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1. In 1868 Serret [8] proposed that the area of a surface § be defined
as ‘‘the limit of the elementary areas of the polyhedral surfaces inscribed
on § as these approach 8.” In 1882, Schwarz [7] showed that the set of
the areas of the polyhedra inscribed on such a simple surface as a circular
cylinder is unbounded. In 1902, Lebesgue [3] proposed that surface area
be defined as the G. L. B. of the set of limit inferiors of the sequences of
areas of polyhedral surfaces which converge uniformly to the given sur-
face. This paper stimulated a great number of investigations. Most of
these used Lebesgue’s definition as a point of departure. However, many
mathematicians [1], [2], [6] and [10] have been interested in a more
geometric definition. The present work is one in this direction.

2. The notion of piecewise flatness was introduced in [9]. However,
the discussion there was confined to continuously partially differentiable
surfaces. In the present work we consider the general case of a continuous
non-parametric surface.

Let 8§ = f(E) be a continuous non-parametric surface, E a closed
region on the zy plane bounded by a simple closed polygon. Let 0 < a < =/2.
We shall consider triangular polyhedra I7 inscribed on § such that:

1) The projection P(II) of IT on the zy plane is identical with P(S),
the projection of 8§ on the zy plane, i.e., P(II) = P(S)= E.

2) Every face of /I has an angle which lies between a and n—a.

3) If 6 denotes the acute angle between the z-axis and the normal
line to a face of I, then, considering the set of all such polyhedra, sec®
is bounded. We will denote the L. U. B. of sec® by m.

4) The projection on the zy plane of each face of each polyhedron
(a closed triangle) is a subset of P(S).

We shall refer to such polyhedra as admissible polyhedra.
A triangle T inscribed on § is said to be admissible if:

1) One angle of T lies between a and n— a.
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2) The secant of the acute angle between the z-axis and the normal
line to T is less than m.

3) P(T)C P(N).

Every face of an admissible polyhedron is an admissible triangle.

DErINITIONS. Let T be a face of an admissible inscribed polyhedron.
By a subface @ of T we mean an admissible triangle inscribed on § such
that P(Q) C P(T).

By the directional deviation D,(T) of T we mean the L. U. B. of the
set of acute angles ¢ between the normal line to T' and the normal line
to every subface of 7.

In the sequel, the term inscribed polyhedra shall mean inscribed
admissible polyhedra. We shall generally refer to such polyhedra as
(a, m) polyhedra and to its faces as (a, m) faces. We shall, however, often
omit the ‘“(a, m).”

Given admissible polyhedra I7, and I/, inscribed on S, we say that /I,
is a refinement of II, if every vertex of II, is a vertex of I7,. Similarly,
if T is an admissible triangle inscribed on S and K is a polyhedron in-
seribed on 8 sunch that P(K) = P(T), every vertex of T is a vertex of K
and every face of K is an admissible triangle, then we shall refer to K as
a refinement of 7.

DEFINITIONS. Given an admissible polyhedron 77 inscribed on S,
by the norm of Il we mean the greatest of the diameters of its faces.

By the deviation morm of /I we mean the greatest of the directional
deviations of its faces.

DEFINITION. Given 8 = f(E), by an (a, m) regular sequence of in-
scribed admissible polyhedra (71,, I7,, I1;, ...) we mean an infinite sequence
of inscribed (a, m) admissible polyhedra having the following properties:

1) The corresponding sequence (¢, @, @3, ...) of deviation norms
converges to zero.

2) The corresponding sequence (N,, N,, N;,...) of norms converges
t0 zero.

DEFINITION. § = f(E) is said to be an (a, m) regular surface if it
admits a regular sequence of (a, m) inscribed admissible polyhedra.

THEOREM 1. Let S = f(E) be (a, m) regular. Then for each (a,m)
reqular sequence of inscribed polyhedra, the corresponding sequence (A,, A,,
As, ...) of polyhedral areas converges.

Proof. Let (I1,, I1,, 11, ...) be any (a, m) regular sequence of admis-
sible polyhedra inscribed on 8. Let the corresponding sequence of norms,
deviation norms, and polyhedral areas be, respectively,

(Nyy Noy Ny, ), (P1y P2y Pay --2) (A4,, 4,, 4,, ...) .
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We wish to show that (4,, 4,, 4,4, ...) converges.

