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1. Introduction. In this paper, we-derive = general arithmetic con-
struction of an extensive class of transcendental non-Liouville normal
numbers baged on any given rational fraction Z/m < 1 in lowest ferms.
The eonstruction is founded on the results in [14] wherein we proved
that certain broad classes of rational fractions are (f, &)-normal.

In {147, (1.1), we extended the original definition of (§, ¢)-normality
due to Besicoviteh ([157], p. 201) so as to apply to appropriate rational
fractions Z/m < 1 in lowest terms. Essentially, we showed that the defi-
nitien of (j, s)-normality which Besicoviteh defined for finite sets of
digits could be applied to the infinite periodic sequences which represent
certain. broad eclasses of ratiomal fractions. Therefore, we can congider
whether some given rational fraetion Zjm when represented in appro-

.priate bases ¢ is (J, s)-normal or mot in this sense.

Consider the real number z = .2;®,... represented in the seale g
and let N (B;, X;) denote the number of oceurrences of the block B;-
congisting of any combination of j digits chosen from 0,1,...,4—1
in the first A digits @@, ... ¢; of #. We have the following definition ([7],
p. 98, 104) equivalent to that given by Borel in 1908. Unless otherwise
indicated, lower case letters will represent positive integers.

" DEFINITION. Normal number. The number @ iz normal in the
geale ¢ it ’

(1.0) lim ¥ (B;, Xa)j = 1y’

for all j ==1,2,3, ' .

If @ is any real number, @ is said to be normal to the bage g if {»}
{x} = @— [»] is normal to the base g where {&} is the fractional part
of z and [#]is the greatest integer not exceeding ». Furthermore, if some
is to satisfy (1.0), i.e. be a normal number, then it is, necessarily, an
irrational. ' :
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Borel proved ([7], p. 103) by means of probabilistic arguments that
almost all real numbers are abgolutely normal, i.e. normal to every positive
integer base and the set of non-normal numbers has MeAFUTre ZET0,

Tn spite of this broad conclusion, there are only & few simple con-

structive methods in the literature today which give normal numbers

by elementary arithmetic procedures and there are no regults to date
which show that a given construction produces a transeendental or al-
gebraic irrational. Furthermore, no methods have been found to prove
that a given irrational like =, ¢, 1/5, etie. i8 normal to any base.

In 1959, Mark Kac ([5], p. 18) remarks “As Is often the case, it is
much easier to prove that an overwhelming majority of objects possess
a certain property than to ewhibit (italics his) even one such object. The
present case is no exception. It is quite difficolt to exhibit a ‘normal’
number! The simplest example is the number (written in decimal nota-
tion) # =.1234567891011... where after the decimal point we write the
positive integers in succession. The proof that this number is normal
is by no roeans trivial.” The normality to the base 10 of this example
way proved by Champernowne ([1], and (7], p. 112) in 1934.

Based on the results of H. Weyl [16], Pélya and Szegd in 1925
showed ([8], p. 71) that the same 2 = .1234567391011... was guch
that {10'%} for j = 0,1,... is uniformly distributed. on [0, L}. In 1937,
K. Mahler ([6], p. 6; 9] showed that the irraticmal a = .p(1)p(2)...
where p(®) iz an integral-valued polynomial which is positive for =1,
a§-a gpecial case of theorems of the Siegel-Schneider type, is » transcen-
dental of the non-Liouville type. It can eagily be shown that the Liouville

number f = Y 1/¢" is not normal to the bage g.
f=1

Now the Champernowne example of a normal number is precisely -

Mahler's construction ([3], p. 6) if p(2) = » and in 1952 Davenport and
Erdos, ([2]) gemeralized Champernowne’s example to the arbitrary in-
tegral-valued polynomial case of Mahler, i.e they proved such a con-
struction mormal to appropriate bases.

However, to date it has not been pointed out that these normal
numbers of Champernowne, Davenport and Erdss are transecendentals
of the non-Liouville type by the results of Mahler ([6]) in 1937.

