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T x K to K, then there are Z in K and ¢ in @ such that Flp(s) == (ga(a;(g)))
for every ¢ in @ and every s in 8. If, moveover, given any §, s’ in. S there
are ¢, ¢ in @ such that ¢(s) = ¢'(s'), then Z(p) is a constant element
of K.

More particularly, if § is compact regular and @ is a semigroup of
transformations in § such that @ has a compact regular topology such
that (p, s) - @(s) is continuous, and i F is a complete locally convex
linear topological space and ¥ is the space of continuous functions on &
to F topologized by uniform convergence, let Op = {x(p): @ in @} for
each # in E and K, = the cloged convex cover of 0. Then for each gz
in F there exists 9, in K, and ¢, in & such that ym(rpgc (s)) :ym(q)((pm(s)))
for all ¢ and s; if, moreover, given s, s" there are ¢, @' such that ¢(s)
= ¢'(s'), then for each » the function y, is constant. For, the map
(¢, 8) = @(s) is uniformly continuous and hence the map (%, ) - x(p)
is continuous on Ex® to H. Clearly O, is then compact for each z
and so therefore is K, since B is complete. Applying the preceding
paragraph to K for each z yields the above conclusion [4].
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On equations with reflection
by

D. PRZEWORSKA-ROLEWICZ (Warszawa)

Tf an equation contains together with the unknown function (1)
the value #(—t), then it will be called an equation with reflection. For
example, the differential equation

(1) g0 (t) + bo@(— 1)+ 6,2’ () + by’ (—12) = ¥ (1)

is an equation with reflection.

Tet us denote the reflection by S. Since 82 = I, where I is identity
operator, § is an involution. The differentiation operator D is anticom-
muting with 8. Indeed,

(SD2) () = &' (—1), (DS@)(t) = &(—1) = —a'(—1) = (—8Da)(0).

Hence SD-DS = 0.
Tn this paper we shall consider a linear equation
(2) (@, I+boB)z+(a; I+ 5,8) Dx =g,

where § is an involution on a linear space X, D is a linear operator
acting in X and anticommuting with 8, and ag, by, 61, by are sealars.
As examples we shall consider equation (1) and an integral equation

of form (2).

1. Tet X be a linear space (over complex sealars). Let § be an in-
volution: 82 = I on X. Let

I—8).

o=

Pt :%(HS), P =

The following properties of an involution, shown in [1] (see also
[2]) will be used further:

1° The operators P* and P~ are disjoint projectors giving a partition
of unity:
(1.1) PP~ =P P* =0, (Pt =pr", (P R=P, Pr4P =1

Moreover, Pt —P~ = §, SP* =P+, 8P~ = —P".
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2° The eigenvalues of the operator § are +1, —1 and the respective
eigenspaces are X =P" X, X~ =P X, ie. if we write ¢* = Pty
o~ =P g for any <X, we have ’
(1.2) Szt =at, S5~ = —a.
3° The space X is a direct sum of spaces X* and X~,
(1.3) X =X'0xX,

which implies that any element #¢X can be written in a unique manner
as a sum

(1.4) w=a*4+o", where 27Xt 47X,
and
(1.5) Sw=at—a.

) LeT.J 8 be an involution in the space X and let .D be a linear operator
acting in X and anticommutative with S, i.e.

8D+ DS = 0.
Let us remark that the operator D? is commutative with &:
(1.6) 8D:— DS = 0.
Indeed,

8D* = (SD)D = —(D§)D = —D(8D) = —D(— DS) = D*S.

The following property will play a very impo i
Tt Further
consilomi” , Yy important role in further

ProPERTY 1.1.
1.7) P*D =DP-, P~D = DP+,
In faet, since SD = — DS, we have

1
P*D = (I+8)D = !

o |

1
(D+8D) = = (D— D) = —;—-D(I—« 8) = DP-,

-y 1 ) 1 1
P~D =5 I=8D =5 (D—8D) =,2_(D+DS) =

o

D(I+8) = DP*.
This implies that
(1.8)

because

Da* = (D2)~, Do~ = (D)t

. -
Da* = DP*2 = P~ Do = (Da)", Do~ = DP~ — P+ Dy — (Da)* .
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Then the operator D changes the role of spaces X+, X, the oper-
ator D2, as commutative with 8, maps each of these spaces into itself.