LEMMA 1. There exists a positive constant M, depending only on 8, g,
and m such that if 6, is the acute angle between the z-axis and the normal
1o a face of Il; and 0, is the acute angle between the z-axis and the normal
to a face of II;, then |secB,— secly| < M|{6,— 6,].

Proof. Secf is continuously differentiable on a closed and bounded
<¢l. Hence sec0 is uniformly Lipschitzian on this set.

LEMMA 2. Let T be a face of II,. Let B denote the area of T. Let K be
any rvefinement of T. Let ils faces be Q,, @, ..., Q. with respective areas,
By, B,, ..., B;. Let a == area of P(K) and a; = area of P(Q¢),1=1,2,...,r.
Let 0 denote the acute angle between the z-axis and the mormal to T; 04, the
acute angle between the z-axis and the normal to Qi, ¢ = 1,2, ..., r. Finally
let B* = B,+ By ...+ B,. Then |B—B* < aMg,.

Proof.

B = a;secl+ aysecl+ ...+ a,secl
B* = a;sec B, + a,secB,+ ...+ a,sect,
‘B— B™ < a,isec 00— sec0,|+ a,|sec 06— sec B, + ... + a,lsec 6—sec B,
< o Mpn+asMpn+ ...+ a, Moy < aMey .

\W¢ now proceed to the proof of Theorem 1.
Let &> 0 be given. There exists a positive integer N such that,
i » > N, then
> LY
Pn < 529 where A == area of E.
Let n, >> N and n, > N. Consider IT,, and I7,,. Let 7l be the common

refinement of I7,, and IT,,. Let A, ., denote the area of /7. We will com-
pare A,, ., with both 4, and A,,

' & £
‘.Anl —Am.‘nz} < Aﬂjl”nl < A njé;{-—]—ﬂ: = § ’
A, Anom| < AM Au = £
Any = Anyn,| < AMEy, < ‘ m - 2 ’

Hence j4p,—An,| < e. Hence the sequence (A4, 4,, 4,4, ...) converges.
THEOREM 2. Let 8 = f(E) be (a, m) reqular. Then for all regular se-
quences of (a,m) admissible polyhedra inscribed on S the corresponding
sequences of polyhedral areas converge to the same real number as a limsl.
Proof. Let (I7,,I1,,11;,...) and (II1,]1;,11;,...) be two (a,m)
regular sequences of admissible polyhedra inscribed on 8. Let the eor-

responding sequences of polyhedral areas he (4,, 4,, 45, ...) and
(A1, AL, Aj, ...), respectively.
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The sequence (IT,, I, I,,II;,...) i8 an (a,m) regular sequence.
Hence the corresponding sequence of polyhedral areas (4,, 41, 4,, 4;, ...)
converges. Since (4,, 4,, 43,...) and (41, 43, 43, ...) are subsequences
of (4,, 41, 4,, A:,...) these three sequences all converge to the same
real number as a limit.

It is easy to see that if § = f(F) is both (a,, m,;) regular and (a;, m,)
regular, the unique limit of the sequences of polyhedral areas corresponding
to regular (a,, m,;) sequences of inscribed polyhedra is equal to the unique
limit of the sequences of polyhedral areas corresponding to (a,, m,) se-
quences of inscribed polyhedra.

DEFINITION. § = f(FE) is said to be piecewise flat if there exists a pair
(a, m) such that § is (a, m) regular.

DEFINITION. Let 8§ = f(FE) be piecewise flat. Then by the area of 8
we mean the unique limit of the sequences of polyhedral areas correspond-
ing to regular sequences of polyhedra inscribed on S.

In [9] we showed that a sufficient condition for 8 = f(E) to be
piecewise flat is that f be continuously partially differentiable, i.e., f is
continuously partially differentiable on E.

We now wish to obtain a necessary condition that § = f(E) be
piecewise flat.

Consider a regular sequence (II,, I1,, I1,, ...) of admissible polyhedra
inscribed on a piecewise flat surface S. Let (¢, ¢., @5, ...) be the
corresponding sequence of deviation norms.

Let IT, be any element of the above sequence of polyhedra and
let K., be any of the faces of /7,. Each point p of the interior of K,,,
has the property that if L, and L, are any two subfaces of K, containing p
(not necessarily an interior point), then the acute angle between the
normals to L, and L, is less than 2¢,. Let E;, denote the union of the
projections of the interiors of the faces of /7,. The set F,, = E—E,, is

oo

of 2-dimensional measure zero. The union U = {JF,, is then also of
n=1

measure zero. Let F = E—U. By a regular point ¢ of § we shall mean

a point S such that P(q) e F.

