VOL. XX

1969

FASC. 1

SUMS OF POWERS OF GENERATORS OF A FINITE FIELD

BY

K. SZYMICZEK (KATOWICE)

1. Let $\mathscr{F} = \mathscr{F}_q$ be a finite field of $q = p^n$ elements. It is well-known that the multiplicative group \mathscr{F}^* of the field \mathscr{F} is a cyclic group of order q-1 and has $\varphi(q-1)$ generators (cf. [1], chapter V). In this paper we are concerned with sums of powers of generators of the field \mathscr{F} and with some related sums. The first result is the following

THEOREM I. If g runs through all generators of a finite field \mathcal{F}_q and m is an integer, then

$$\sum g^m = \mu(e) \frac{\varphi(q-1)}{\varphi(e)}, \quad ext{where } e = rac{q-1}{(m, q-1)},$$

 μ and φ denote the Möbius and the Euler functions, respectively and the integer on the right has to be multiplied by the unity of \mathscr{F}_q .

This theorem is a generalization of a result of Gauss ([4], Art. 81), who proved that the sum of primitive roots of a prime p is congruent to $\mu(p-1)$ modulo p (the case of $\mathscr{F} = Z_p$ = the field of integers mod p, and m=1). In the case when $\mathscr{F} = Z_p$ and m is a positive integer, we get from Theorem I Forsyth's [3] theorem on sums of powers of primitive roots of a prime p. Other proofs of that theorem were given by Czarnota [2] and Szymiczek [7].

The mentioned theorem of Gauss was generalized by Stern [6], who established a similar congruence property for the sum of numbers belonging to any divisor of p-1 modulo p. Moller [5] found a congruence for the sum of m-th powers of numbers belonging to any divisor of p-1 modulo p (see also Zuckerman [8] for a simpler proof).

All above-mentioned results are special cases of the following

THEOREM II. Let e be a divisor of q-1. If h runs through all elements of the field \mathcal{F} whose order in the group \mathcal{F}^* is e, and m is an integer, then

(1)
$$\sum_{\text{ord }h=e} h^m = \mu(e_1) \frac{\varphi(e)}{\varphi(e_1)},$$

where $c_1 = e/(m, e)$.

We also state the following theorem:

THEOREM III. Let x be a divisor of q-1. The sum of the m-th powers of all elements of \mathcal{F}_q whose orders in \mathcal{F}^* are divisors of x, is equal to x or zero, according as m is or is not a multiple of x.

The proof of theorem III, given by Zuckerman [8] for the special case of $\mathscr{F}=Z_p$, may be easily extended to the general case. Theorem III covers the results of Moller ([5], Th. II) and Zuckerman [8], and it is a generalization of a well-known theorem on the sum of the m-th powers of all the numbers $1, \ldots, p-1$ modulo p (the case of $\mathscr{F}=Z_p$ and x=p-1).

Now, let F be an algebraic number field and R the ring of all integers in F. Let $\mathfrak p$ be a prime ideal in R and $N(\mathfrak p)=p^f$. Then the ring $R/\mathfrak p$ is a finite field of p^f elements. If the class [a], $a \in R$, is a generator of the multiplicative group of the field $R/\mathfrak p$, then a is a primitive root mod $\mathfrak p$. Of course, $a \in R$ is a primitive root mod $\mathfrak p$ if and only if $t=N(\mathfrak p)-1$ is the smallest positive exponent satisfying $a^t\equiv 1 \pmod{\mathfrak p}$. Now, from theorems I, II and III we derive

THEOREM IV. (1) If a runs through all non-congruent primitive roots modulo $\mathfrak p$ and m is an integer, then

$$\sum a^m \equiv \mu(e) \frac{\varphi(p^f-1)}{\varphi(e)} \pmod{\mathfrak{p}}, \quad \text{where } e = \frac{p^f-1}{(m,p^f-1)}$$

and $p^t = N(\mathfrak{p})$.

(2) Let e be a divisor of p^t-1 . If β runs through all non-congruent numbers belonging to the exponent e modulo p and m is an integer, then

$$\sum \beta^m \equiv \mu(e_1) \frac{\varphi(e)}{\varphi(e_1)} \pmod{\mathfrak{p}}, \quad \textit{where } e_1 = \frac{e}{(m, e)}.$$

- (3) Let x be a divisor of p^t-1 . The sum of the m-th powers of all numbers belonging modulo p to any of the divisors of x, is congruent modulo p to x or zero, according as m is or is not a multiple of x.
- (4) If γ runs through a complete system of residues modulo $\mathfrak p$ and m is an integer, then

$$\sum \gamma^m \equiv 0 \quad \text{or} \quad p'-1 \pmod{\mathfrak{p}},$$

according as m is or is not a multiple of p'-1.

