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Xy and Yy a sequence of finite-dimensional operators (each of norm
one) which tends pointwise to the identity operators of the spaces.
Combining Corollary 4.1 with Proposition 3.2 we obtain

PrOPOSITION 4.2. If Py is unbounded in Ly (T)-norm, then
Np(Tagpws Xag) # N3 Tagpe, X) (1 <p < +00)
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Multipliers and tensor products
of I”-spaces of locally compact groups*

by

MARC A. RIEFFEL (Berkeley)

In an earlier paper concermed with induced representations [12]
we introduced a definition of tensor product for Banach modules. Section 1
of the present paper contains general remarks on the relationship between
multipliers of Banach modules and this definition of tensor product.
Tn the following sections, motivated by theorems of Figa-Talamanca,
Gaudry, Hoérmander, and Bymard [3,6,10,4] concerning multipliers
of the IP-spaces of locally compact groups, we give conerete represen-
tations as function spaces for the tensor products of these IP-spaces,
and we indicate how the theorems of the above-named authors can be
reformulated in terms of these representations.

We would like to thank F. Greenleaf and L. Maté for several sbi-
mulating conversations about multipliers.

1. Multipliers and tensor products. Let 4 be a Banach algebra. By
a left (right) Banach A-module we mean [12] a Banach space, V, which
is a left (right) 4-module in the algebraic sense, and for which

llav]| < llalw]l  for all acd and veV.

If ¥V and W are left (right) Banach A-modules, then Hom,(V, W)
will denote the Banach space of all continuous A-module homomorphisms
from V to W with the operator norm. The elements of Hom4(V, W)
are traditionally called multipliers from ¥V to W. If V is & left (right)
Banach A-module, then V*, the dual of ¥, is a right (left) Banach A-mod-
ule under the adjoint action of 4.

For completeness we include the definition of the tensor product
of Banach modules which was introduced in [12]. Let ¥ and W be
respectively a left and right Banach A-module. Let V®,W denote the

* This research was partially supported by National Science Foundation grant
GP-5585.
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projective tensor product [8] of V and W as Banach spaces (so that y is
the greatest cross-norm [14]), and let K be the closed linear subspace
of V®, W which is spanned by all the elements of the form

wRW—IRaw, acd,veV,weW.

Then the A-module tensor product, V ® 4 W, is defined to be the quotient
Banach space (V®,W)/K. Using the universal property of the projective
tensor product with respect to bounded bilinear maps from V X W, it is
easily seen that V@, W has the expected universal property with respect
to A-balanced bounded bilinear maps from. V x W.

Now, with the situation as described in the previous paragraph,
W* is a left A-module, and it is not difficult to prove (2.12 and 2.13 of
[121), using the universal property just mentioned, that there is a natural
isometric isomorphism

(1.1) Homy(V, W;) = (Ve.W),

under which the linear funecfional on V&, W which corresponds to an
operator TeHomy(V, W*) has value (w,T(v)> at the element »®w
of V@,4W. We thus obtain a representation of the space of multipliers
from V to W™ as a dual Banach space, and this is the type of result sought
by Figa-Talamanca [5] and Figd-Talamanca and Gaudry [6] for the
special case of the IP-spaces of locally compact groups. In fact, as we
shall see in the next sections, some of their results can be interpreted
as involving the construction of concrete representations as function
spaces for the tensor produects of these LP-spaces.

But before we turn to this question, it will be useful to describe the
topology on Hom,(V, W*) which corresponds to the weak*-topology
on (V@,W)*. Now it was shown by Grothendieck [8] (see also [13], p. 94)

that every element, {, of ¥'®, W has an absolutely convergent expansion

of the form

1.2) = ZQ}{,@W%, vie ¥V, ’wiEVV,
i=1

where
DIl < oo
=1
Tt follows that every element of V'@, W also has such an expansion.

