VOL. XX 1969 FASC. 2

ON m-CONVEX B₀-ALGEBRAS OF TYPE ES

 \mathbf{BY}

W. ŻELAZKO (WARSZAWA)

A B_0 -algebra is a completely metrisable locally convex topological algebra. The topology of a B_0 -algebra A can be given by means of an increasing sequence of pseudonorms

$$||x||_i \leqslant ||x||_{i+1},$$

 $i = 1, 2, \dots, x \in A$, which satisfies

$$||xy||_i \leqslant ||x||_{i+1} ||y||_{i+1},$$

 $i=1,2,\ldots,\ x,y\in A.$

A B_0 -algebra A is said to be multiplicatively convex, or m-convex, if the pseudonorms (1) can be chosen in such a way that

$$||x\bar{y}||_{i} \leqslant ||x||_{i}||y||_{i},$$

 $i=1,2,\ldots,\ x,y$ $\epsilon A.$ In this case to each index i there corresponds a closed ideal

$$N_i = \{x \in A : ||x||_i = 0\},$$

and a Banach algebra A_i which is the completion of A/N_i in the norm $||x||_i$. If π_i denotes the natural projection of A into A_i , then the spectrum $\sigma(x)$ of an element $x \in A$ is given by

(4)
$$\sigma(x) = \bigcup_{i=1}^{\infty} \sigma_i(x),$$

where $\sigma_i(x) = \sigma_{A_i}(\pi_i(x))$ (cf. [1] or [3]). The sets $\sigma_i(x)$ are compact subsets of the complex plane and

$$\sup |\sigma_i(x)| \leqslant ||x||_i.$$

In paper [4] we introduced a concept of a commutative complex Banach algebra of type ES (from Extensions from Subalgebras). We write namely that $A \in ES$ if for every closed subalgebra A_0 of it every multiplicative linear functional defined on A_0 can be extended to such a func-

tional on A. We have proved that $A \in ES$ if and only if for every element $x \in A$ its spectrum is totally disconnected (in the case of a compact set this is equivalent with the statement that it contains no continuum). In paper [5] we extended the concept of an ES-algebra to the non-commutative case and we proved that the class of ES-algebras is closed with respect to taking subalgebras, quotient algebras, finite direct products and homomorphic images.

In this paper we obtain similar results for (complex) m-convex B_0 -algebras, and so we answer a question posed in [5]. Our main result is contained in Theorem 1. We show also that this result is no longer true if we drop the assumption of metrisability and assume merely the m-convexity and completeness.

We assume throughout this paper that every considered algebra is an algebra over the field of complex numbers.

Definition 1. Let A be a commutative topological algebra. The algebra A is said to be of type ES (to be an ES-algebra or to belong to the class ES, written $A \in ES$) if for every closed subalgebra $A_0 \subset A$ every continuous multiplicative linear functional defined on A_0 is extendable to such a functional defined on A.

LEMMA 1. Let A be a commutative complex B_0 -algebra with unit e. Suppose that for some $x_0 \in A$ the spectrum $\sigma(x_0)$ contains a continuum K. Then A is not an ES-algebra.

Proof. By formula (4) we have

$$K = K \land \sigma(x_0) = \bigcup_{i=1}^{\infty} [K \land \sigma_i(x_0)]$$

and by category arguments there is an index i_0 such that $K \cap \sigma_i(x_0)$ contains a continuum K_0 . We have then $K_0 \subset \sigma_{i_0}(x_0)$.

Let $\alpha, \beta \in K_0, \alpha \neq \beta$. It is clear that if we put

$$y=\frac{\pi}{2}\frac{x_0-ae}{\beta-a},$$

then we obtain an element with spectrum $\sigma_{i_0}(y)$ containing a continuum K_1 such that $0, \frac{1}{2}\pi \epsilon K_1$. So if we set

$$z=\exp(iy),$$

we see that $\sigma_{i_0}(z)$ contains a continuum K_2 connecting 1 and i, and z is an invertible element in A. It is easy to see that $\sigma_{i_0}(z^4)$ separates the complex plane between 0 and ∞ . Let A_0 be the subalgebra of A generated by z^4 and containing the unit e. The elements of the form $p(z^4)$,

where p is a polynomial with complex coefficients, form a dense subalgebra of A_0 . For every such an element we put

$$f(p(z^4)) = p(0),$$

and so we obtain a multiplicative and linear functional defined on a dense subalgebra of A_0 . The functional f is moreover, a continuous functional since, by the maximum principle and formula (5), we have

$$|f(p(z^4))| = |p(0)| \leqslant \max_{t \in \sigma_{i_0}(z^4)} |p(t)|$$

= $\max |\sigma_{i_0}[p(z^4)]| \leqslant ||p(z^4)||_{i_0}$.

