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Remark. Examples of alost reflexive spaces that have properties
V and Dunford-Pettis are' ¢, ¢, and ((S), where § is a compact Haus-
dortf dispersed space [5]. Hence we see that any uc operator T: ¢y — ¥
is compact. Note that 7 is a uc operator and hence compact if ¥ containg
no subspace isomorphic to ¢.
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Principal ideals
which are maximal ideals in Banach algebras

by

RICHARD M. CROWNOVER (Columbia, Mo.)

L. Introduction. Let A be a commutative semisimple Banach algebra
with identity. If for some fe4, the principal ideal Af is a maximal ideal,
then in a natural way there is associated with each element ge4, a formal

power series ):' a,f" with complex coefficients. Indeed, as shown in Theo-

rem 3 below, 1f Af is not in the Silov boundary I', then for each ged,
the Gelfand transform g is given by the power series B

= Zanf“(y)

for all ¥ in the maximal ideal space satisfying ]f(y){ < min{[f(t)]: tel'}.

The phenomenon of a principal ideal being & maximal ideal occurs
in the familiar “disk algebra” consisting of the continucus complex-
valued functions on the plane disk {: |2} < 1} which are analytic in the
interior. The ideal Az is maximal, and each g4 has a power series expan-

sion 3 a,2" holding in the interior of the disk.
n=0

We wish to acknowledge the work of Phillip E. Parker(*) concerning
the relation of the norm and Gelfand topologies on the maximal ideal
space when Af is a maximal ideal, and present a result of his in section 3.

2. Let us suppose throughout this section that 4 is a sup norm
function algebra on a compact Hausdorff space X. This means that A
is a closed subalgebra of the algebra C(X), that

(i) A separates points in X, and
(ii) 1eA.
We wish also to impose the condition that
(iii) the maximal ideal space of 4 is X.
By saying that the maximal ideal space of 4 is X, we mean that

(1) Mr. Parker’s research was supported by National Science Foundation Under-
graduate Research Grant GY 8-4599.
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each maximal ideal M in A is, for some z<X, the seb M, = {g:ged and
g(z) = 0}. With or without condition (iii), the collection .# of maximal
ideals, endowed with the Gelfand topology, is a compacth Hausdorff space,
with X homeomorphically embedded. Moreover, each ged has a norm
preserving extension from X to . Thus condition (iii) amounts to saying
that we shall consider the functions in A4 already to be extended to ..

THEOREM 1. Suppose the principal ideal Af is the mawimal ideal .
Then = is mot in the Silov boundary I', unless © s on isolated point
of X.

Proof. Let T: A — M, be defined by T(g) = gf. Then T is a bounded
operator from one Banach space onto another, and T is easily seen to
be one-to-one unless x is isolated in X. By the open map theorem T
is bounded, and we let K = [T~} = sup {lgll; lgfll <1} Let 0 <o < 1/E.
Since f(x) = 0 and f is continuous, there is a neighborhood U of z such
that |f] < £ on U. Sinee @l there is a ged such that somewhere in U,
gl = llgl = 1 and |gl < 1 outside U. It follows that for some positive
integer #, [g"f] < ¢, I(g"/s)fIl <1, and hence that [}¢" /s < K. Thus [lg"|
< Kt < 1. But this cannot be true since [lg"] = lgI" = 1.

TuEoREM 2. Suppose the principal ideal Af is the mawimal ideal M,
and that o is not isolated in X. Then for each geA, there is a power series
expansion

(1) 9@) = D anf™(y)

n=0
with comples coefficients, valid for all yeX such that |f(y)l<m
= min {|f(8)[: teI'}, where I' is the Silov boundary of A.

Proof. Let B = {y: |f(¥)| < m}, and let A(E) denote the sup norm
closure of the restrictions of functions in A4 to E. Since E is an open subset
of X—T, the local maximum prineiple (see [3]) says that the Silov boun-
dary Iy, of A(E) is a subset of the topological boundary 6. In particular,
T {y: If(y)] = m}. )

Now evaluation of elements in A () at » gives a linear functional
of norm 1, and by the usual application of the Hahn-Banach theorem
and Riesz representation theorem, there is a complex Baire meagure u
situated on I, such that for all hed(E)

W) = [ hdg,
F'm.

and |u| = 1. Since 1led, then p(I) = 1, and this with ||ju|| = 1 implies
that u is real valued. Also, sinee f(x) = 0 and {f| = m on I}, then

0= [frdu =rff"du = [Pap=m" [f"ap,
L d Im. I'm

Im
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and hence
(2) ff‘"d/;=0 for n =1,2,3,...
Im

Let ged, and |jg]l = 1. Then g—g(x)e M, and so there is a function
g1ed such that

9—9(z) = g.f.
In general, there is a funetion g,.,eA such that

(3) In— n(2) = Gnyrf-
It follows that

(4) g = 9@+ @)+ ..+ ga @)+ G

We think of equation (4) as an abstract Taylor formula. Upon dividing
both sides of equation (4) by f", and integrating with respect to u on
I';y, we obtain with the aid of equation (2) above, that

o) = [glf"ap.