Then the linear functional on Hom,(V, W*) which corresponds to
te V@, W has value

i <'M)1;, T'U’E>

=1
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at TeHomy(V, W*), in terms of an expansion of type (1.2) for #. It is
clear that the topology on Hom(V, W*) defined by the linear functionals
of this form is the topology which corresponds to the weak*-topology
on (V®. W)*. It is appropriate to call this topology the ulirawsak*-operator
topology, sinee it is easily verified that if W is reflexive, this topology is
the same as the ultraweak operator topology as defined for example by
Dixmier ([2], p. 35). In fact, from (1.1) one easily obtains the following
generalization of Dixmier’s result that a von Neumann algebra (defined
in [2] as the commutant of a self-adjoint algebra of operators on a Hilbert
space) is a dual Banach space.

1.3. PrOPOSITION. If 8 is any set of operators on a reflexive Banach
space, then the commutant of 8 is a dual Banach space.

We summarize the results of this section as

1.4. TaEoREM. Lef T and W be respectively left and right A-modules.
Then

Hom 4(V, W*) = (Vo W),

and the ultraweak*-topology on Hom (T, W¥) corresponds to the weak*-
topology on (V@4 W)

2. The I”-spaces of locally compact groups. Let ¢ be a locally compact
group. We choose a left Haar measure on @ which will remain fixed
throughout, and we let 4 denote the modular function for G¢. We let
IP (@), 1 < p < oo, denote the usual Lebesgue spaces with respect to left
Haar measure on G. Then I'(@) is a Banach algebra under convolution,
and IP(@) becomes a left I'(G)-module when elements of L'(G) act on
elements of I”(@) by convolution on the left.

We investigate first the adjoint action of L'(@) on the dual of P (@).
For any number p, 1 < p < oo, we let p’ denote the conjugate exponent
defined by 1/p+1/p' = 1, and we define the dual pairing between (&)
and IF (@) by

gy = [flag@)dn, FeIP(@), gel” (@)
G

Then it is easily verified that
p*fs g =<Fr7*9>
for peIMNG), feIP (@), and geI” (@), where ¢ is defined by
¢ (2) = A pla™").

Thus the adjoint action of an element ¢ of .I'(§) on I7 (@), under
which I’ (@) becomes a right I'(G)-module, consists of convolution on
the left by @ (note that ¢ — ¢ is an isometric anti-automorphism of H@G)).
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For any p we will let I’ (G) denote I”(G) viewed as a right L'(&)-module
with the adjoint action just described.
Then relation (1.1) applied to the I”(@) becomes

(2.1) Homg (I¥ (&), I" (@) = (I*(() @ L (&))"

for 1<p< oo and 1< g < co. (For simplicity we will always write
®g for ®ryg, and Homg for Hompyg.)

Thus to represent the elements of Homg (L” (@), Ifl'(G)) a8 elements
of the dual of a concrete Banach function space, as is done in [5] and [6],
it is sufficient to represent L”(@)®¢ L?(G) as such a function space. The
following sections are devoted to the problem of obtaining such a repre-
sentation (1).

‘We remark that relation (1.1) does not immediately apply to°the
case of Homg (L7 (@), I} (&) which is treated in [6], sinee L' (&) is not a dual
space. Wendel [15]has shown that Homg(L' (), L&) 22 M (G) == (0 (6))",
where (,(@) is the space of continuous functions vanishing at infinity
on @ If p > 1 and G is not compact, then Hormander has shown ([107,
Theorem 1.1) that Homg (I* (@), LY(@)) contains only the zero operator.
Finally," if 1 < p < oo and @ is compact, then one ean show that

Homg (I7 (&), NG = HomG(Lp(G), (z (G))**),
and so (1.1) can be applied to obtain
Homg (L7 (&), IN@)) == (I" (@) @aL™ ()",

thus again obtaining a representation for multipliers of the kind obtained
in [6] (once we have given a concrete representation for IF (@)®a L™ (G)).

We turn now to the problem of representing I? (@) ®¢ L%(@) as a func-
tion space. We can immediately dispateh with the case in which p =1
or g = 1. For it follows from Theorem 4.4 of [12] that I(G) QLY (G) =
=0 = L@@ L'(@) if 1<g< oo, and that I'G)®gL°(Q) =
22 Onl@) == I”(@)®e L' (G), where (@) denotes the space of bounded
left uniformly continuous functions on G Thus we can assume hereafter
that p > 1 and ¢ > 1, ,

As suggested by the work of Hérmander, Figh-Talamanca and
Gaudry, the situation for compact groups is somewhat different (and
much simpler) than that for non-compact groups. For this reason we
consider compact groups first.