2. Suppose we are given in the space X an operator
A = (ay I+ b,8)+(a, I +5,8)D,

where § is an involution in X, D is a linear operator acting in X and
anticommutative with S, and a,, by, @;, b; are scalars.
Let us suppose that

a—b £0, a—bl 0.
The case where either ai—bZ = 0 or aj—b; = 0 will be considered
in the next section. '
ProPOSITION 2.1. Let

(2.1)

2.2) B = (6I—by8)—(a,T+5,8)D, RBy= —(ai—b})7"'B.
Then
(2‘3) .A.RA - RAA = .DZ—"ZI,
where
a;— by
= 0.
(2.4) R

Proof. Let us remark that SDS = — 82D = —D and SDSD =
_DS*D = —D? because DS = —8D and §% = I. Hence
BA = (agT—bo8) (@I +bo8)— (azL +b.8) D(ao I +be8)+
+ (T —bo ) (@, I+ b, 8) D— (a1 +b18) D(a, I+b,8) D
= (ag— b)) I+ (@@, — boby) D+ (g by— 61 by) SD— (e — byby) D—
— (@pby— @y b) SD— (4] —B}) D? = (03— b3)I— (ai—b7) D2.
Similarly, we can show that
AB = (@—W)I—(a—b}) D*;
then, if we assume R, = —(ai—b)B and 1= (a3 —b3) (a1 —03)", we

obtain the required formula (2.3). .
Let us denote by Dy the domain of an operator T and by Zr the

kernel of T':
ZT = {WEDT Te = 0}.
PROPOSITION 2.2. Z4 < Zp2_sr. (Similarly, Zg, < Zpo_a1)-
Proof. Let #eZ. Then Aw=0 and (D*—Al)o=E.(42)=0, which
implies xeZp2_ 7. Hence Z4 < Zpo_sz. There is similar proof for Zz,.
THEOREM 2.3. Zpr_yz = {#:2 = &+ 82, 21, 2y¢Z,, virt -
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Proof. Let us suppose that z is of the form 2, 4- 82,, where 2, z,¢Z
Then

(D*— D)z = (D*— ML)z, +(D?— AI) 82, = (D*— AL)2,+ 8(D*— Al)z,
= (DHVAL)(D—V )2, + 8 (D+VII)(D—Vil)e, = 0,

D-Vir

because SD% = D28. Hence 2e¢Zp2_;;.
Conversely, let us suppose that zeZpz_j;. The operator %:D is
A

an involution on the space Zp:_;;. In fact, since 4 5= 0, for any zeZp2_,;

(%D)zz—z 0.

This implies the decomposition of Zp:_;r onto a direct sum
ZDZ_).I = ZD+ Vair ®ZD— Vir*

Hence 2 = 2,12, where 2,eZ, ,z,%¢%, L vy are linearly inde-
pendent. We have to show that z; = Sz,, Where 2y¢Z,, .. Since 252, - ViD
we find Dz, = — Viz,. Hence VA8 = 8(Viz)) = — 8De) = D8z;, which
mplies (D—ViI)82 = 0 and 2, = 8¢eZp_yir. But 2 = 8%2) = §(8¢)
= S2,, which gives the required form of 2.

THEOREM 2.4.

Zy={g:2= ,u[(a,o—all/z)I——(b0+bll/i)S]z1, #1€Zp_vir, 4 being scalar}.
. 'Proof. Proposition 2.2 implies that Z4 < Zpz_;;. Theorem 2.5
implies that any element of Zp2_,7is of the form 2 = 2, + Sz, ) By BoeZ

) D-Vir®
We shall choose 2, and 2, in such & manner that 4z = 0. Let 2;, 2,¢% D VI

Then 8z, Sz, €Z;,, yi; (compare with the proof of Theorem 2.3). Hence
Az; = (agI+by8)2y4-(ay-+b,8) D2y = (aoI +b,8)2,+ (a4, I+ b, 8) Ve,
= [(Go+ VAT + (by-+b, V2) 82,
A8z, = (8T +by8) 823+ (8,1 + b, 8) DSz, = (ao I+ by 8) 825+
(0 I+ 5,8) (— V) Sz,
= [(@— @, VA) I+ (by— b, V7) 8182y,
Az = A(ey+ 82) = [(@y+a, VAT + (by+ b, V) S]2, +
+ [(@o— a, VA I+ (by— b, V1) 818z,
= (@y+ ay Va) 2y + (by+ b, V) 2y - (a1, — ay Vi) 82+ (bo— by V) 2,

@ ©
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But the spaee Zp2_;; is a direct sum of spaces Z
(compare with the proof of Theorem 2.3) and 2,2, €%,
Then the equality Az = 0 holds if and only if

(@g+ @, VA 2y + (bo—b1 VA2, = 0,  (Bo+byVA) Sy + (@o—ayV2) 82y = 0.