So f can be extended, by the continuity, onto the whole of A. On the other hand, f cannot be extended to a multiplicative linear functional defined on A, since $f(z^4) = 0$, and z^4 is an invertible element in A. Thus A is not an ES-algebra.

LEMMA 2. Suppose that 1^0 A is a commutative Banach algebra with unit e, and 2^0 A contains a dense set A_0 \ni e such that for every $x \in A_0$ its spectrum $\sigma(x)$ does not contain any continuum. Then the maximal ideal space $\mathfrak{M}(A)$ coincides with the Shilov boundary $\Gamma(A)$.

Proof. Let $M_0 \in \mathfrak{M}(A)$. Let U be a neighbourhood of M_0 of the form

(6)
$$\{M \in \mathfrak{M}(A) \colon |x_i^{\wedge}(M)| < \varepsilon, \ i = 1, 2, \ldots, n\},\$$

where $x_1, \ldots, x_n \in M_0 \cap A_0$ and x^{\wedge} denotes the Gelfand transform of an element x. Since $e \in A_0$ and A_0 is dense in A, the neighbourhoods (6) form a basis of neighbourhoods of the ideal M_0 . Consider the joint spectrum

$$\sigma(x_1, \ldots, x_n) = \{ (x_1^{\wedge}(M), \ldots, x_n^{\wedge}(M)) \in C^n : M \in \mathfrak{M}(A) \},$$

where x_1, \ldots, x_n are elements defining the neighbourhood (6). Since $\sigma(x_k)$, $1 \leq k \leq n$, is the projection of $\sigma(x_1, \ldots, x_n)$ onto the k-th coordinate plane, it follows that the joint spectrum $\sigma(x_1, \ldots, x_n)$ also contains no continuum or, equivalently, it is totally disconnected. It follows that the intersection

(7)
$$\sigma(x_1,\ldots,x_n) \cap \{(t_1,\ldots,t_n) \in \mathbb{C}^n \colon |t_k| < \varepsilon, \ k=1,\ldots,n\}$$

contains a non-void open and closed subset S containing the origin (0, ..., 0), and so there is in C^n an open neighbourhood V of the origin such that $S = V \cap \sigma(x_1, ..., x_n)$, and there is also an open $W \subset C^n$ such that $\sigma(x_1, ..., x_n) \setminus S = W \cap \sigma(x_1, ..., x_n)$. We put

$$\varphi(t_1, \ldots, t_n) =
\begin{cases}
1 & \text{for } (t_1, \ldots, t_n) \in V, \\
0 & \text{for } (t_1, \ldots, t_n) \in W.
\end{cases}$$

This is an analytic function defined on the open set $V \cup W$ containing the joint spectrum $\sigma(x_1, \ldots, x_n)$. By the operational calculus of several complex variables (cf. e.g. [2]) applied to φ and x_1, \ldots, x_n there is an element $y \in A$ such that $y^{\wedge}(M) = 1$ if $(x_1^{\wedge}(M), \ldots, x_n^{\wedge}(M)) \in S$ and $y^{\wedge}(M) = 0$ otherwise. Since S is contained in the set (7), it follows that $y^{\wedge}(M)$ assumes its maximal value in the neighbourhood U given by (6). Since neighbourhoods (6) form a basis for M_0 , this implies $M_0 \in \Gamma(A)$, and so $\mathfrak{M}(A) = \Gamma(A)$.

LEMMA 3. If A is a commutative m-convex B_0 -algebra with unit e, and for every $x \in A$ the spectrum $\sigma(x)$ contains no continuum, then A is an ES-algebra.

Proof. Let A_0 be a closed subalgebra of A containing the unit e. To a system (1) in A there corresponds a sequence A_i of Banach algebras, and to the same system in A_0 there corresponds a sequence A_i^0 . We clearly have $A_i^0 \subset A_i$, and, moreover, the natural projection of A_0 into A_i^0 is the restriction to A_0 of the natural projection of A into A_i . Let f be a continuous multiplicative linear functional defined on A_0 . There exists an index i_0 such that

$$|f(x)| \leqslant ||x||_{i_0}$$

for every $x \in A_0$, and so there is a multiplicative linear functional f_0 defined on $A_{i_0}^0$ such that