() Recently R E. Harte sent us a preprint of a paper entitled Tensor products
of normed modules in which he obtaing similar representations for the tensor prod-

ucts .of the LP-spaces of measure spaces viewed as L°-modules under pointwise
multiplication.
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3. I’ (@) ®eL*(@) for compact G. Throught this section we assume
that G is compact, and that Haar measure on @ is normalized so that
the measure of @& is 1. The Banach space of continuous functions on @
will be denoted by C(G). We begin with a result which is essentially
contained in [6].

3.1. PROPOSITION. Let feI”(G) and geI®(G), where 1 <p,q< oo.
Then fxg is defined a.e., fxge L (@), and

[7* gl < lIfllo igla s

where r is defined as follows:

(a) if 1/p+1jg>1, then 1jr = 1/p+1/g—1;

(b) if 1jp-+1/g <1, then r = oo,

In fact, if 1jp+1/g <1, then f*geC(G).

Proof. The case in which 1/p+1/g > 1 is just a special case of Theo-
rem 20.18 of [9]. If 1/p+1/g < 1, then it is easily seen that p’ < ¢. Since
@ is compact, ||gily < llgllg, and so g I’ (@). Then, applying Theorem 20.16
of [9], we obtain f*geC(Q), and

i glleo < 1f o Mol < 11l g1

We remark that for 1/p+1/g < 1 this situation is in sharp contrast
to that for noneompact groups. In fact, Rickert [11] has shown that if ¢
is not compact and if 1/p+1/g <1, then feI”(G) and geL?(G) can be
chosen so that f*g is not even defined on a set of strictly positive measure.

In view of Proposition 3.1 we can define a bilinear map, b, from
IP ()< I%(@) into L'(@) or (@) by

b(f, 9) =f*g, fELp(G)JgeLq(G)i
and [b]] < 1. Then b lifts to a linear map, B, from IF(@)®,L%(G) into
I'(@) or (@), and ||Bl| < 1. In analogy with definitions made in [3] and
[6] we have

3.2. DEFINITION. The range of B, with the quotient norm, will be
denoted by A%.

Thus 4% is a Banach space of funections on G which can be viewed
as a linear submanifold in I'(@) or C(G). In view of the fact that every
element of I (@)®, L?(G) has an expansion of the form (1.2), we see that
A consists of exactly those functions, #, on ¢ which have at least one
expansion of the form

h = ;f;’.*gia
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where f;eI? (&), g:eL°(6), and
D ldlo lgilla < o0,
q=1

with the expansion converging in the norm of ' (@) or O(&).
3.3. THEORBM. If G is compact, 1 < p, ¢ < oo, and either p < oo
or q < oo, then

I’ (@@l (G) = 45,

the isomorphism being isomelric.

Proof. It clearly suffices to show that the kernel of B is exactly K,
the closed subspace of I?(G)®,L%(@) spanned by elements of the form
(0*f)@g—F®(§ *g), where pe I'(@), fe I’ (@), and geL*(G). Now

B(p*og) = (p*f) *g = F *(@*g) = B(fe(9*9))

(b is I} (G)-balanced), so that the kernel of B contains I.
Conversely, suppose that ¢ is an element of the kernel of B. We will
show that teK. Let

I = Zfi@)gi
=

be an expansion of type (1.2) for &. Then the fact that ¢ is in the kernel
of B implies that

Z f'i*gi =0,

=1
where the sum converges absolutely in L'(§) or C(G). Let {j,} be an
approximate identity of norm 1 in I'(@) consisting of bounded funetions,
s0 that j,eI” (@) for each n (where n runs over a directed set). Suppose
that p < co (ome has an analogous proof for the case in which ¢ < oo
ingtead). For each n define t,cI” (@) ®,L%(G) by

3]

by = Z (fm *%)®g¢-

i=1

. Then f;*j, converges to f; for each 4, since p < oo, and from this
it is easily seen that f, converges to f. Sinee K it closed, it thus suffices
to show that t,eK. But, given # and & > 0, choose m, 50 that

| 7w ade < 21l
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whenever m > m,. Choose m, > m, such that
m

| .
“tn —‘;: (fi*?n)@gi < 5/2

whenever m > m,. Now
m
;:(fi *jn) ®9:

