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n
1. Let P,(2) = ) a,2” be a polynomial of degree n such that |Pa(z)|

r=0

< M for |2 =1. By a very simple method Visser [13] proved that
(1.1) |ag| + an| < M .

By the method of Visser [13], van der Corput and Visser [4] later
proved the following more general

n
THEOREM A. Let Pyu(z) = D a,2” be a polynomial of degree m such

v=0

that |Pu(z)| < M for |2| < 1. If ay, a, (v < v) are two coefficients such that
for no other coefficient a,, # 0 we have w = w mod (v— u), then

(1.2) |aul + o) < M.
Also

2r
(1.3) @] + |ao] < } [ 1Pa(e?®)|d6 .
0

n
Besides, they proved that if F(0) = D c¢ret® is a real trigonometric

k=—n
polynomial, i.e. ¢_; = ¢x, then for k > n/2

(1.4) leol +2 [ex] < max |F(6)]
(1.3) leol + 3 lexl < 3 | 1F(6)]d6 .

The eonstant } in (1.5) was improved by Boas [2] to }(1+1V2)/=
= 0.234... He later obtained [3] the best possible result and proved that
for k > n/2 and any positive y

2

(1.6) leo] + 27 lexl < 4, [ |F(6)|d8,

0
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where 4, is given by

1

(1.7) A‘? = m ’

and ¢ is the smallest positive root of sin ¢ = }y(rx— 2¢).
The more general problem of determining the best possible esti-
mate feor cee

Ale, Axle
max 1;1‘ of + Axlck

{ |F'(6)]df

, 0<k<mn,

where 4y, 1;; are given non-negative numbers was solved by Geronimus [5].
He proved in particular the following:

n
THEOREM B. If F(6) = D cxe™ is a real trigonometric polynomial,

k=—-n
then

2n
1
el < g [ 1P(6)1a0,
0

where h i3 the smallest positive root of the algebraic equation

mo ml sae Mp

my My ... Mgy
(1.8) S =0

M_g M_p_1 ... My

with my =2, mg = m_, = (2h)°/s! (8 =1,2, ..., B =[n/k]). The result is
the best possible.
In the spacial case, when k > n/3 this result gives the estimate

(1.9) leel < § [ 1F(B)]d6,
0
whereas, for n/3 > k > n/5 we get

2n
(1.10) lex] < 0.142 [ |F(6)]d6 .
-0

Generalizing (1.3) and (1.6) respectively Rahman ({8], Theorem 2
and 3) has recently proved the following theorems:
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n
THEOREM C. If Pu(2) = ) a,2’ i3 a polynomial of degree n and a,, a,

y=0
(u < v) are two coefficients such that for no other coefficient a,, # 0 we have
w = % mod. (v—u), then for every 6 >1

27
yoeaef 1 i0y,0 2012
o+ lao < 2000 (g [[ 1) a0)”,

where
2x _27%Y=I'(36+1)

R o e TAHD

The result i3 best possible.

THEOREM D. If F(0) = Z cxe*® ig a real trigonometric polynomia

-n

and 6 > 1, then for k > n/2 and any positive y

2n
1 1/8
oo + 27 o] < (G5 f Foras)”,

where .
(14 2yr)°

2n

= f 11+ 2rcosp|’dy

Cr» = max
0<f<w

Real-valued trigonometric polynomials have been studied in detail
by Rogosinski [9] and [10], and Mulholland [7]. The following theorem,
equivalent to a result of Mulholland ([7], Theorem 1) stands in analogy
with Theorem B.

n
THEOREM E. If F(0) = ' cie™ is a real trigonometric polynomial
k

=—n

such that |F(0)) < M for 0 < 0 < 2=, then for k> 1

M 4 n 3
(1.12) lex] < —l—cotﬂ , where l = ﬁ+§] .

The mazimum is attained, in particular, for the polynomial

2 ( l)f—l{elk(27—1)5+6—1k(21' l\a} x{(zl_ 2r+1) COf: (2r2l1)n+cot l} .

r=1
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THEOREM F. If Py(z) = i‘ A,x” is a polynomial of degree m such
that |Py(z)| <1 for —1< o <'=1(: then
|4a| < 2"'  (Tchebycheff) ,
|dn_1] <22 (W. Markoff) .

