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SUMS OF POWERS OF GENERATORS OF A FINITE FIELD
BY
K. SZYMICZEK (KATOWICE)

1. Let #F = &, be a finite field of ¢ = p" elements. It is well-known
that the multiplicative group #* of the field & is a cyclic group of order
g—1 and has ¢(¢—1) generators (cf. [1], chapter V). In this paper we
are concerned with sums of powers of generators of the field # and with
some related sums. The first result is the following

THEOREM 1. If g runs through all generators of a finite field F, and
m is an integer, then

m _ p(g—1) g1
20" = o p@ M (1)

u and @ denote the Mobius and the Euler functions, respectively and the
integer on the right has to be multiplied by the unity of %,.

This theorem is a generalization of a result of Gauss ([4], Art. 81),
who proved that the sum of primitive roots of a prime p is congruent
to u(p—1) modulo p (the case of F = Z,, = the field of integers mod p,
and m = 1). In the case when & = Z, and m is a positive integer, we
get from Theorem I Forsyth’s [3] theorem on sums of powers of primitive
roots of a prime p. Other proofs of that theorem were given by Czarnota
[2] and Szymiczek [7].

The mentioned theorem of Gauss was generalized by Stern [6],
who -established a similar congruence property for the sum of numbers
belonging to any divisor of » —1 modulo p. Moller [5] found a congruence
for the sum of m-th powers of numbers belonging to any divisor of p—1
modulo p (see also Zuckerman [8] for a simpler proof).

All above-mentioned results are special cases of the following

THEOREM II. Let e be a divisor of q—1. If h runs through all elements
of the field & whose order in the group F* is e, and m is an integer, then

(1) 2 B = u(ey) @(e)

ordh=e @(€y) ’
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where ¢, = e[(m, e).
We also state the following theorem:

THEOREM III. Let x be a divisor of ¢g—1. The sum of the m-th powers
of all elements of F, whose orders in F* are divisors of x, is equal to = or
zero, according as m s or is not a multiple of x.

The proof of theorem III, given by Zuckerman [8] for the special
case of # = Z,, may be easily extended to the general case. Theorem III
covers the results of Moller ([5], Th. II) and Zuckerman [8], and it is
a generalization of a well-known theorem on the sum of the m-th powers
of all the numbers 1,...,p—1 modulo p (the case of # =Z, and
z=p-—1).

Now, let F be an algebraic number field and R the ring of all integers
in F. Let p be a prime ideal in R and N (p) = p’. Then the ring Rlp is
a finite field of p’ elements. If the class [a], aeR, is a generator of the
multiplicative group of the field E/p, then a is a primitive root mod p.
Of course, aeR is a primitive root mod p if and only if ¢t = N(p)—1 is
the smallest positive exponent satisfying o = 1(mod p). Now, from
theorems I, 41 and IIT we derive

THEOREM IV. (1) If a runs through all non-congruent primitive roots
modulo p and m is an integer, then

m (p(pf_]-) p’—l
" = u(e) ———-= (mod p), where ¢ = ——F——
2 =ma=_o P) (m,p'—1)

and p’' = N(p).

(2) Let ¢ be a divisor of p’—1. If B runs through all non-congruent
numbers belonging to the exrponent ¢ modulo p and m is an integer, then

Zﬂ’” = u(e,) ?(€) (mod p), where e, = o .
@(e) m, e)

(3) Let x be a divisor of p’ —1. The sum of the m-th powers of all numbers
belonging modulo p to any of the divisors of x, is congruent modulo p to x
or zero, according as m s or is not & multiple of x.

(4) If y runs through a complete system of residues modulo p and m 18
an integer, then

27"

according as m is or is not a multiple of p’—1.

0 or p'—1(modp),

2. Now we prove Theorem II. Consider the sum

S = Z B™.

ordh=¢
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It contains ¢(e) terms and each of them is an element of order
e, = €/(m, e) in F*. We prove here the two following statements:

I. Each of the ¢(e,) elements of the group #*, whose order is e,,
occurs in the sum 8§ exactly ¢(e)/p(e,) times.

II. 8; = ul(e).

From I it follows that

p(e)
2 8 =——70
@ @(€1) Y
where , is the sum of all elements of the group #*, whose order is e,:
Sl = 2 h-
0rdh=€1

Relation (1) follows now at once from (2) and II.