Transforming the second equation by § and wusing the property
82 = I we obtain the following system of equations:

p_vir 304 Zy, 3y

_ yiry 21,82, EZD-H/ZI-

(@o+ a1 VA) 21+ (Bo— b, VA)2e = 0,
(bo+b1ﬂ)z1+(%—‘a1‘/1)zz = 0.

From these equations it follows that 2, and 2, are linearly dependent.
Indeed, let us suppose that z, and 2z, are linearly independent. Then all
coefficients in (2.5) are equal to zero:

G+ 0 VA =0, ae—aVi=0, Dbo+bVi=0, b—bVi=0.

Since A £ 0, we find @y = ay = b, = b; =0, which is a contra-
diction. Hence there are scalars g, and g, such that

(2.5)

Pa2yt pa?s = 0, [pal - lua] > 0.
Using the last equality, we write (2.5) in the following form:
[— (@o-+ a2 o+ (bo— b2V A pa]ea = 0,
[— (bo+ BV A) i+ (Bo— 6V D) 5y ]2 = 0.
These equalities hold if and only if
(@g— a2V A) py— (bo+ bV W) s = 0,
(Bg— baVA) piy— (Gg -+ a2V A s = O,
The determinant of system (2.8) is
4 = —(@—alA)+ (B—bid) = — [{ag— b5 — A(al—b1)]

(2.6)

= -[a§—b3—%§{—'£—(ai—bb}= 0.
Hence system (2.6) has a non-trivial solution:
e = (Bo k0D, i = (B0— VD)
And we have (x is an arbitrary sealar)
1 (Bo+ bV A2+ (o= a¥ D)2, = 0.

Taking the formula of golutions of system (2.6) from t.he second‘equation
(2.6) we check that the first of the equations (2.5) is also satisfied.
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This implies that

2z =ul(a —all/l —(by+b V) 821,

which was to be proved.
In a similar way we can determine the set

Zpy={2:8= (i [(Go-+aV D) I+ (bo+b:V2) 812y, 21eZp_vir,
& being scalar}.
PROPOSITION 2.6. If & is a solution of the equation (D*—Al)& =y,
then & = R,% s & solution of the equation Ax =y.
Proof. Let & satisfy the equation (D2—AI)® = y. Then

Az = AR & = (D2— 1T = y.

Similarly, % = A% is a solution of the equation R u =y.

Finally, we obtain the following theorem on the general form of
the solution of the equations Awx =y and R, 4 = y:

THEOREM 2.7. Let A = [(agI+by8)+(a,I+b,8) D], where S =
and SD+DS =0 on X, aj—by #0, ai—b 0. Let & be a solution of
the equation (D*—AI)% =1y. Then any solution of the equation Am —y
is of the form !

@ = Rub+ p[(6g— aVA) I — (bo+1,V2) 812y,
where 2z, is a solution of the equation (D——-l/}TI)z1 =0, u 8 an arbitrary

scalar, A=(az— b3) (a1 — 7)™, Ra=—(ai— b3~ [(ag ] — bo8)— (a, T +b, 8)D].
Any solution of the equation Ryu =y is

w = AF + p[(ag+ ay/A) I — (by+b,V2) 8T2,.

This follows immediately from Theorem. 2.5, Proposition 2.6 and
from the linearity of A.

3. So far we have considered the case where ai—bi 5= 0, ai— b7 = 0.
In order to study other cases we remark that according to (1.1)

(3.1) = (@l +bo8) -+ (ay I+, 8) D = (ao I +by8)(P* 4P~ )+
+(a11+b18)(1’++1")
= (@9+be) P+ (@tg—bo) P~ + (@y+by) PT D+ (a,— b)) P~ D.

. We have the fo]lowmg few particular cases, which will be solved
in different manners.
L If ay-bby = ay—by = ay+by = a,—b; = 0, then 4 = 0.

IL I¥ a,4b,=a,—b,=0, we have a case completdy solved in [1].
Namely,
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() If ai—Db} # 0, then the equation Az =y has a unique solution
o = (a—b3) (sl —bo8)y.

(b) If ay+ by = 0 but a,—b, # 0, a necessary and sufficient condition
of solvability of the equation Az =y is (I+8)y =0, and under this
condition the solution is # =3}ag'y o, where 2f is an arbitrary element
of XT.