Generalizing Theorems B and E we obtain an estimate for |c| in
terms of
2r
1 s 1/8
(g= [ oo a0)

n

THEOREM 1. If F(0) = D cxe?*® is a real trigonometric polynomial

for every 6 > 1.

k=—
and 8> 1, then for k=1
2r
1/8 2 T 1 ] 1/o
(1.13) lex] < (Cs) (T cot ﬁ) (57_: .‘f |[E'(8)] dﬂ) ,
where
. 2=
2k 2 ©o2r '

of 11+ ¢|’dg

On letting 6 oo we get Theorem E. However, we do not assert that
the result is best possible. Its interest lies in the fact that for 6 other
than 1 and 2 it ¢s the first and only result of its kind. In order to have an
idea as to how close it is to the correct estimate we compare it in the
case 6 =1 with the result of Geronimus (Theorem B) which is known
to be precise.

In the special case 6 =1 our theorem gives the estimate

lexl < [2k 2] [% 2]f|F(o|de

gince C, = w/4. Thus for k> n/3 we get

2r
leel < 3| 1F(6)]d6

which agrees with estimate (1.9) of Geronimus.
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If £ < n/3 but > n/5, then we obtain
2
lex] < 144 [ |F(6)|@6
0

which differs from the precise estimate (1.10)

27

lexl < 142 [ |F(6)|d6
0

by 1.4 per cent. Thus our estimate (1.13) though not best possible, appears
to be fairly good.

Our next theorem gives estimate for linear combinations of any two
coefficients of a polynomial P,(2) bounded by M on the unit circle.

n
THEOREM 2. If Pu(z) = D a,2” is a polynomial of degree n such that

y=0

|Pa(2)] < M for 2| <1 and 0 < u <v<n, then for any real 1> 0

2r
(1.14) || -+ A || <% f 1+ Aet®|do .
0

The result is best possible.
If » and v satisfy a separation condition like 0 < 2u < v < n, then

the bound in (1.14) can be considerably improved.
: n
THEOREM 3. If Pu(2) = D a,2” is a polynomial of degree n such that
y=0

|Pa(2)| < M for |2| <1, then for any real 1> 0

2
(1.15) ] -+ Ao < M(”j_z) or M(l +54-)
according as 0 <2u <v<n or 0 <u < 2v—n<n respectively.

The case A =1 is particularly interesting, for then the right-hand
side in (1.15) reduces to M when 0 <2u <v<n. For u =0, v =1 we
have the stronger

n .
THEOREM 4. If Pu(z) = D a,2" is a polynomial of degree m such that

y=0
Re Py(2) < A for 2| <1, and a, is real, then _
(1.16) @+ 1la) < A.

- In an attempt to generalize Theorem F by finding estimates for the
coefficients in terms of

(3 J |Pa(@) "da)"™”

we have obtained the following

Annales Polonici Mathematici XXII 10
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”n
THEOREM 5. If Pa(x) = D, A,a* i8 a polynomial of degree m, then for
y=0
every 6 > 1, v =n, n—1,

1 .
/o I
(1.17) |A'I < 2!+1(72-; Cd)l (% f lPﬂ(m)ld(l_wz)(o—‘l)/zdx)l a ’
-1

where C, i given by (1.11).
The following corollary is immediate.
n
COROLLARY. If Pu(z) = D A,’ is a polynomial of degree n, then for
ye=0
every =1, p>1, ¢ =p/(p—1) and » = n, n—1,

1

(1.18) |4, < '“( ) ( f (1— w)“’""’mdw) (2 f | Pa w)l"”dm)

2. For one of our results we shall need the following
LEMMA 1. Let n, denote the linear space of polynomials

Pp(z) = ag+ 6,2+ ... + anz®
of fwed degree n wzth complea: coefficients, normed by || Pyl = max [P,.(e")|
Define the linear functwml L on n, as

(2.1) L: Pp—>lyag+... +laan ,

where the 1, are complex numbers If the norm of tﬂe Sfunctional is N, then

Jor every polynomial Pn(z) = Z a,z’

r=0

n
Dl,a,6i"

(2.2) } ; @ (“T) ‘2 a, e""

=0

where ¢(t) i8 a non-decreasing convex function of t.
This was proved by Shapiro ([11], Theorem 8) for the case ¢(f) =1.