THEOREM 3. Let q be a regular point of a piecewise flat surface S. Then
for each € > O there exists 6 > 0 such that if T, and T, are any two admis-
sible triangles inscribed on 8 of diameters less than 6, such that P(q) e
e P(T,) ~ P(T,), then the acute angle between the mormals to T, and T,
i8 less than «.

Proof. There exists a positive integer N such that, if n > N, then
¢a < 3e. Let » > N and let T be the face of /T, such that P(q) is an in-

terior point of P(T). Take & = the distance from P(q) to the bemndary
of P(T).
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COROLLARY. Let q be a regular point of S. Let (T,, T,, T,, ...) be an
infinite sequence of admissible triangles inscribed on S such that, for each i,
P(q) € P(T:) and such that the corresponding sequence (D,,Dz, ...) of
diameters converges to zero. Let (V,,V,, V,, ...) be the corresponding sequence
of unit vectors such that each V; is normal to T;. Then the sequence
(Vy, V,, Vs, ...) converges to a unique unit vector V(q).

Proof. Let ¢ > 0 be given. Take the 6 referred to in Theorem 3 cor-
responding to 0 = (1— £2/2).

- There exists a positive integer N such that if » > N, then D, < é.

Let n, > N and »; > N. Then the acute angle between V. and V,,
is less than 6. Thus

|V'n1_V'n¢l < ‘/i l/i—cosﬂ < eE.

Hence the sequence (V,,V,, V,,...) converges.

Given two sequences (T,, Ty, T, ...) and (Ti, T3, T3, ...) having the
above mentioned property, the sequence (T7,, T, Tz, Té, ...) also has
that property. It follows that all sequences (V,, V,, Vs, ...) converge to
the same limit vector.

THEOREM 4. Let p be a regular point of a piecewise flat surfaee S.
Then f is partially differentiable at P(p).

Proof. Let Cz and C, be the curves of intersection of § with the planes
through p paralle]l to the zz plane and the yz plane, respectively.

b4 p

X

Let (q., 92, ¢3, ..-) be an infinite sequence of points on C: converging
to p. Let (Vq,y Vguy Vg, -..) be the corresponding sequence of unit vectors
from p through ¢,, ¢,, ¢s, ..., Tespectively.

If the set {Vqy Va.y Vo .-} is finite, then there exists a convergent
subsequence of (Vg,, Vg, Vg,, ...). If the set {Vg,, Vg, Vg, ...} i8 infinite,
then there exists a vector limit point of the set. There exists then a sub-
sequence of (Vg,, Vg, Vg, ...) which converges to this vector limit point.
Thus, in either case there exists a convergent subsequence.

Similarly, if (r,, 7,, 73, ...) is any sequence of points on C, converging
10 p, and (W,,, W,,, W, ...) is the corresponding sequence of unit vectors
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from p through (r,, rs, 73, ...), respectively, then there exists a convergent
subsequence of (W,,, W,,, W,,,...).

Suppose now that there exist two subsequences of (Vg,, Vg, Vi, ---)
which converge to two distinct limit vectors. Let these be V3 and V2*.
Let a subsequence of (W,, W, K6 W, ..) converge to V,. Then V3>
XV, # Vi*xV,. This contradicts the corollary to Theorem 3.

Since the sequences (Vgq,, Vg, Vy»...) converge to a unique limit
vector, it follows that éf/ox exists at P(p). Similarly, éf/cy exists at P(p).

COROLLARY. Let p be a regular point of 8 = f(E). Then the unique
limit vector V (p) is normal to § at p. :

Proof. If C is the intersection of § with any plane through p and
parallel to the z-axis, then the directional tangent vector to (" at p exists
and is normal to V(p).

THEOREM 5. Let p be a regular point of a piecewise flat surface 8 = f(F).
Then [ is continuously partially differentiable at p.

Prootf. Suppose that there exists ¢ > 0, such that for every o > 0.
there exists q e £ such that |g—P(p)| < 9, f differentiable at ¢, and the

acute angle between V (p) and V (f(g)) is not less than e.
Now there exists 6 > 0 such that:

1) If T, and T, are any two admissible triangles inscribed on 8 and
such that P(T,) v P(T,) is a subset of the open ball S(f(p), §), then the
acute angle between the normals to T, and T, is less than &/4.