(c) If ap—b, = 0, but a,+bs # 0, we obtain similarly the solution
# = a7 y+ a7, o7 <X~ under the condition (I—8)y = 0.

TIL I£ ay+ by = Go— by = 0 but ai—b} 5 0, then A = (a,I+,8)D,
and we can solve the equation Az =y with respect to the unknown
Dy in the same manner as in II. Then we obtain an equation without
involution, Dz = ¥,, where y, = (ai—b1) " (@, I —b:8)y.

IV. Let a,+b, = 0 bubt a,—by # 0. Then

= (@p+bo) Pt +(tg—bo) P~ + (a3 — b)P~D.

Since the space X is a direct sum of spaces X+ and X~, the equation
Aw =y is equivalent to two independent equations:

PtAz =Py, P Ay=Py
But
Pt A = (t+Dbo) P, )
P~ A = (6y—b) P~ +(a;— b)) P~ D = (ag— bo) P~ + (6 — b,)DP*.

Hence we have two equations of the form
(@+Dbo)s™ = ¥,
(@o—bo) o™+ (a:— b) Dzt =y~

(3.2)

(3.3)

() Let ai—b} # 0. Then o+ = (ay+ by lyt, and (ag—bo)z” =
oy~ — (a,— b)) D(ag+be)'y™ . Hence

= (“o“bo)—lf’l—_(al" bl)(aﬁ—bi)‘]Dy“L
and
p=ua"+a" = (%—!—bo)"?/*—i-(%——bu)"l?/'—(a]—bl) (a,?,—bg)_lDy"'

= (ah— B [(@o— bo) P 4 (a0 + Do) P~ — (a1 — by) DP*ly

= (63— b3) " [(ao—bo ) — (a;— b:) P~ D]y

(b) Let ay+b, =0 but a— b, # 0. Then a solution exists if and
only if y* = 0 (compare with ILb), i.e. if (I--8)y = 0. In this ease the
golution is of the form

@ =af+a4" = wf"‘(%_“bo)nlf‘/—“(“l_ by) D,

where #7 X ™ is arbitrary.
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() Let ao—by = 0 but a,+b, # 0. Then o = (a,+bo) y* and
equation (3.3) is of the form
(3.4) (@g—bo)z™ =y~ — (ay+ boy1 (a,—b,) Dy*.
A solution of (3.4) exists (compare with IL.b) if and only if
Y —(ap+ bo)ml(al—‘ b,) Dyt = 0.
This condition can be written as follows:
(I-18) [I—(“u‘l’bo)_l(a’l“‘bl)p]?/ = 0.
Under this condition the solution is
v=a" 4o = (a,+ bo)“1y++wf,
where e X~ is arbitrary.
(@) @y+by = ag—b, = 0.
By similar considerations to those of (b) and (¢) we find that a solution
of system (3.2), (3.3) exists if and only if yeX~ and
(3.5) Y—(@+bo) (@, —b,) Dy e X .

If yeX~, then DyeX* and from (3.5) it follows that yeX*, which
implies y = 0. Therefore a necessary and sufficient condition of solvability
of system (3.2) (3.3) is that y = 0. In this case from (3.3) we obtain
(@y—b,) D™ . Sinee a,—b, 5 0, we have Da™ — 0, which means that
P~ Dz =0 and DyeX*, whence « is a solution of the equation Dy = 2+,
where 2" iy an arbitrary element of X .

V. Let a;—b, =0 but a;+b, = 0. Changing the roles of a;—b,
and @,+b, and respectively of the spaces X~ and X*, we obtain an
analogous result to that of IV.

4. Examples.

I Let us now consider the differential equation
(4.1) B2 (1) + b2 (— 1)+ 012/ (8) + by’ (—1) = (1),

where the given continuous function ¥ (1) is defined on the real line (may
be, on a subset of the line real symmetric with respect to zero), and
%oy by, @y, by are reals. Let (Sw)(t) = ©(—1). Then 82 = I. It is obvious

that
. 1
@™ (1) =§[$(t)+w(—t)]
is an even funetion and
B 1
@~ () =3 [o(t)— (1))
is an odd funection.

©

EBquation with reflection 205

Hence the decomposition by the involution § of the space of continuous

funections on the set in question is corresponding to the decomposition

of every function into the sum of an even and an odd function. As has
been shown, the differentiation Dz = &' is anticommutative with S.
Then we can apply all the preceding considerations to solve (4.1).