Since |fl =m on [,

(5) l9n (2)] < 1/m".
We now establish the estimate
(6) g2 ()] < (m+1)jm™  for yeE.

For » =1, (6) follows because on Iy

194 = lg—g(@)|/If] < 2lglljm = 2/m.

Now suppose that (6) holds for n = k, and consider n = k1. Fix
yeH, and let o be chosen so that 0 < |f(y)| < o < m. Let @ = {s: |f(s)]
< g}, and let I, be the Silov boundary for A (@). By the same arguments
for the measure p “‘representing” x, there is a non-negative Baire measure
uy situated on I, with [ju,|| = 1, such that for he4(Q),

My) = [ hdpy,
T,

e

and I, = {s: |f(s)] = ¢}. We obtain

Grr(y) = f(f)_l (gn— gu(@) duy = f(f)‘lgkdp,,—~ () f(f)ddﬂv-
Ty Ty To

Since |f| = o on I,, we have

[ (P dpy=o™* [ fau, = e~ *f(9)-
I‘g l'e
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Tt follows with the aid of (5) that
i ()] < ((B+1)/m") (L/) + (1 /m") (m]e¥),
and as o can be arbitrarily close to m, that
iear (1)1 < (B+-2)Jm*,
so that (6) is established.

Now we return to the Taylor formula (4), and observe that by
inequality (6), if y<B, then

lgns2 @ @) < (n+2){IF ()] fm) .

Since |f(y)|/m < 1, we infer that (n-+2)(|f(y)|/m)**" bas limit zero
‘as m - oo, and this establishes the convergence of the power series (1).
Remark. It is not difficult to show that if 7' is the operator intro-
duced in the proof of Theorem 1 (namely T(g) = gf), and @¢I, then
|77 = 1/m, where as before m == min{f(?)|:teI'}. Using this fact,
one can readily establish via formula (3), that ||gasal] < 2" /m"*, and
hence vie the Taylor formula (4), that the power series (1) converges
for all ¥ such that |f(y)] < m/2. But this, of course, gives us only half
the radius of convergence.
Definition. A subset # of X is an ‘“‘analytic disk” if there is
a one-to-one continuous mapping r from an open disk in the plane onto
E such that for each geA, gor is analytic.
COROLLARY. The set B = {y: |f(y)| < m} is an analytic disk.
Proof. Since for each ged there is the power series expansion

oo

9 = > af*(y)

k=0

for If(y)| < m,

and A separates points in ¥, f must be one-to-one in E.

Let B' = {y: |f(y)| <m}. Then F' is a closed subset of 4, and is
A-convex in the sense of [3]. Hence, by [3], the ma.xinlaal ideal space
of A(E') is B itself, and the Silov boundary of A(F') is contained in
{y: |f(y)| = m}. Now by Theorem 3.3.23 of [2] the set f(Z’) contains
the disk {e: || < m}, and since |f| =m on B —F, f(F) contains, and
hence equals, {2:[¢] < m}. The desired function v can thus be taken
to be (f|B) .

3. In this section we extend the results of the previous section to an
arbitrary commutative semisimple Banach algebra A with identity.
Let X be the maximal ideal space of 4, and for ged,let § be the Gelfand
transform of g. Then X is a compact Hausdorff space, and 4 is isomorphic
to a subalgebra of C(X) by the mapping g - ¢. This subalgebra may not
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be closed in sup norm, and we shall denote its sup norm closure by A.
Then 4, as a closed subalgebra of (/(X), satisfies conditions ), (ii), and
(iii) of the previous section.

PEI&EMA. Suppose the principal ideal Af is the mazimal ideal {g: ged
and ¢ (w) = 0} and = 4s not in the Silov boundary I’ of A. Then the principal
ideal Af is the mawimal ideal {g: ged and g(z) = 0}.

