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ON m-CONVEX B,-ALGEBRAS OF TYPE ES

BY

W. ZELAZKO (WARSZAWA)

A B -algebra is a completely metrisable locally convex topologi-
cal algebra. The topology of a Bj-algebra A can be given by means of
an increasing sequence of pseudonorms

(1) lllls < llelli s,
t =1,2,..., xe A, which satisfies
(2) eyl < llells g1 llYlli g1y

1 =1,2,..., 2,yeA.
A Bjalgebra A is said to be multiplicatively convex, or m-convex,
if the pseudonorms (1) can be chosen in such a way that

(3) eyl < llwllsllylls,
t = 1,2,...., x,yeA. In this case to each index ¢ there corresponds a closed
ideal

N = {wed: |lall = 0},

and a Banach algebra A4; which is the completion of A/N; in the norm
||lz||;. If 7; denotes the natural projection of A into 4;, then the spectrum
o(x) of an element xeA is given by

(o <]

(4) o(x) = L_)l o;(x),
where o;(z) = 04,(mi(2)) (cf. [1] or [3]). The sets o;(x) are compact subsets
of the complex plane and

(5) suploi(®) | < ||l

In paper [4] we introduced a concept of a commutative complex
Banach algebra of type ES (from Extensions from Subalgebras). We write
namely that A ¢ES if for every closed subalgebra A, of it every multi-
plicative linear functional defined on A4, can be extended to such a func-
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tional on A. We have proved that A eES if and only if for every element
zeA its spectrum is totally disconnected (in the case of a compact set
this is equivalent with the statement that it contains no continuum).
In paper [5] we extended the concept of an ES-algebra to the non-com-
mutative case and we proved that the class of ES-algebras is closed with
respect to taking subalgebras, quotient algebras, finite direet products
and homomorphic images.

In this paper we obtain similar results for (complex) m-convex
B,-algebras, and so we answer a question posed in [5]. Our main result
is contained in Theorem 1. We show also that this result is no longer
true if we drop the assumption of metrisability and assume merely the
m-convexity and completeness.

We assume throughout this paper that every considered algebra
is an algebra over the field of complex numbers.

Definition 1. Let 4 be a commutative topological algebra. The
algebra A is said to be of type ES (to be an ES-algebra or to belong to the
class ES, written A eES) if for every closed subalgebra A, = A every
continuous multiplicative linear functional defined on A, is extendable
to such a functional defined on A.

LEMMA 1. Let A be a commutative complex Bg-algebra with unit e.
Suppose that for some xye A the spectrum o(xz,) contains a continuum K.
Then A is not an ES-algebra.

Proof. By formula (4) we have
K =K ~ o(m) = U [K ~ oi(w)]
1:=1

and by category arguments there is an index ¢, such that K ~ g;(x,)
contains a continuum K,. We have then K, < oy (z,).
Let a, feK,, a # . It is clear that if we put

T wo—ae

?/='2— B—a ’

then we obtain an element with spectrum o; (y) containing a continuum
K, such that 0, ireK,. So if we set

z = exp(iy),

we see that o; (2) contains a continuum K, connecting 1 and ¢, and 2
is an invertible element in A. It is easy to see that cio(z") separates the
complex plane between 0 and oco. Let A, be the subalgebra of A gener-
ated by z* and containing the unit ¢. The elements of the form p(z*),
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where p is a polynomial with complex coetficients, form a dense sub-
algebra of A,. For every such an element we put

f(p(2") = p(0),

and so we obtain a multiplicative and linear functional defined on a dense
subalgebra of 4,. The functional f is moreover, a continuous functional
since, by the maximum principle and formula (5), we have

If(p (")l = 1p(0)] < max |p(1)]

teaio(z )
= max |0 [p(2*)]] < lIp(2")lli, -

So f can be extended, by the continuity, onto the whole of 4. On
the other hand, f cannot be extended to a multiplicative linear functional
defined on A, since f(z*) = 0, and 2* is an invertible element in A.
Thus A is not an ES-algebra.

LEMMA 2. Suppose that 1° A is a commutative Banach algebra with
unit e, and 2° A contains a dense set Ay e such that for every x e A, its spectrum
a(x) does mot contain any continuum. Then the maximal ideal space M (A)
coincides with the Shilov boundary I'(A).

Proof. Let M,eIM(A). Let U be a neighbourhood of M, of the
form

(6) {MeM(A): |{l},;A'(M)|<8, i=1,2,..,n},

where z,, ..., 2,e My ~ Ay and 2" denotes the Gelfand transform of an
element x. Since ee 4, and 4, is dense in A4, the neighbourhoods (6) form
a basis of neighbourhoods of the ideal M,. Consider the joint spectrum

O(@yy ovny @) = {(B]} (M), ..., &} (M) C™: M M(A)},

where 2,,...,2, are elements defining the neighbourhood (6). Since
o(xx), 1 < k < n, is the projection of o(x,, ..., z,) onto the k-th coordinate
plane, it follows that the joint spectrum o(z,,...,2,) also contains no
continuum or, equivalently, it is totally disconnected. It follows that
the intersection