2. Now we prove Theorem II. Consider the sum

$$S = \sum_{\text{ord } h = \emptyset} h^m$$
.

It contains $\varphi(e)$ terms and each of them is an element of order $e_1 = e/(m, e)$ in \mathscr{F}^* . We prove here the two following statements:

I. Each of the $\varphi(e_1)$ elements of the group \mathscr{F}^* , whose order is e_1 , occurs in the sum S exactly $\varphi(e)/\varphi(e_1)$ times.

II.
$$S_1 = \mu(e_1)$$
.

From I it follows that

$$S = \frac{\varphi(e)}{\varphi(e_1)} S_1,$$

where S_1 is the sum of all elements of the group \mathcal{F}^* , whose order is e_1 :

$$S_1 = \sum_{\text{ord } h=e_1} h.$$

Relation (1) follows now at once from (2) and II.

The proof of statement I depends of the following lemma (cf. [7]):

LEMMA 1. Suppose that M = NK, 1 < N < M, and that $a_1, \ldots, a_{\varphi(M)}$ is a complete set of residues prime to M. If $b_i \equiv a_i \pmod{N}$, $0 < b_i < N$, $i = 1, \ldots, \varphi(M)$, then each of the numbers less than and prime to N occurs among the numbers b_i with the same frequency $\varphi(M)/\varphi(N)$.

Proof. Let K = PR and $N = \overline{P}Q$, where (Q, R) = 1 and P and \overline{P} have the same prime factors (in the case of (N, K) = 1, we have $P = \overline{P} = 1$). Suppose that b is an integer satisfying (b, N) = 1 and 0 < b < N. Hence, each of the numbers $b, b+N, \ldots, b+(K-1)N$ is prime to N, and thus b+xN is prime to M if and only if it is prime to R. The numbers b+xN, $x=0,1,\ldots,K-1$ form P complete sets of residues modulo R:

$$egin{array}{llll} b, & b+N, & \dots, & b+(R-1)N, \\ b+RN, & b+(R+1)N, & \dots, & b+(2R-1)N, \\ \dots & \dots & \dots & \dots & \dots \\ b+(P-1)RN, & b+[(P-1)R+1]N, & \dots, & b+(PR-1)N. \end{array}$$

In fact, each row contains R distinct numbers and two numbers belonging to the s-th row are congruent modulo R if and only if they are equal; namely, if $0 \le i < j \le R-1$ and $b+(sR+i)N \equiv b+(sR+j)N$ (mod R), then, because of (R,N)=1, we have $i\equiv j \pmod{R}$, and so i=j. Each of the P complete sets of residues mod R contains exactly $\varphi(R)$ of numbers prime to R, i.e., $P\varphi(R)$ of the numbers b+xN, $x=0,1,\ldots,K-1$ are prime to R, and so $P\varphi(R)$ of the numbers b+xN are prime to R.

On the other hand, it is easy to verify that $P\varphi(R) = \varphi(M)/\varphi(N)$. Thus, among the numbers congruent to $b \pmod{N}$ and less than M there are $\varphi(M)/\varphi(N)$ numbers prime to M and the lemma is proved.

Now we prove statement I. Let h_1 be a fixed element of the group \mathscr{F}^* of order e. Hence, if $h \in \mathscr{F}^*$ and ord h = e, then $h = h_1^a$, where (a, e) = 1. Suppose that $a_1, \ldots, a_{\varphi(e)}$ is a complete set of residues prime to e. Then we have

$$S = \sum_{\operatorname{ord} h = e} h^m = \sum_{i=1}^{\varphi(e)} h_1^{ma_i}.$$

In the last sum two terms, $h_1^{ma_i}$ and $h_1^{ma_j}$, are equal if and only if $ma_i \equiv ma_j \pmod{e}$, i.e., if and only if $a_i \equiv a_j \pmod{e_1}$. Putting M = e, $N = e_1$ in Lemma 1 we see that the set $a_1, \ldots, a_{\varphi(e)}$ falls into $\varphi(e)/\varphi(e_1)$ complete sets of residues prime to e_1 and thus

$$S=rac{arphi(e)}{arphi(e_1)}\sum_{i=1}^{arphi(e_1)} h_1^{mb_i},$$

where $b_1, \ldots, b_{\varphi(e_1)}$ is a complete set of residues prime to e_1 . This proves statement I. In the last sum each element of order e_1 is represented, and so (2) follows.