The first specific construction of an absolutely normal number after
the results of Borel was given by Sierpifski ([12]) in 1917 -and later,
& method was presented by Schmidt ([11]) in 1962. These results were
obtaimed by complex constructive devices nsually the upper or lower bound
of certain iterative schemes which were quite gpecialized for the purpoge.
They are not simple arithmetic construetions like Champernowne’s
example, Tndeed, Sierpitiski says in his recént 1964 book ([137) on number

theory, “Therefore, though according to the theorem of Borel, almost .
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all pumbers are absolutely normal, it was by no means easy to congtruet
an example of an abgolutely normal number. Examples of such numbers
are, indeed, fairly complicated.” The existential measure-theoretic results
fairly frequent in the literature do not lead to elementary constructions.
A good recent survey of construetive methods for normal numbers is

given by A. G. Postnikov ([9], p. 64) in 1967.

In 1954, Hanson ({4], Th. {2.2)) studied the sufficient conditions
under which the number # = .a,a,... formed by adjoining an increasing
gequence {a,} of (j, ¢)-normal sets of digits a, to the base g was normal
to the base g where almost all of the sets a, were (4, ¢)-normal. Hangon
did not give examples of gpecific normal numbers due to the lack of
a ready source of (f, &)-normal numbers.

By means of the results in ({147, Theorem 6), we are able to prove
s general consfruction of normal numbers in Theorem 1 of this paper
based on the (j, &)-normality of o broad class of rational fractions Z/m
of type A. The construction has considerable flexibility in the choice
of gmantities that enter the construction. The resulting normal number
can also be written as a closed algebraic sum. For example, we will prove
(in. Corollary 2 to Theorem 1) that given any odd prime p that
(L) w(g, p) = (p—1) ) 1fp"1gfT T ED

f=0 ’ ’
is a transcendental of the non-Liouville type normal to any base ¢ where t
is any positive integer and ¢ is a primitive root modp®

In Theorem. 2, we will prove that the normal numbers eonstrueted
in Theorem 1 are transcendentaly of the non-Liouville type by an argu-
ment gimilar to that used by Mahler in [6] based on a well-known theorem
of Schneider concerning transeendentals.

The normal numbers are congtructed by adjoining in juxfaposition
a,, repetitions of the sets of digits contained in the recurring period of
each rational fraction Z,/m" expanded in a base g such that (g, m) =1,
m is any given positive integer, the Z, are any positive inftegers suech
that for every w» =1,2,...,1< 2, < m", (Z,, m) =1, and the a, are
any increasing sequence of positive integers such that a, — oo ag # — oo,
The resulting irrational number which we denote by @(g, m) given by
this construction is normal to every base g relatively prime to the given
positive integer m. It has been shown by Sehmidt [10] that if & number
is normal to the base g that it ig also normal to any positive integral
power of that hase. We make nse of this result in extending the set of
bages to g' for any positive integer . !

2. The normal mumber eonstraction. We prove the following theorem
from which we may derive a number of corollaries giving specific forms
for normal nuribers based on various types of rational fractions. -

Acta Arithmetica XVI.3 _ . .
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TemorEM 1. Let g and m denote a pair of relatively privie intogers z 2,

For each y =2 and relatively prime lo g, let w(y) denote the order of g

to the modulus y. We let @y, Z, for n=1,2, . denote any two sequénces

of positive integers such thal a, =0 = Zo, cmd c&lso the further conditions

G, oo a8 n—>oo, as well as 1< Zy <m® and (Z,,m) =1 for n = 1.
(]

If we lot S{n,m) 2 co(m’) where 8(0,m) =0 and define

(2.0) s(g, m 2 (Zuyger—mZg) g7

=0}

then the real number x{g, m) is normol to the bas*e o for cach imteger t = 0.

Proof. Let the rational fractions Zm, Z.fm? ..., Z,/m", ... in
lowest terms be defined for every positive integer n Wh(,:t ¢ 1}m 11][.t,g()1's L,

are chosen as specified in Theorem 1 and m = 27 n Pt is some positive
integer. b= .

