(8) ¢ is Fy-PD.

3.2. The construction is based on the fact that, if % is a bounded
measurable complex-valued function on & which has its support lying
within a relatively compact symmetric open neighbourhood V of ¢ in @,
then

Py = U*u",
where v~ = %*, belongs to O, and satisfies
(6)

for 0 < p < co. Plainly, ¢, is real and non-negative whenever 4 has these
properties. By (6), Lemma 2.4, and the fact that

oy o )f (@) d(@,y) = [ F*urda,
@

Ax@

Pu=Puy  lipulls < A(V)A(TVRM?

suppo, = V2,
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it is visible that ¢, is F,-PD. Functions ¢ of the desired type will now
be obtained as suitable infinite sums of such functions g,.

To do this, choose relatively compact symmetric open neighbourhoods
Va (n=1,2,...) of e such that

(7 VacUnUn...

this choice is possible since G is non-discrete. Next choose functions
4, ¢C, such that

8
9

A TUpy 0<A(V3)<27h

Supp 4, < Vn’

Un* Uy (€6) =
@
Put @, = ¢, and consider the non-negative lower semicontinmous
function ¢ defined by

=]

¢ = Zl(Vn)MI(Pn-

n=1

(10)

Relations (6), together with the choice of the u,, show at once that
(1) is true. Statement (3) follows easily from (7) and (10). If K is any
compact subset of @ not meeting P, (7) and (8) show that K meets suppeg,
for at most a finite set of positive integers n, and (2) follows at once from
this. Fatow’s lemma combines with (6) (with « = u,) and (7) to show that
for 1 <p < oo we have
(11) il < D) A(Va) " lipally < ) 277 < oo,

n=1 n=1
which establishes (4). Finally, (5) follows from (4), Lemma 2.4, and the
identity .
[ e o)f@)f@d@,y) = DAV [ |Frug .
GxG N=1 - &3

3.3. Supplements.

(a) If @ is first countable, we may arrange that P — {e}.

(b) ¥ @ is a Lie group, we can arrange that P = {e} and that
0 (G) for every n; accordingly, (2) may be replaced by

(29 peC®(G ~ {e}).
(c) Condition (4) can be strengthened by making A(VZ) tend to
zero sufficiently rapidly. For, by (11),

(12) el < X A(VE)2.
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So, for example, if we take V, so small that A(V2) < exp(—e™)
and assume that U, is integrable, calculations show that

(13) [ exp(e)di < oo.

Uy

(Recall that ¢ vanishes on & ~ U;.) In the same way one can arrange
even that
(14) fE(qp)dz < oo,

Uy

where E is any preassigned iterated exponential function.

(d) The Abelian case. Suppose henceforth that G is also Abelian
(and additively written), and denote by X the non-compact character
group of @ and by ¢ the Fourier transform of @. The Lebesgue spaces
I*(X) are to be formed with that Haar measure x on X which is dual
to 4, so that the Parseval formula assumes the form [.|g|2dA = [ |7 |2du.

¢ X

From (4) it follows that
pe0y(X) ~ L*(X);

(10) shows that ¢ > 0; and from (3) it follows that

(15) ¢ ¢LM(X).
On the other hand, (10) shows that
(16) 1Blle < ) A7) [fonllig
=1

for any ge[l, oo). Now, if 1 <p <2, the Hausdorff-Young inequality

gives )
tlly < lltonllp < AV,

the last step by (8). Accordingly, taking p = 2¢/(2¢—1), (16) leads to
I7lle < D A(Va) ™ a(Va)te-e
n=1

for ge[l, co). The second clause of (7) shows that the last-written sum
is finite provided ¢ > 1. Thus, in spite of (15), we do have the relation
amn Pe0y(X) ~ N {TAX): 1< g < o0},

It is moreover possible to show that ¢ may be chosen so that also

(18) [ Dodu < oo,
X
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where D denotes any preassigned bounded (and measurable) non- negamve
function on X which satisfies

(19) LmD(y) =

200

This may be done by modifying slightly the construction appearing
in 3.2, considering functions ¢ of the type

0

(20) = ch‘l’na

Nn=1
where the non-negative real numbers ¢, are to be chosen so that
(21) D MVa)n = o0,
(22) DUTAT o < oo (1<p < o0),

N=1
(23) yc'n f—D‘Pnd,U< oo,
n::l

For, if such a choice is possible, (21) will combine with (9) to show
that ¢(0) = oo; (22) will combine with (6) to yield (4); (23) will ensure
that (18) holds; and it is clear that the remainder of properties (1)-(5)
will remain intact.

Concerning the existence of a sequence (¢,) satisfying (21), (22)
and (23), it will follow once it is known that

(24) EmA(V, f Diniy =
N0
Indeed, given (24) and writing d, = A(V,)c,, our demands take
the following form.:

MV Pdy< oo (1<p< o0),
=1

D A(Va)dn [ Dipndu < oo,
X

=1

to satisfy which it suffices to first choose positive integers n, < n, < n, <
such that

V) [ Dhudn <w? (k=1,2,..),
X

©
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a possibility which is vouchsafed by (24), and then define d, to be 1 if
n = m, for some % and to be 0 for all other positive integers n. (Reeall
equation (7).)

It thus remains merely to verify (24), to do which we first show
that

(25) Lim2 (¥ f Fndp =0

for any compact set K = X. In fact, choosing fe(, so that f 0 and
f(X) =1 for yeK, we have

MV [Gndp <AV [ Fonds = A(Va)" F4u(0)
K X

(Vn)“lnﬂlz”??n”a < ”f”zj(Vi)*7

the last step by (6), so that (7) leads to (25). So, given any & > 0, first
choose a compact K < X such that D(y) <e for yeX ~ K’; this is
possible by (19). Then, since (8) gives

[ #dp = 9a(0) = [k dd < 2(Va),
X @

we have
AVa)” fD%.d# uv,.)“‘fwvn)—‘

XAE’

<AV [ (T, T
X

(V)™ [ Dondpte.
X

Accordingly, (25) shows that
limsupA(Va)™" [ Dondp <e,
N—>00 X X

and the arbitrary choice of £ indicates that (24) holds.
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