Proof. Let m = min{|f(t)|: ¢eI'}. Then m > 0. T ge4 and il < 1,
then for tel, |§ (1)f (1) <1,

GEI<1/If@I<1/m,
and hence [|ffl, < 1/m.

Now }et ged and g(z) = 0. There exists a sequence (gpime; in A
such ‘Ehat gn — g uniformly on X. We may assume without loss of generality
that gnA(wZ = 0, and thus that g,eAf. Let h, be chosen so that In = hyf.
Then {hnfdns, is 3 Cauchy sequence in sup norm, and it follows from the
estimate in Ehe previous paragraph that (ib,,);‘f;l is a Cauchy sequence.
Let h = limh,. Then hed, and g = h~3‘, proving that each element in
the maximal ideal is in the principal ideal.

THEOREM 3. Suppose the principal ideal Af is the maximal ideal
{9: geA and §(z) = 0}, and that @ is not in the Silov boundary I' of A.

Let m = min{[f(t)[: teI'}. Then for each geA there is a power series ex-
pansion

i = Y af'w)
k=0

valid for all yeX such that [f(y)l < m.

Proof. This theorem follows directly from the previous lemma and
Theorem 2.

We now consider a result concerning the norm topology of X, i.e.
the norm. topology induced on X via the canonical embedding of X into
the adjoint space 4*. We denote the distance between » and y by [le— i,
and have the formula

le—yll = sup{|g(y)—§ (@)|: ged and |gl| = 1}.

The following theorem was first obtained by Phillip E. Parker. The
second hypothesis is satisfied, for instance, if there are no ‘““point deri-
vations” on 4 at # (cf. [1]).

TaroreM 4. If
(1) the principal ideal Af is the maximal ideal {g: ged and §(zx) = 0}, and
(2) = 1is isolated in the norm topology of X, then » is isolated in the Qelfand

topology of X.
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Proof. As previously observed, the inverse o’lf the operator T 1 A - M,
defined by T(g) = gf is bounded. Let K = ||T7. For ge A with [jg} =1
+there is an element g; eA such that

g—j(@)e = 0],
and it follows that llgf| < 2K, and hence
ly— ell < 2K 1f(9)1-

If z is isolated in the norm topology, there is an 7 > 0 such that

impli = it |f 2K, then |ly—ua| <7 and
—g|| < r implies y = #. Thus if |f(y)|.<¢/ s
;lzl/yz #. But this implies that @ is isolated in the Gelfand topology of X.

Finally, we mention an open question. It was provevc"'l for the sup
norm algebra case that Af being & maximal ideal M in the SI}OV’ boundary
implies that # is isolated in the Gelfand topology. Does this result hc_)ld
true for an arbitrary commutative semisimple Banach i_nlgebra{ with
identity? The technique for obtaining power series mentioned in the

remark after Theorem 2 applies, and thus avnega.tive answer would allow
for power series representations on the Silov boundary.
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A note on quasj-analytic vectors *
by
A E. NUSSBATUM (St. Louis, Mo.)

In [3] we introduced the notion of a quasi-analytic vector. Let §
be a symmetric operator in a Hilbert space # and z an element in
019(8’”) (2(A) denotes the domain of an operator A acting in 2#); then
n>

x is said to be a quasi-analytic vector for § if
DS ™" = oo
n=1

(this condition is equivalent to E'HS"w[]/II;S”‘“m]] = oo).
=]

We proved in [3] that a closed symmetric operator S is self-adjoint
if and only if it has a total set of quasi-analytic vectors. The purpose
of this note is to prove a slightly stronger theorem for the case § is semi-
bounded and then derive the original theorem as a corollary. The idea
of the proof is essentially the same as in [3], but it seems not possible
to derive Theorem 1 from our previous result. The reason is, as we shall
see, that if a Stieltjes moment sequence is determined, the corresponding
Hamburger moment sequence need not be determined.

THEOREM 1. Let 8 be a semi-bounded, closed, symmetric operator in
& Hilbert space #. Then 8 is self-adjoint if and only if there exists o total
set of vectors we () D(8™) such that

nxl
D) 18"l = oo.
fn=1

Proof. The necessity of the condition is a trivial consequence of the
spectral theorem. In fact, if § is self-adjoint and {E (o)} its canonieal
spectral measure, let B, = E([—c¢, ¢]) for ¢ > 0. If ze#(E,) (range of
E,), then

18" a2 = [ 2B A)al? < *fall?,

~c

* This work was in part supported'by National Science Foundation Grants
N.S.F. GP-3583 and GP-6907.
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