Congider the set I, consisting of o {m™} digits contained in. the recur-
ring periods of Z,/m" detined for every #n = 1, 2, .., represented in a scale ¢
such that (g, m) = 1. Let N{By, #;) denote the number of occurrences
of the block B; in the set of digits F; contained in one recurring period
of the i{th rational fraction Z,;/m"" where the block B; cormmences in one
period and extends at most j—1 places into the next.

Let Ei(a;) B, denote the set of digits FyE; ... E; placed in  juxta-
position a; > 0 times, and write the number =(g, m, =) ag

(21) (g, m,n) = B (0) B F,(a,) B, B (G 1) By 1 By () Iy By

where B, consists of the first r digits into the (&-+1)-st repetition of
the Ty-th seb such that 0 <r < w(m"). We distinguish two cases for the
- positive integer % in the construction, Case 1: 1< %< a, and Cage 2
kE = a,. The construction for Case 1 is that given in (2.1). For Cage 2,
if ¥ = @, then the block of digits B, = b,b, ... b, at the end of x(g, m, n)
congists of the first » digits of the first repetition of the periodic set L‘n A+
from. Z,.:/m"* where we have adjoined complete sets of By, ..., B,
repeated @, @y, ..., a, times, regpectively, and 0 <7 < w(m™t).

"Let N (I, » B;) denote the number of occurrences of the block By in
the first # dlgltB of w(g, m, n) where, for Case 1, the sequence of ¢ digits
terminates v digits into the (k+1)-st repetition of the w(m™) digits con-
tained in #,, and for Case 2, terminates at the »th d1g1t of the firgt repe-
tition of the set H, .

Let the quantiby N (B, F,) essential to determining N {t,w, By)
designate the number of ocenrrences of independent blocks B; commenc-
ing in one period of Z,Jm and terminating in at most j—1 places of the
next permd Sinee the initial digit b; of any B, corresponds to any resi-
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due r; w]nch belongs to the complete periodic set of reduced power resi-
dues rjm® = {Z,g'jm"} for i=10,1,..., w(m")—1 contained in B¢
< ryfm™ < (B;+1)/g, we must consider the fact that there is included
in N (B;, E,) the count of what we called “anomalous blocks” that were
defined in ([15], p. 204). These were defined as independent blocks B;
whose initial digit corresponded to a residue near the end of the period
and whose length was such that the final digits corresponded to residues
in at most j—1 residues of the next period repetition.

In order to determine bounds on N (1, %, B;)[f, the relative frequency
of the B; contained in (g, m, n), we define the ratio I for Cases L and 2 by

-1

(2.2) I = (3wl (B, B+ kN (B, B)+-N (By, 7))t
i=1
where the total number of digits in x(g, m,n) I8 gi'ven by
: n—-1
(2.3) t= Z oo () + ko (m™y+r.

fe=1
To complete the hounds, it is necessary to account for the anomalous
plocks in the count of the B; which may ocour aeross the n—1 junctures
of BB, tor i=1,2,...,n—1 and possibly an additional j—1 between
H, sand B, for both Oase 1 and 2. From such considerations and using I
in (2.2), we obtain ‘

(2.4) I—n(j—L/I< N, 3, B)i< I+ a(j—1}t  or
(2.5) : |N{t, 2, B)li—I| < R,

where R, = n(j—1)/t accounts for either the &nomalous blocks in excess
or deficiency in the count N (¢, =, B)).

Since t — oo as » > oo according to (2.3), we prove in Lemma 1
that lim R, = 0 and hence from (2.5), we have

Tt

(2.6) ' Lim N(t, 2, By)jt = lim I.

Tn Lemma 2, we evaluate lim I and then proceed with the argument. -
N—0o
Lemna 1. If £ ds defined by (2.3), then for any fized j=1,2,
lim B, = lim #(j—1)/t = 0.