(7) O(Lryoeny@n) A {(t1y ooy t)eC™: |l < e, k=1,...,m}

contains a non-void open and closed subset S containing the origin
(0,...,0), and so there is in C" an open neighbourhood V of the origin
such that 8§ =V ~ o(2y, ..., ,), and there is also an open W < C"
such that o(z, ..., 2, )\N8 = W A~ o(2y, ..., 2,). We put

1  for (f),...,t)eV,

tyy, ooy ly) =
Pl b =00 o oo ) €W
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This is an analytic function defined on the open set V v W containing
the joint spectrum o(z,, ..., ;). By the operational calculus of several
complex variables (cf. e.g. [2]) applied to ¢ and ,,...,z, there is an
element ye¢A such that y"(M)=1 if (z](M),...,z)(M))eS and
y" (M) = 0 otherwise. Since 8 is contained in the set (7), it follows that
yM (M) assumes its maximal value in the neighbourhood U given by (6).
Since neighbourhoods (6) form a basis for M,, this implies Myel'(4),
and so M(4A) = I'(4).

LeMMA 3. If A is a commutative m-convexr Bg-algebra with wunit e,

and for every xeA the spectrum o(x) contains no continuum, then A is an
ES-algebra.

Proof. Let A, be a closed subalgebra of A containing the unit e.
To a system (1) in A there corresponds a sequence 4; of Banach algebras,
and to the same system in A, there corresponds a sequence A}. We
clearly have A} = A;, and, moreover, the natural projection of 4, into A}
is the restriction to A, of the natural projection of 4 into A;. Let f be
a continuous multiplicative linear functional defined on A,. There exists
an index ¢, such that

|f(2)] < Ik,

for every wreA,, and so there is a multiplicative linear funectional f,
defined on A7 such that

(8) Jolmiy(®)] = f(x), @ed,.

Since o(x) contains no continuum and because of (4), o; (») contains
a continuum for no zeA. Consequently, (cf. e.g. [2])

O'A,L-o(a") = 0420(50)

for every xe¢A,. We can now apply Lemma 2 taking the Banach algebra
A?o a8 A and the dense subalgebra =; (4,) as the set 4,, and so we can
extent the functional f, to a multiplicative and linear functional F,
defined on 4;,. If we put

F(2) = Fy[m,(2)],

we obtain a continuous multiplication linear functional on A which is
clearly an extension of the functional f, and so Lemma 3 holds.

If A is an m-convex algebra without unit element, then it may be
imbedded in an algebra 4, with a unit, and A4 is a maximal ideal in 4,
of codimension 1. Since for the spectra we have

04(2) = 04,(%), wed,
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and since every continuous multiplicative linear functional on A4 can
be extended to such a functional on 4,, Lemma 1 and Lemma 3 imply

THEOREM 1. A commutative m-convex Bg-algebra is an ES-algebra
if and only if the spectrum of any of its elements contains mo continuum.

If A is an algebra with a unit, then G(4) denotes the group of all
invertible elements in A. In a similar way as in [5] we can prove the fol-
lowing

THEOREM 2. Let A be an m-convex B algebra with a unit element.
Then the following statements are equivalent:

(i) Every commutative (closed) subalgebra of A is an ES-algebra.

(ii) For every xeA its spectrum contains mo continuum.

(iii) For every (closed) subalgebra A, = A, conlaining the unit element
we have

G(4,) = G(A)~A,.

This theorem gives a motivation to the following

Definition 2. Let A be a B,-algebra with a unit element. It is called
an ES-algebra if any one of the three equivalent conditions (i)-(iii) of
Theorem 2 holds true.

Denoting by @ (A4) the group of all quasiregular elements of the algebra
A (cf. e.g. [2]) we can rewrite Theorem 2 as

THEOREM 3. Let A be an m-convexr B -algebra. Then the following
three conditions are equivalent:

(i) and (ii) the same as in Theorem 2.
(iii") For every (closed) subalgebra Ay = A we have

Q(4,) = Q(4) ~ A,.

As before, this theorem gives a motivation to the following more
general

Definition 3. An m-convex B,-algebra A is said to be an ES-algebra
if any, one of the three equivalent conditions of Theorem 3 holds true.

The following theorem shows that the class of m-convex B,-algebras
of type ES is closed with respect to natural algebraic operations. Its
proof is exactly the same as in [5].

THEOREM 4. Assume A to be an m-convex By-algebra of type ES.
Then

(i) If A, i3 a closed subalgebra of A, then A,<ES.
(ii) If I is a closed two-sided ideal in A, then A[IeES.

(iii) If A, 8 an m-convexr B,-algebra and there is a homomorphism
of A onto A,, then A,eES.
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(iv) The cartesian product of a finite number of m-convex B,-algebras
of type ES is again such an algebra.

To close this paper, we give an example of a complete m-convex
locally convex algebra of type ES (according to definition 1) containing
elements with arbitrary spectra.

Example. Let J be an index set of continuum power and put
A = (7. A is clearly a complete m-convex algebra with coordinatewise
algebraic operations and with the product topology. It is clear that any
non-void subset of the complex plane is the spectrum for some element
in A. Let A, be a closed subalgebra of 4 and let f be a continuous multi-
plicative linear functional on A,. The functional f must be continuous
with respect to a pseudonorm equal to the maximum of the absolute
values of a finite number of coordinates, and so f must be of the form
f(x) = ; for some jeJ (x; denotes the j-th coordinate of x). Consequently,
A is an ES-algebra.
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