= Dlin@(fergd+ ) [(fixin @ gi—jn® (fi*g0],

and it is clear that the second term on the right is in K. Furthermore,
if m > m,, then

| D in@ i || = tinle || X Fivg]a
<lalo || Y Firgi])- < el2,

since it is easily seen that r> ¢. Thus the distance from t, to K is less
than e for every ¢ > 0, and so #,e K. .
We do not know whether a similar result is true for I°(6) @¢L%(G).

4. G non-compact and 1/p+1/g < 1. Throughout this section we
assume that G is not eompact. Suppose that 1/p+1/g < 1,p < o0, g < co.
Then p > ¢', and Hormander has shown ([10], Theorem 1.1) that in this
case, since G is not compact, the only operator in Homg (L7 (), " (@)
is the zero operator. Then in view of (2.1), it follows that

4.1. TEEOREM. If @ ds not compact, and if 1p+1/g <1,p << oo,
g < oo, then

P (@l (@) = {0}.

Alternate proof. While this result immediately follows from the
result of Hormander mentioned above, we believe it may be of interest
to include at least a sketch of a direct proof. What needs to be shown
in this case is that K, the subspace of I (@) ®,L* (&) spanned by elements
of the form (p*f)@g—f®(@*g),pel (@), fel?, gel?(@), is all of
IP () ®,[%(@). To show this, it is easily seen that it suffices to show that
for every teI” (6)®,L%(@) the distance from ¢ to K is less than 2¢/P+/0 =1z,
But, because p < co and g << oo, it is easily seen that to obtain this
inequality it suffices to show
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4.2, LeMMA. For any f, geC. (@) (the space of continuous functions
of compact support) the distance from f® g to K is less than 20001 fe g

Proof. The proof uses the same type of device as is used in Homander’s
theorem, namely that if f and #f have disjoint support, where zf denotes
the left translate of f to the point @, then

If+aflly = 2| flp-

Let £ > 0 be given. Choose an integer m large enough so that m®/M-1
< &/(||fllolgllg) - Since G is not compact and f and ¢ have compaet support,
we can find points @y, ..., @ of G such that f, a:f, ..., #xf have disjoint
support, and g, #7'¢, ..., Zn'¢ have disjoint support. Then

|| fog—1/m) ﬁ(f—mf)@gl! = (tfm)| X af plgls

= m | fl,llglly < e
But

(Ljm) 3 (f—af)®g

= (1/2m) D) (f—uf)®(g—27"g)

+(1fem) Y [(foai’g—aif0g)+(fog—uifesg)].
=1

By applying an approximate identity, we see that the second term
on the right side of the equality is in K. Furthermore

wm

[zm 3 (7—aif) @ g—arg)| < (1/2)2" 112" gl

= giHE=1  fgg),

and the desired inequality follows.

Again we do not know whether a similar result is true if P = 00
or ¢ = oo.

5. @ mon-compact and 1/p+1/g > 1. Throughout this section we
agsume that 1/p-+1/g>1,1 < p < oo, and 1 < ¢ < oo. We would like
to prove a representation theorem for this case similar to Theorem 3.3.
To do this it seems to be necessary, as suggested by the work of Figh-
Ta@manea and Gaudry, to know whether all the elements of Homg(L"(G‘),
7 (G)) can be approximated by right convolution operators. To make
this precise, we first note that p < ¢’. Then it is not difficult to prove
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5.1. PrOPOSITION. Let 1/p+1/g> 1, and let ¢eC.(G). Define T, by
To(f) = f*o, feI’(G). Then T,eHomg(L*(&), L¥ (). In fact,

Il < I (4 7 130,

The norm inequality follows from the Riesz econvexity theorem
([3], VI. 10. 11).

5.2. DEFINITION. A locally compact group @ is said fo satisfy prop-
erty Py (vesp. Qj) if every element of Homg(L”(G), I%(@)) can be
approximated in the ultraweak operator topology (vesp. boundedly in
the strong operator topology) by operators of the form T, geC.(G).