Tlmr2 T—-00

Prootf. Consider Cage L where 1<% < a,, then we have

-1
(2.7) By = %(3“1 /t< L .7 1)/ Z i
‘L:-l
-1 T L
since 2 aso (1Y) -+ ke (m"Y 0 > 3 4.
f=l
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By hyjpothesis, a; — oo ag i — oo with a; > 0, therefore for every
& >0, there exists an I such that for all & > N, a; > 1/c. Hence

n-1
3w > (n-N—1)fe,
o= V11
and it follows that _
{2.8) R, =n{j—Lt <n{j—L)g/(n—N--1) < 2e{j—1)

for all n > 2N +2. Consequently, under the hypotheses in Theorem 1
on a;, we have for any fixed choice of j =1

(2.9 lim B, = lim n(j—1)/ = 0.
300 n—oo T

A gimilar line of reagoning shows that (2.9) also holds for Case 2. The
proof of Lemma 1 is now complete.

Lmsnra 2. If I d¢ defined by (2.2), then
lim I =lim N (B;, B,)/o(m"}.
o )

N—r00

Proof. For Case 1, I can be written

230) I = (( 3 03 (By, B+ (Bs, Bo)|{Po-+ 3 (By, )IPo) (14 7]B,)

n_1 "

‘where 2” = 2 a0 (mt)+ ko (m™) for 1<k < a,. For Case 2, we have

T
J 4, and

13 .
@) I = ([ Yo (B, Bo) PN (B, n)/ B 4B
i =1
. n
where P, = 3 a;0(m’).
: i=1
Since the least exponent w(m") is such that ™" == Lmodm® for
7 > 2y Where 2 20 i3 the maximum integer in the set of positive integers 2
suech thab pii[|(g"—1), for each prime factor p; contained in m, it follows
induetively thab '

(it

1
g ) = ¢*" = Imod m®

or
(2.12) . @ (m") = ma (M)

for all # > 2y, ie. n sufficiently large.
Fro.m the definitions of N (B,, ), r, and the period length of the
set B, in Case 1, we have the inequalities o

(2.13) o O(N(B, ) or 1) < o(m?)
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and using (2.12), we obtain
(2.14) 0 < (N (B, 7) or 7) < mo(m™)

for n sufficiently large. The upper bound in (2.14) can be written as in

n_3g

(215)  ma(m™ Py =mf( 3 so@m)fom™ )+ ty_+lm).

Al

Since m ig fixed and by hypothesis a; > oo ag # — oo, it follows
from (2.15) that lm me(m*')/P, = 0. Therefore, using this result in

N—r00
(2.14), we have Hm N (B;, r}/P,, = 0 and lm r/P, = ¢ which are the
N—r0G . =00
limits for sueh ratios in (2.10). By using {2.12) again in similar inequali-
ties for Case 2, the same resulty hold for the ratios N (Bj,r}/P, and
Py, ’
If we apply Cauchy’s generalized limit theorem to the remaining

ratios in (2.10) and (2.11), we find for Case 1 from (2.10) replacing P,

that -
(2.16)
a1 n—1 )
lim 1 =1lim (> &N (B, B)+ 5N (By, o)) [ ) aso(m’)+ ko (m,)
T 00 RB—+00 My il

or

(2,17 lim I = lim N (B;, B, oim").
T—rc0 i
By the same argument, we find for Cage 2 that lim I = lim I
Lemms 2 is now complete. s e
Therefore, for both Case 1 and 2, we have from (2.6)

(2.18) lim ¥ {t, , B;)/t = lim ¥ (B;, B,)/o{m".

Since the rational fractions Z,/m" < 1 in lowest terms ave rationals
of Type A for » sufficiently large, we have from ([14], (1.1), and Theorem
68}, for a given integer m, the (j, ¢)-normal properfy, so that we may write