The proof of statement I depends of the following lemma (cf. [7]):

LeMMA 1. Suppose that M = NK,1 < N < M, and that ay, ..., Gy,
i8 a complete set of residues prime to M. If b; = a;(mod N), 0 < b; < N,
i=1,...,p(M), then each of the numbers less than and prime to N occurs
among the numbers b; with the same frequency ¢ (M)|p(N).

Proof. Let K = PR and N = PQ, where (@, R) =1 and P and P
have the same prime factors (in the case of (N, K) =1,wehaveP =P =1).
Suppose that b is an integer satisfying (b, N) =1 and 0 < b < N.
Hence, each of the mumbers b,b+ N,...,b+ (K—1)N is prime to N,
and thus b+ #N is prime to M if and only if it is prime to R. The numbers
b+aN,z=0,1,..., K—1 form P complete sets of residues modulo R:

b, b+ N, very bH(R—1)N,
b+ RN, b+ (R+1)N; very b+(2R—1)N,

b+ (P—1)RN, b+ [(P—1)R+1]N, ..., b-+(PR—1)N.

In fact, each row contains R distinet numbers and two numbers
belonging to the s-th row are congruent modulo R if and only if they
are equal; namely, if 0 <¢{<j< R—1and b+ (sR+4)N =b+ (sR+j)N
(mod R), then, because of (R, N) =1, we have ¢ = j(mod R), and so
it = j. Each of the P complete sets of residues mod R contains exactly
@ (R) of numbers prime to R, i.e., Pp(R) of the numbers b+ 2N,z =0, 1,...
..., K—1 are prime to R, and so Pp(R) of the numbers b+ 2N are prime
to M.

On the other hand, it is easy to verify that Pp(R) = ¢(M)/p(N).
Thus, among the numbers congruent to b(mod N) and less than M there
are ¢(M)/p(N) numbers prime to M and the lemma is proved.
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Now we prove statement I. Let &, be a fixed element of the group #*
of order e. Hence, if he#* and ord h = ¢, then h = A, where (a,e) = 1.
Suppose that a,, ..., a,, i8 a complete set of residues prime to e. Then

we have i
P(e)

8= D W=D
ordh=e i=1
In the last sum two terms, k"% and h)*%, are equal if and only if
ma; = ma; (mod e), i.e., if and only if a; = a; (mod ¢,). Putting M = e,
N = ¢, in Lemma 1 we see that the set ay, ..., a,) falls into ¢(e)/p(e,)
complete sets of residues prime to e, and thus
2(e1)

‘7’(31). —

where b, ..., by, i8 a complete set of residues prime to e¢;. This proves
statement I. In the last sum each element of order ¢, is represented, and
so (2) follows.

LEMMA 2. If h runs through all elements of order e (in F*), then
8e = Dh = u(e).

Proof. Consider first the case ¢ = r, r being a prime. If ord & = r,
then all elements of order 7 in #* are A%, a = 1,2,...,7—1, and so

S =h+ht+...+h "' = —1 = u(e).

Now, put ¢ = #*,¢ >1, where r is a prime. If ord A = 7/, then all
elements of order 7* in #* are of the form A%, where (a,7) = 1,1 < a < #.

Thus t
8, = h4-ht... B — (W R ...+ RO

o o
K —1 B —1
— _] — ‘—1 = 0 - o

Thus lemma 2 is proved in the case when ¢ is a prime or a prime
power. Next, we prove that the sum 8, is multiplicative, i.e., if (¢, ¢;) =1,
then 8., = 8., 8.,. Let ord h; =e¢;, ¢ =1,2, (¢;,¢;) =1. We then
have ord h,h, = €,6,. On the other hand, if ord h; =¢;, ¢ = 1,2 and
hyhy = hihy, then h, = hy, hy = hy. In fact, (h,h,)2 = (h h;)2?, whence

%2 — h,°2. Moreover, h, = k] and (s,e;) =1, and we have h2 = hj2,

1
é; = 8¢,(mod ¢,), s =1(mod e,), hy = h, and h, = h,. Thus the repre-
sentation of an element of order e,e, as a product of two elements of
orders e, and e,, respectively, is unique. If, now, r,, ..., r,, i8 a complete
set of residues prime to e¢,, and 8,, ..., 8;c, @ complete set of residues

prime to e,, then
eS8y = D WG D = Y HihG = 8,,.
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To prove lemma 2, we put e = [[e;, where ¢; are prime powers,
and apply the multiplicative property of 8,:

8 = [ 8e; = [[ wied = (o).

Lemma 2 is identical with statement II, and so the proof of theorem II
is complete.
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