2) The acute angle between 1" (p,) and the normal to T, is less than &/4.

3) If ¢ e S(P(p), d) and f(q) is a regular point of 8, then the acute
angle between V(f(g)) and the normal to T, is less than /4.

It follows from these that the acute angle between V(p) and V(f(q))
is less than e. This exhibits a contradiction. Hence f is continuously partially
differentiable at p.

We have just shown that a necessary condition that § = f(E) be
piecewise flat is that f be continuously differentiable over E except on
a set of measure zero. In [9] we showed that a sufficient condition that
8 = f(F) be piecewise flat is that f be continuously partially differenti-
able on K.

8. We will now give an expression for the area of a piecewise flat
surface § = f(E).

THEOREM 6. Let 8 = f(F) be piecewise flat. Let E* be the subset of K on
which f is continuously partially differentiable.
Let

o WIT @t e,  if (o) < B,
Flo,9) = { 0, if (z,) ¢ B—B*.
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Then the area of S is given by the Lebesgue integral J F(x,y).
E

Proof. F(x,y) is Lebesgue integrable on E.
Consider a regular sequence of admissible polyhedra inscribed on &

(1, 1L, 11, ...)

with corresponding sequences
(Nyy Noy Ny, ), (@15 P2y @5 --2) (Aq, dqy Ay, ..0) .

Let the faces of IT, be T.i, Trsy ..., T'amm). Liet their projections
he RBuiy Rpgy ..oy Bumy, respectively. A, = Rpisecly + Rppseclp+ ... +
+ Bpminy5€C Opminy, Where 6y, is the acute angle between the z-axis and
the normal to T,, etc.

On R, there exists a point g, such that f(g) is a regular point of §.
Similarly, on RE.., there exists a point ¢,. such that f(g..) is a regular
point of S, ete.

Let

A% = Rl 1+ (02[0)2 + (02)09)|qu, + ol 1+ (02)02)2+ (02/0y)?]g,., +
+ cee + an(n)]/]- _|_ (82/1")37)2 + (az,ay)zlqnm(n) b
lAn_A ;! N Rm dni+ an Apz+ ... + an(n) dmw(n) y

where dyy, < Mpn, dnz < M@n, ..., Aoy < Men, M being the positive real
number introduced earlier. |4,— A} < EMo,.

Since (@;, @z, @3, ...) converges to zero and (4,, 4., 4,,...) con-
verges to the area of 8§, it follows that (AT, A3, A§, ...) also converges
to the area of 8. Thus the area of S is given by the above Lebesgue
double integral.

4. Let 8 = f(H) be a piecewise flat surface. Let (I, I1,, I, ...) be
an (a, m) regular sequence of polyhedra inscribed on 8. Each polyhedron /7,
may be represented by a quasi-linear function Fy(p), in the sense of
McShane [4].

For each n, Iy(p) is uniformly continuous on £. The function f(p)
is also uniformly continuous on E. Thus for each & > 0, there exists 6 > 0
such that if o(p,, p.), the distance between p, and p,, elements of E, ix
less than o, then |f(p,)—f(p.) < ¢/2 and |Fa(p,)—Fn(p.)| < /2.

Now, let ¢ > 0 be given. Since the corresponding sequence (N,, N,.
N, ...) of norms converges to zero and since sec 0, the secant of the acute
angle between the z-axis and the normal to any face of any of the poly-
hedra I1,, 71, IT,, ... is less than m, there exists u positive integer A
such that if » > N, then if p is any element of E, there exists p*, an ele-
ment of K such that p* ¢ 8 ~ II, and o(p, p*) < d

f(p)—f(p*) <&/2  and  |Fa(p)—Falp*)l < /2.
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Since f(p*) = Fa(p*), it follows that |f(p)—Fa(p)| < e.

Thus, for every £ > 0, there exists a positive integer N such that
if n = N, then |f(p)—Fa(p)| < &, for every p ¢ E, i.e., the sequence (Fy(p),
Fy(p), Fy(p), ) converges uniformly to f(p) on E.

Since the sequence (F,(p), Fy(p), Fia(p), ) converges uniformly to f(p)
on E and in view of the fact, shown earlier, that the area of the surface 8,
as we defined this area, is given by the above Lebesgue integral, it follows
from a result of Rado [6] that, for a piecewise flat surface S, the area of S,
as we defined this term, is precisely equal to the Lebesgue area of 8.
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