(2.19) lim ¥ (B, B)o(m™—1/F] < lim e

N—ro0

E3 ’ .
where lim s = lim 1/[] p%"% according to ([14], Theorem 6), for
n—o0 oo Te=l '

ks
m" = 2" [] p3¥" and all j such that
d==1
r

(2.20) j<lm [log,1/e] = lim [logg [1 p;.w—fi]-_
. fi—-ca N300 5

f=1
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Sinee #; = min(en, &+ %) and the # and s; are fixed for a given
set of @; and prime factors p; in any %, it follows that = = -+8; is also
‘figed for n sufficiently lerge. Therefore, lim ¢ = 0, thus (2.19) and (2.20)
(2.21) lim N {(B;, By)/w (m") =1/g

a0

for all § and g 2 such that (g, m) = 1 where the upper bound on the

bases g according to ([14], Theorem 6), iy lim 1/ = oco.
0o

Tinally, if we consider (2.5) and apply Lemmas 1 and 2 in combina-
tion with (2.17) and (2.21), we have

(2.22) }im N{t, @, Bt =1l

for all j. If we define x(g, m) = lm z(g, 0, ), then we have shown that
N0

#(g, m) is normal in any scale g>>2 relatively prime to m.
Finally, by appropriate shifts in the place position of each set H{a) B,
in the symbolic representation of w(g, m) = lim z(g, m, n) in {2.1) and

TR 00
summing, we may obtain the elosed form in (2.0). For example, it iy clear
that

(2.23) B(a) B, = Zl/m—zlf'QOlw(m}-
It we shift the set E,(a,) B, to its proper position a; o (m) places to the
right, then we have
(2.24)  By(a) BBy (a) B, | o
— lemwzlgmg“l“’(m) +Zzlngalm(m) _szmggalw(m;.;.azm(mﬂ)
orT
(2.25)  Ey(a) B, By(0.) B,
= Zyjm (ByfmE—Z m) ght™ g OB

Tt we continue in thiz way, we will obfain

(236)  w(g, m) = Zyfm+{ZofmP—Zyfm)jg"1=0 - _
+ {Z3/m3—szmz)[g“lw(m)‘i‘“z‘"(’“% At (Zn+1/w,bﬂ+lmzﬂ/mﬂ)/gﬂ'('ﬂ.,’m) A
where the positive integer
. [
(2:27) Sin,m) = D aw(m),
i=1

1 . .
From (2.26), we obtain the form given for #{g, m) in (2.0) where we asgume
o == 0 and Z; == 0 in order to include the firgt term Z,/m in the sum
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for » = 0. From (2.27) and the fact that @, = 0, we have 8(0,m) = 0.
The proof of Theorem 1 is now complete. .

THEOREM 2. If there emists 2 positive constanis independent of n such
that’
8 < Opoyo(m™ ) Sm,m)< g for w=1,2,.

then ®(g, m) in (2.0) is o transcendental of the non-Liouville type.

Proof. From (2.0), we have

(2.98)  lalg, m)—pofasl = 1Bl =| D (Baa— mZp)j* g7

n=5+1

3
where 3 (Z, g~ mZy)m"t 150 — pojgs with  p, and g, positive

Nn=0

integers for each s. Since by hypothesis, 8{(i, m) < 8(s, m} for every
i=0,1,..:,s, it follows that m't g5 %™ and ¢, = it S
is the L.0.D.

Tn Matler ([6], p. 427 (top)), we identify ¢, = qiqs = m'yg
Le. ¢ = m** and ¢ = g®™ where ¢ = g as required in the special
case of Schineider’s transcendence theorem which Mahler ([61, p. 427
(footnote)) proved in 1936. We ave required to show two preliminary
conditions, limloggslogg, = 0 and lim suplogg,../loggs < co.

$—oo

B=—»00
Since it it possible that w{m) =) =...=o0 (m") for some
fixed positive integer k and some base g, we have using (2.12} for s suffi-
ciently large that ' :

Sis,m)
1

(2.29)  8(s,m) = (a1 + @ + a,k)w(mk)+ak+1mw(mk)-1—...—|—

+ agmt o (m").

From the hypothesis in Theorem 1 which states that the a; =1
for all 4, we obtain from (2.29) the fact that '

(2.30) 8(g, m) > (b4 m(m —1)/(m—1)} o (m")
or
- (2.31) S8, m) = Cp=Cym*™"

where 0y = (k— m|(m-—1)) w(m®) and ¢, = meo(m®)/(m—1) for some fized .
Hence (2.31) implies that

(2.32) lim (s-+1)/8{s, m) = 0.