Proof of Lemma 1. According to a theorem of Shapiro ([11],
Theorem 3) L can be represented in the form

(2.3) L[Pa()] = D) uxPal2) ,

k=1



Estimates for the coefficients of polynomials 139

for all P, € na, where 2, ..., 2, are distinct numbers of modulus 1 and
r

kZ,’ |ux] = N. Let & be any number of modulus one, and apply this to the
=1 .
polynomial P,(&z). We get

n
P

Hence if ¢(t) is a non-decreasing convex function of ¢, then by Jensen’s
imequality ([6], pp. 150-151)

& < X 1wl 1Patz. )] .
r=1

IZ; La,&| 2 |u,| | Pa(2,&)| Zlu.qu»(z.sm
(p yas N . gq) pe=] g

.i' |u,| Z |, |

y=1 =1

Setting £ = ¢® and integrating both sides with respect to 6 from
0 to 2= we get the result.

8. Proof of Theorem 1. According to a theorem of Rahman

([8], Theorem 7) if Py(z) = Z a,2’ 18 a polynomial of degree » such that

r=0
|Pa(2)] < M for |2| <1, then for » < n/2
2M
(3.1) @]+ an—,] <=~ cot 75 ,

where l=[ LA 3]

=lem=2 2
* " “'Sincé |a,+an_,| < |a,|+ |an_,| the norm of the functional

L: P,>0-ay+...4+0-a,_,+1-2,+0-a,,+...4+40-ap_,1+
+1'an—-+0'a’n—'—1+---+0'an

does not exceed %cot 2% Applying the lemma with ¢(t) = we get

for every 6 >1

(— f la, e"°+a,,_,e'(”")°|‘d0) % t——( f | Pp(e )|"da)
But by Theorem C

2n
. 1/8
1+ on-o] < 2005 [ 1,6"+an- 6" d0)
0

10*



140 M. A. Malik

Therefore
2r

6D lad o < 200" G oot (5 [ 1Puera0)”

If F(0) = 2 cre'® is a real trigonometric polynomial of degree =,

k=—n

then ¢ F(60) is a polynomial Z b,e* of degree 2n. On applying (3.2)

v=0

to the polynomial e™F(0) = Zb,e""’ and noting that |b,| = |bg,_,| for

=0
0 < v <n we shall get the desired result.

Proof of Theorem 2. f 0<u<v<n, 0<a< 2r and A any
positive real number, then

A |
z°+l dz I

|a, e + Aayeia®| = ‘— fP,.(ze“’) [ Py
< 21[1‘ [1 4 Ae*—%¥|d6
no

2r
— ﬂ[ ' 10
_é;oj 1L+ 2¢®|d0

and by choosing a such that |a,e®* - Aa,e™?| = |a,|+ Ala,] we shall get
the result. ,
In order to prove that the estimate is best possible let f(6)

4 Asin@
— pitan—? — i
e (1 17 cos 0) for 0 <6< 2r (we choose any fixed branch of
tan—! (M ) have the Fourier series representation
14 2Acosé - :
£(0) = D be.
Then

2n 2
_1 _yf_Asinb _inygy — 1 0
b, + Ab, _2‘”! exp[ta.n (l—l—).cosﬂ)](l—l—;'e )ydo —2"of |1+ 2e*|d6 .

For every n > 0, we have by a classical result of Fejér ([12], p. 440,
Ex. 9)

(n+1)—, .
|- S b <1
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and so the Laurent polynomial
L(e®) = ("+1) (n+1)—ly| b, e — 2 a, et

'n—|-1

-n

is such that |L(e®)| <1 for 0 < 6 < 2n and

1
2ol 4+ Alaa] = Ihol + 0 by > o f L+ 269 d0—e

where ¢ can be made arbitrary small by choosing n sufficiently large.
Thus 2"L(z) is the polynomial which we wanted to construct.