LEMMA 2. If h runs through all elements of order e (in \mathscr{F}^*), then $S_e = \sum h = \mu(e)$.

Proof. Consider first the case e = r, r being a prime. If ord h = r, then all elements of order r in \mathscr{F}^* are h^a , a = 1, 2, ..., r-1, and so

$$S_e = h + h^2 + \ldots + h^{r-1} = -1 = \mu(e).$$

Now, put $e = r^t$, t > 1, where r is a prime. If ord $h = r^t$, then all elements of order r^t in \mathscr{F}^* are of the form h^a , where $(a, r^t) = 1$, $1 \le a < r^t$. Thus

$$S_e = h + h^2 + \ldots + h^{r^t - 1} - (h^r + h^{2r} + \ldots + h^{(r^t - 1)r})$$

= $\frac{h^{r^t} - 1}{h - 1} - 1 - \left(\frac{h^{r^t} - 1}{h^r - 1} - 1\right) = 0 = \mu(e).$

Thus lemma 2 is proved in the case when e is a prime or a prime power. Next, we prove that the sum S_e is multiplicative, i.e., if $(e_1, e_2) = 1$, then $S_{e_1e_2} = S_{e_1}S_{e_2}$. Let ord $h_i = e_i$, i = 1, 2, $(e_1, e_2) = 1$. We then have ord $h_1h_2 = e_1e_2$. On the other hand, if ord $h'_i = e_i$, i = 1, 2 and $h_1h_2 = h'_1h'_2$, then $h_1 = h'_1$, $h_2 = h'_2$. In fact, $(h_1h_2)^{e_2} = (h'_1h'_2)^{e_2}$, whence $h_1^{e_2} = h_1^{e_2}$. Moreover, $h'_1 = h_1^{s}$ and $(s, e_1) = 1$, and we have $h_1^{e_2} = h_1^{se_2}$, $e_2 \equiv se_2 \pmod{e_1}$, $s \equiv 1 \pmod{e_1}$, $h'_1 = h_1$ and $h'_2 = h_2$. Thus the representation of an element of order e_1e_2 as a product of two elements of orders e_1 and e_2 , respectively, is unique. If, now, $r_1, \ldots, r_{\varphi(e_1)}$ is a complete set of residues prime to e_1 , and $s_1, \ldots, s_{\varphi(e_2)}$ a complete set of residues prime to e_2 , then

$$S_{e_1}S_{e_2} = \sum h_1^{r_i} \sum h_2^{s_j} = \sum h_1^{r_i} h_2^{s_j} = S_{e_1e_2}.$$

To prove lemma 2, we put $e = \prod e_i$, where e_i are prime powers, and apply the multiplicative property of S_e :

$$S_e = \prod S_{e_i} = \prod \mu(e_i) = \mu(e).$$

Lemma 2 is identical with statement II, and so the proof of theorem II is complete.

REFERENCES

- [1] A. A. Albert, Fundamental concepts of higher algebra, Chicago 1956.
- [2] A. Czarnota, Kongruencje spelniane przez sumy potęg pierwiastków pierwotnych względem modulu pierwszego, Roczniki PTM, Seria I: Prace Matematyczne 8 (1964), p. 131-142.
- [3] A. R. Forsyth, Primitive roots of prime numbers and their residues, Messenger of Mathematics 13 (1883/4), p. 180-185.
 - [4] C. F. Gauss, Disquisitiones Arithmeticae, Leipzig 1801.
- [5] R. Moller, Sums of powers of numbers having a given exponent modulo a prime, American Mathematical Monthly 59 (1952), p. 226-229.
- [6] M. A. Stern, Bemerkungen über höhere Arithmetik, Journal für Mathematik 6 (1830), p. 147-153.
- [7] K. Szymiczek, Two proofs of the Forsyth-Czarnota theorem, Zeszyty Naukowe Wyższej Szkoły Pedagogicznej w Katowicach, Sekcja Matematyki, 6 (1968), p. 49-53.
- [8] H. S. Zuckerman, Additional remarks to the paper of Moller, American Mathematical Monthly 59 (1952), p. 229-230.

SILESIA UNIVERSITY, KATOWICE

Reçu par la Rédaction le 24.2.1968