From (2.32), it follows that

(2.33) limlog giflog g, = limlogm™* flogm+¢"*™ = 0.
800 Sr0 . .
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Tor the second preliminary condition, if we tequire that
N{S(s, m) <8

(2.34) gy 0 (0t

where § is some constant independent of s, then '

limsuploggs.../log g, < 0.

3500

(2.35)
This follows since

(2.36) 10gqs+1/10gqs — logmwzgs(s,m; logms"“lgg“”)

1

and uging the identity

(2.37) Sls+1, m) = S(s, m)-+ tg 0 (")

for sufficiently large s, we obtain

(2.38)  loggs./loggs

< ((s-+2)logm/S (s, m)+ (1+ F)log g)/{(s +1)Togm/8 (s, m}4logg)

where we have introduced (2.34), (2.37), and arranged. 01ear1y then,

'(2.39) limsuplog g, /logg, < oo

S3—00
where we can make use of [2.81) ag we did in (2.32).
Next, we must show that there existy a constant » > 1, independent
of s, such that from (2.28)

_ (2'40) ]m(g1 m)*'""ps/gsl - |Rs| = (QS)_E'
The hypothesis 1< Z, < m" implies that it is sufficient to consider
(2.41) . IR < 2 1gSmm  2]gSE+1m)
=841

since (Zy,,1— mZy,)jm™* ¢%"™ < 175%™ and we have rapid convergence.
Therefore, we will show that there exists an # > 1 independent of s such
that

(2.42) 2/g5C+1m glgs(sam)+%+1m(ms+"1J < (Lt gBemy,

From (2.42), taking logarithms to the bage g, we may obtain
(2.43) ' - .
8 < (L+ @500 (m Y8 (s, m)--log, 28 (s, m))/[L+ (s +1)log,m/8 (s , m)).

Liet 2, and e, be arbitravily gmall fixed positive constants independent
of s, then we clearly have for s sufficiently large

C(2.44) log,2/8 (s, m < 61 and  (s4I1)log,m/8 (s, m) < &,

icm

(2.53) 1/20 <
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Since 14 (s+1)log,m/[S (s, m) > 1/(1+ <) and —log,2/8(s, m) > — &y, if
we assume that as. o (m**)/8(s, m} > § where § >0 is some positive
constant independent of s, then for s sufficiently large, we have

(2.45) < {(1+d—e)f{1te).
Let » = 14 5/2, then we obtain
(2.46) - 0<2(etel(l—e) <8< o 0(m ) /8(s, m) < §

in combination with (2.34) where the lower Dound on & can be chosen
arbitrarily small for s sufficiently large. Therefore, we have shown as
required that there exists a positive consfant z >1 independent of
¢ suech that (2.40) holds. :

For the non-Liouville part, Mahler ([6], p. 427) shows that if there
exists an s sufficiently large for some large denominator  in & sequence of
suceessive approximations P/@ to z(g, m) such that

(2.47) Qs Bol < 1/2Q < Q1 Ry,
then d '
(2.48) lz(g, m)"‘_P/Q| = “12 By

Now, we have

(2.49) QB = lms+1gs(3m) 2 (Zo1— My, ) n41 S(n,m)

n=8+1
< 2,ms-f.-1gS(s 1n)/gS(s+1 My 2ms-{-1/gas+lm(m8+1) 0
ag § — oo since

2ms+1/gas+1m(m8+1) _ 2/ga‘s+1ms+l—kw(1nk)m(s_l.l)lugg'ln =0

cagily for some fixed %. For some arbitrarily chosen large ¢J, choose the
first s sueh that

(2.50) Qs Bs| < 1/2Q

then clearly (2.47) is satisfied. Since _
(251} lalg, m)—P(Q] = 1Bl > F(Ljm" g M g gS02m),

it follows that for s sufficiently large, we have _

(2.52)  |a(g, m)—PQ| > 1 m+> g¥ LML (Y 130,

+2
where we have used the fact that g0 ™) > @+ = 1%+t

< 1(m 22,
Also, we have
ey B ] < 27'”{39'