For example, let us assume that ai—b? £ 0 and that 1 = (a2—b3)
% (65 —b3)™" > 0. The general form of the solution #, of the equation
(D—VN2z, = 0 is 2,(t) = pe'™. If we find a solution # of the equation
(D*— A% =y, we will obtain according to Theorem 2.9 a general form
of the solution of (4.1). The function #(Z) can be determined by the method

of variation of constants. Since &% and ¢ "* are two linearly independent

solutions of the equation (DZ—AI)z =0 and the Wronskian W(t) of
these functions is W (f) = —2Vi 0, we obtain

o= __257[”[ —yWe " dro" f y ()™ ai]

L R%: _VE % Vi
=2—Z[e fy(t)e dt—e fy(t)e dt].
By simple calcnlations we now find

(Ra®) () = — (a2 — b3 [(@oT () — by ( — 1) — @, @' (£) — b, @' (—1)]
= i b%)_lz—ll/; [(a— a2 eﬁ‘f y(tye " di—
__(ao‘|‘ aﬂ/z e‘l/l_tfy(t) g‘/'ﬁdt_(bo-—bﬂ/}__)e—'/l—t (fy(s)el/}.s d3)3=_1+
+ VD ([ y(0)eF ds)s ]

and finally o s
o(t)= (Rad)(t)+ pl(@g— 0V A) & 7 — (Bo+ b Y 2) e,

where y is an arbitrary real constant.
II. Let

(Ea)(t) = [ K(t, s)a(s)ds,

where K (t, s) is an odd continuous function on the square —a <t,s<a.
And let (8z)(t) = @(—?). Hence § is an involution on the space
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X = (C[—a, a]. The operator K is anticommutative with §. Indeed,

(SED)(1) = [ E(—1, s)a(s)ds,

(ES2)(1) = [ K(t,5)n(—s)ds = — [ E(t, —u)w(u)du

= fK(t, —w)a(u)du= — fK(—ty’“)”(’M)d“ = —(8Kz)(t),

—a
because K(—t,s) = —K(t, —s).
Let us consider the equation (aj—bi 7 0 # a}— b?)

(£2)  a@(t)+bow(—t)+a [E(t, s)a(s)ds+b, [K(—18)0(s)ds=y(1),

yel[—a, a].

According to Theorem 2.9, for solving (4.2) it is sufficient to know
a solution of the equation (K2—iI)s =y and all the solutions of the
equation (K—VAI)z, = 0. But

(E22)(t) = [ Ky(t,s)a(s)ds, where K,(t,s) = fK(t,u)K(u,s)du.

This means that for solving (4.2) it is enough to solve the following
equations:

—A()+ [ Ky, 5)@(s)ds = (1),

—Vint)+ [ E(@,s)z(s)ds = 0.
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A uniform algebra with non-global peak points
by

W. E. MEYERS (Vancouver)

1. Introduction. By a uniform algebra 4 on a topological space X
we mean an algebra of continuous complex-valued funetions on X which
contains the constants and is closed under uniform convergence on compact
subsets of X. A point peX is said to be a local peak point of A in X if
there exists a neighborhood U of p in X and a function aed such that
a(p) =1 and |a(z) <1 if 2eUN{p}. If X is compact and the space
M (A) of non-zero continuous homomorphisms of 4, with the w*-topology,
is (homeomorphic to) X, it is known that every local peak point of A
in X is a global peak point, i.e., U can be taken to be X [3]. It is the pur-
pose of this paper to show that this result is not true for general uniform
algebras. We exhibit a uniform algebra 4 on a ¢-compact space M (which
is set-wise just the complex numbers €) which has local peak points in
M = M(A) but has no global peak points. In fact, A contains no non-
constant bounded functions.

2. The construction. We describe a sequence of subsets M,,, of the
plane which satisfy

(i) M, < Mm.;.1;
o0
(ii) U M, = 05
Me=1
(ili) each M,, is compact and non-separating;
(iv) for every 2, on the positive y-axis, there is a sequence {Zmm_1,
ZmeMy— My, such that 2, —2;
(v) for every positive integer m and every z, on the positive y-axis
with |2, < m there is a sequence {2,}n—1 = M, such that 2, — 2,;
(vi) for every 2 not lying on the positive y-axis, 2 lies in the interior
int M,, of M, for some m.
Let B, be the union of the lines {(1/n, ¥): m[2n <y < m} and the
line segments joining the following pairs of points:

(0, —m) and (m, —m); (m, —m) and (m,m);
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