(-]
Proof of Theorem 3. It is known ([1], pp. 140) that if f(2) = } a,2”

y=0

is regular and |f(2)| < M in |2] <1, then

_ladf*
(3.3) la,| < M o

Now for 0<2u<wv<n, putting P(2)=2"2P,(z), w = eillv-w
and & = z°~%, the function

P(2) +P(wz) + ... + P (w°—u-1z)
(v—u)zv—u

= By + @Y + gy 22O L
= Gy + A&+ Aoy & ...

of £ is regular and in absolute value << M in || < 1. Hence by (3.3)

_ laul?

|M|<-M—— 5
Iirovided 0 <2u <v<n Thus for 1> 0 and 0 <2u<ov<mn,

Alauf*
iw

|y + Alay| < AM - |ay|—

Whatever be the value of |a,| the right-hand side of the last inequality
s < M(A-+1/42) and so the first part of the theorem follows. For the
second part we may consider 27Pr(1/2) instead of Pa(z2). ' o

In order to prove (1.16) we note that the function A — Py(2) is regular
for |z| < 1, where its real part is positive (we assume that Pg(2) is not
a constant; clearly (1.16) is true even if Py(z) is a: constant). It is well
known (see for example [12], pp. 194-195) that if f(2) is regular for 2| < 1,
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Re {f(2)} > 0, and f(0) =a > 0, then [f'(0)] < 2a. Applying this result
to the function A— Pn(z) we get

| <2(4—a)) or at+ia<A4.

Proof of Theorem 5. We denote by

Vo(@), Vi(®), ...
the polynomials defined by
__sin(v+1)1
V) =""gmg

where z = cost.
The polynomial Ps(r) has a unique expansion

Pu(z) = D 4,V'(2).

r=0

We put

G (t) = Pa(cost)sint = 2 d,sin(v+1)t
r=0

Z d et'("f‘ 10 __ e (r+1)¢
' 2

I

n+1l

—_ E 0,8'." y

p=—n—1

where ¢, =0, —¢_, =¢, = %d,_l for v > 1.

If 8 and m are two integers of which the first is positive, then ([4],
pp. 383) '

8—1 omipm
Y 2ﬂp [
(3.4) 2 e G(t+T) =8 Z c, et .
p=0 r=m(mod s)

Putting 8 = 2N and m = — N for all N for which N > (n+1)/3 the
left-hand side reduces to 2Ncy(e?N — e~ MY,
Clearly, for any complex 1,

2 Brr
0 0.
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s0 that

2 er

1 saf* - (L [+ ietya)”
Ill(ﬂ-!-ll-l-e»ldt) = (3% [ 13+ zotpar)”.

(1]

Thus for every 6 > 1 and 0 <y < 27,
2r s
\2w J

2r
1 iy iy R T
= %J— [(ae” "+ be™”) + (be” " +ae™)e”|°dt
0

. . . 1/0
= (51?: f le”(a + be™) +e""(b+ﬁe")|"'dt)
0
w 1/8 1 w 1/4
g(i f |a+be“|’d¢) +(- f |b+ae“‘|‘dz)
21:0 .. oo 27t g

2rc
. ) )
=2(lj |a+be“|‘dt) :
27
0
Choosing y such that |ae—% 4 be¥| = |a|+ [b] we get

2r
. 1/4
(3.5) la] + 1b] <2(0.,)",‘(% | |a+be“r’dt)
0

2r

18
=2(06)110(%f lae‘m+be'm‘|"dt) )
0

Putting a = 2Ncy and b = —2N¢y in (3.5) and making ilse of (3.4)
we get

2r
» 1/a .
4N jey| < 2(0,)"“(2% f |2NcN(e‘N'—e“N‘)|"dt)
. 0

2r :
- 1/8 i_ i 72
(e 15 e

0 p=0

8 \1/8
a)

2n
10 1 2.\
<2(C) 2N(2—ﬂ_ of 16| dt)
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by Minkowski inequality. Hence

the

(1]
(2]

(3]
[4]
(5]
(6]
(7]
(8]
(9]
[10]
(11]

(12}
(13]

2r )
_ w1 (- 3 7,\1"
dx-al = 2lenl < 2(60(5: [ 19! at)

_2( c,)w(; fl |Pa(a))’(1— m)“’”’zda})w.

-1
In particular

1
n ey 181 ~ e
IAnl =2 Idnl <2 'H(;Cd) (E f |I_’n(m)!6(1—w2)w 1)]2dw) ,
-1

l .
1/8 1/
]An—ll = 2n-1|dn_1| < 2“(%06) (% f |Pﬂ(m)lo(1—$2)(d—l)lzdw)
-1

We thank Professor Q. I. Rahman for his generous help throughout
preparation of this paper.
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