(8)
$$f_0[\pi_{i_0}(x)] = f(x), \quad x \in A_0.$$

Since $\sigma(x)$ contains no continuum and because of (4), $\sigma_{i_0}(x)$ contains a continuum for no $x \in A$. Consequently, (cf. e.g. [2])

$$\sigma_{A_{i_0}}(x) = \sigma_{A_{i_0}}(x)$$

for every $x \in A_0$. We can now apply Lemma 2 taking the Banach algebra $A_{i_0}^0$ as A and the dense subalgebra $\pi_{i_0}(A_0)$ as the set A_0 , and so we can extent the functional f_0 to a multiplicative and linear functional F_0 defined on A_{i_0} . If we put

$$F(x) = F_0[\pi_{i_0}(x)],$$

we obtain a continuous multiplication linear functional on A which is clearly an extension of the functional f, and so Lemma 3 holds.

If A is an m-convex algebra without unit element, then it may be imbedded in an algebra A_1 with a unit, and A is a maximal ideal in A_1 of codimension 1. Since for the spectra we have

$$\sigma_A(x) = \sigma_{A_1}(x), \quad x \in A,$$

and since every continuous multiplicative linear functional on A can be extended to such a functional on A_1 , Lemma 1 and Lemma 3 imply

THEOREM 1. A commutative m-convex B_0 -algebra is an ES-algebra if and only if the spectrum of any of its elements contains no continuum.

If A is an algebra with a unit, then G(A) denotes the group of all invertible elements in A. In a similar way as in [5] we can prove the following

THEOREM 2. Let A be an m-convex B_0 -algebra with a unit element. Then the following statements are equivalent:

- (i) Every commutative (closed) subalgebra of A is an ES-algebra.
- (ii) For every $x \in A$ its spectrum contains no continuum.
- (iii) For every (closed) subalgebra $A_0 \subset A$, containing the unit element we have

$$G(A_0) = G(A) \cap A_0$$
.

This theorem gives a motivation to the following

Definition 2. Let A be a B_0 -algebra with a unit element. It is called an ES-algebra if any one of the three equivalent conditions (i)-(iii) of Theorem 2 holds true.

Denoting by Q(A) the group of all quasiregular elements of the algebra A (cf. e.g. [2]) we can rewrite Theorem 2 as

THEOREM 3. Let A be an m-convex B_0 -algebra. Then the following three conditions are equivalent:

- (i) and (ii) the same as in Theorem 2.
- (iii') For every (closed) subalgebra $A_0 \subset A$ we have

$$Q(A_0) = Q(A) \cap A_0.$$

As before, this theorem gives a motivation to the following more general

Definition 3. An m-convex B_0 -algebra A is said to be an ES-algebra if any, one of the three equivalent conditions of Theorem 3 holds true.

The following theorem shows that the class of m-convex B_0 -algebras of type ES is closed with respect to natural algebraic operations. Its proof is exactly the same as in [5].

THEOREM 4. Assume A to be an m-convex B_0 -algebra of type ES. Then

- (i) If A_0 is a closed subalgebra of A, then $A_0 \in ES$.
- (ii) If I is a closed two-sided ideal in A, then $A/I \in ES$.
- (iii) If A_0 is an m-convex B_0 -algebra and there is a homomorphism of A onto A_0 , then $A_0 \in ES$.

(iv) The cartesian product of a finite number of m-convex B_0 -algebras of type ES is again such an algebra.

To close this paper, we give an example of a complete m-convex locally convex algebra of type ES (according to definition 1) containing elements with arbitrary spectra.

Example. Let J be an index set of continuum power and put $A = C^J$. A is clearly a complete m-convex algebra with coordinatewise algebraic operations and with the product topology. It is clear that any non-void subset of the complex plane is the spectrum for some element in A. Let A_0 be a closed subalgebra of A and let f be a continuous multiplicative linear functional on A_0 . The functional f must be continuous with respect to a pseudonorm equal to the maximum of the absolute values of a finite number of coordinates, and so f must be of the form $f(x) = x_j$ for some $j \in J$ (x_j denotes the j-th coordinate of x). Consequently, A is an ES-algebra.

REFERENCES

- [1] E. Michael. Locally multiplicatively-convex topological algebras, Memoirs of the American Mathematical Society 11 (1952).
 - [2] C. E. Rickart, General theory of Banach algebras, Princeton 1960.
- [3] W. Żelazko, Metric generalizations of Banach algebras, Rozprawy Matematyczne 47 (1965).
- [4] Concerning extension of multiplicative linear functionals in Banach algebras, Studia Mathematica 31 (1968), p. 495-499.
- [5] Concerning non-commutative Banach algebras of type ES, Colloquium Mathematicum 20 (1968), p. 121-126.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 29.2.1968