It is easily seen that property @ implies property P%. It does not
seem to be known whether all groups satisty property Pg. As far as we
know, only the following results are known (2). Every Abelian group satisfies
property Py for all p and g. This follows from Theorem 1 of [6], where
it is shown in fact that every Abelian group satisfies property Q% (see
also [1], Theorem 4.10). It is easily seen, using an appropriate approxi-
mate identity, that every compact group satisfies @3, and so P§, for all

p and g¢. Finally, every locally compact group G satisfies property Pj.

This is shown by applying the Commutation Theorem for quasi-Hilbert
algebras ([2], p. 69) to the quasi-Hilbert algebra for G as defined by
Eymard ([4], p. 210). In fact, an application of the Kaplansky density
theorem ([2], p. 46) then yields Q3.

We will show that for any group satisfying property P} there is
a representation of I(Q)®el*(@) similar to that of Theorem 3.3, and
conversely. However, in defining the analogue of the bilinear map b
used in Theorem 3.3, allowance must be made for the modular function.
The appropriate analogue of Proposition 3.1 seems to be

5.3. PROPOSITION. Let feL”(@) and geL*(G), where 1[p+1/g>= 1,
1< p,q < co. Then [ *g is defined a.e., and (AN (fg)ll- < Iflollglle,
where 1fr = 1/p+1/g—1. In fact, if 1/p+1jg =1, then

(4O (F *g) e Ou(@).

Here (,(G) denotes the space of continuous functions vanishing
at infinity on G. The proof is easily obtained by imitating the proofs of
theorems 20.16 and 20.18 of [9].

Thus by Proposition 5.3 we can define a bilinear map, b, from
IP(@) x IU(Q) into L'(@) or Ou(Q@) by

b(f7 g) = (A('))llplf *q,

(3) We have learned from A. Figd-Talamanca that C. S. Herz has recently
shown that every- amenable locally compact group satisfies property P%.
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and |b]| < 1. Then b lifts to a lincar map, B, from IP(@)®,L"(G) into
(@) or (&), and |BI<1. In analogy with Definition 3.2 we have
5.4, DEFiNTTION. The range of B, with the quotient norm, will be

denoted by 4% (). _ '
Thus A% is a Banach space consisting of those functions, &, on G

which have at least one expansion of the form

b= 4GP D) firgu,

f=1
where E‘Hfi”p]lgi[]q < oo. As before, we let K denote the closed subspace
i=1

of I7(@)®, L4(@) spanned by elements of the form (p*f)®y—F@(P*g),
where peI*(@),fel? (&), and geL'(@).

5.5. TEROREM. Let 1/p+1jg> 1. Then the following statements are
equivalent :

(2) G satisfies property Pi.

(b) The kernel of B is K, so that Ly (@) ®a LM (@) = AF .

Proof. As in Theorem 3.3, it is easily seen that K is always contained
in the kernel of B (b is L*(G)-balanced).

Suppose now that G satisties property P%. To show that the kernel
of B is contained in K it suffices, by the Hahn-Banach theorem, to show
that any bounded linear functional on I*(&)®,L%(@) which annihilates
T also annihilates the kernel of B. Let F be such a linear functional.
Since F annihilates K, it is easily seen from (1.1) that there corresponds
to F an operator T <Homg (L* (&), L%(@)) such that

o0
&y By = > g, T
=
for any teI”(@)®,L%(G) with expansion

b= 2fi®!h'
i=1
of type (1.2).

Suppose now that ¢ is in the kernel of B and has expansion (5.5).
Then

(5.5)

00

N (A0 (Frgd = 0,

=1

(®) We have learned from A. PFigh-Talamanca that C. 8. Herz has shown that
AD is always a Banach algebra under pointwise multiplication. This is shown

by making minor modifications to the prof for A3 which he gave in Remarque
sur la mote précédente de M. Varopoulos, C. R. Acad. Sc. Paris 260 (1965), p.
6001-6004. :
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the sum converging in the norm of L"(@). We wish to show that <t, #) = 0,
or equivalently, that ’

(5.6) D) <gs, Tf:> = 0.
i=1

Now it is easily seen on examining the proof of theorem 6.4 of [13],
p. 94, that in the expansion (5.3) for ¢ the f; and ¢; can be chosen to be
in 0,(G). We assume that they are so chosen. The proof of (5.6) which now
follows is just a reformulation of part of the proof of Theorem 2 of [6].
Since G is assumed to satisty property PZ, there is a net {g;}, of elements
of C¢(G) such that the operators T, defined in Proposition 5.1 converge
to T in the ultraweak operator topology. In particular,

Z $gss fir oy —5> 2 {gs; T

Thus to prove (5.6) it suffices to show that

D <, firory =0
=1
for each j. But

Do Firgp = 2<ﬁ*g¢, P>
i=1 i=1

(5.7) .
= QAW Gergs (A0 g = 0,

since {4(-))™" ¢1¢C,(G) and so can be viewed as an element of '(@).

Suppose conversely that the kernel of B is K. To show that the opera-
tors of the form T, for peC,(&) are dense in Homg({L(@), L7 (@)) in the
ultraweak operator topology, it is sufficient aceording to Theorem 1.4
to show that the corresponding funetionals are dense in (I”(6)®eL*(G))*
in the weak*-topology. But to show this it is sufficient to show that the
annihilator of these functionals is {0}, or equivalently, if these functionals
are viewed as functionals on I”(@)®,L%(), that their annihilator is K.
But from (5.7) it is easily seen that the annihilator of these functionals
is the kernel of B. Since our hypothesis is that the kernel of B is K, the
proof is complete.

We remark that Eymard’s theorem 3.10 [4] is essentially the analo-
gue of our Theorem 1.3 and Theorem 5.5 for the case in which L*(¢)
i viewed as right and left 0,()-modules in which the action of peC.(G)
on I (@) consists of convolution on the right by ¢ and ¢, respectively.
In particular, we have the identification

A(() = (@) ®cye L@,

Studia Mathematica XXXII 6
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as seen from Theorem 3.4 H, of [4], where 4 (@) is Bymard’s algebra
of Fourier transforms.

We also remark that presumably the results of Gaudry in [7] can
be interpreted as the identification

Homg,@(Ce(@), (Co(6))*) 2= (0o(@) Boye O (B)*

(where tensor products must now be defined for modules which are locally
convex topological vector spaces) together with a eoncrete representation
of C.(¢)®c,@ (@) as a funetion space analogons to the representations
given in Theorems 3.3 and 5.5.
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On invariant measures for expanding differentiable mappings
by

K. KRZYZEWSKI and W. SZLENK (Warszawa)

This note concerns expanding differentiable mappings first studied
by M. Shub, see [5] and [6]. These mappings ave closely connected with
Anosov diffeomorphisms. But while it is not known whether there always
exists a finite Lebesgue measure invariant with respect to an Anosov
diffeomorphism (see [1] and [6]), it turns out that such a measure always
exists for any expanding differentiable mapping. The purpose of this
note is to prove this fact. It seems that this may be of some interest and
that is why we publish the proof although the arguments used in it have
some points of similarity with the proof of Theorem 1 in [3], p. 483.

The authors are very much - indebted to Professor J. G. Sinai for
his valuable remarks concerning this paper.

In the sequel M will always denote a compact, connected differ-
entiable manifold of class C™ unless stated otherwise. If ¢ is a map of
clags " of I into itself, then dp will denote the derivative of ¢ which is
the map of the tangent bundle T(M) into itself. We shall say that ¢ s
expanding if there exist a Riemannian metric ||-] on M, a positive real
number @ and a real number ¢ greater than 1 and such that
(1) 1™ (@)] > ac”
for each aeZ(M) and »=1,2,...

ExaMpLe. Let ¢ be a differentiable mapping of the 2-dimensional
torus into itself given by the formula

olz, y) = (ma+ny+e-f(2,y), pr+ gy +eg(2, y)) (mod1),

0<r<1,0<y <1,
where

(i) m, n, p, g are integers;

(ii) the eigenvalues of the matrix (m’ n) are real and their moduli are
greater than 1; P

(iii) f and g are the real functions of class * on R?, periodic with
period 1 with respect to each variable;

(iv) e is a real positive number.
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