S(a—l,m)/gS(s,m) = 9m /gasm(m"’) 1/@3
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where
{2.54) t= (asw(ms)—sloggm-—loggz]/loggg)s.
Since @y = mg'e1”™ Q.= (¥, then 120 < 1/Q¢ =
(2.55) (g, m)—P[Q >1/3(2)""

and the non-Liouville character follows if g/t is bounded for ¢ sufficiently
large. '

We find that

56 ¥y o 14ty o (m™ )8 (s, m)+(s4-2)log,m/S(s, m) _
_(2' ) T ayw(m®)/8(s, m)— slogym[S(s, m)—log,2[8 (s, m)

If we require again as in (2.34) that a,,e(m*")/8(s, m) < f then
it also follows thatb

g (M5)[8 (8, m) < ey 0(m™H)[8(s, m) < B

and y/t is hounded for s sufficiently large. Theorem 2 ig now complete.
An interesting g-adic form. for the normal numbers @{g, m) in (2.0)
can be given. Of the many possible corollaries to Theorem. 1, we present
the following:
COROLLARY 1.

a(g,m) = ) A fg*™
n=1

where the positive integers A, are given by A, = Z, (g™ —1)/m™
Prooi. By rearrangement of (2.26), we may obtain
(2.57) _
B{g, m) = (Zyfm) (L— g ™)+ (Zyfm?) (1fg100 1 jgfae ooy 4
+ (B (Lfg"™ —1[g¥ ™) e (Z ") (1D 1[5 A
Now -
Zu(3jgP 0 LS = 2, (L g

and since

) ¢ = 1modm® = m®| (g "N 1),
we have

(Zn/mn) (l/gS(n—I,ﬂL]_llgS(n,m}) = An/gS(n,m)
where A, = Z, (™™ —1)/m" is some positive integer. Q.B.D.

“Bince the positive integers in the increasing sequence a, can be freely
chosen, and the Z, such that 1<<Z, <w”™ and (Z,,m)= 1 are any
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pogitive integers which can be chogen independently for each n, we may
derive o great variety of specific examples. As an llustration, let m == p,
¢ be a primitive root modp? Z,/m"” = (p"—1)/p", and 4, = n, then we
have the following corollary.

CoroLLARY 2. The real number

w(gJ.’p) = (P—l) S’1/pn+lg(npﬂ+1—(75+1)23”+I)](QJ__1}
s
=0

is a franscendenial normal number of the mon-Licuville type where p 48 any
odd prime and g is a primitive rool modpi.
Proof. From (2.0), we have

o0

(g, p) = D (0" —1—p(@"—1))jp" g7

Te=10)

where
n

8(n, p)= D io(ph) = (p—1) D ™" = (wp™ '~ +1)p"+1){(p—1).
4=1

=1

For the transecendence condition, we have

Gaza0 (M8 (n, m) = (n+1)w(p" )80, p)
= (n+1)p"(p—1)% [np" ' — (n+1)p" +1) ~ p—1
for large » and .
an+1a)(mn+1)f;g(ﬂ, m) = 2p

for » = 1. Therefore, we may write
d=p—2< Cbn+lco(?nn+1)/3(%, m)<3p =§

and we have satisfied the transcendence conditions in Theorem 2 for
no=1,2,3,.. _

Finally, consider the application of these results to Diophantine
approximations. Let 6 = (.b;by... 5.)bs s ... be some irrafional < 1.
Consider a normal number (g, m) constructed from some rational appro-
ximation to 6 given By '

.‘;ﬂ(g, 'l‘n) = ("blb2 e b,-)c!:.-,-+1 o aw(gn)El(alf—l)ElEg(az)Eg v

which agrees with 6 to » figures where Zi/m = (b1dy... b)) ...
am{m)blbz

For example, the approximations Z/m to ¢ could be the convergents
Bufky = Z /m in a continued fraction representation of 4. We may, there-
fore, construct & normal number arbitrarily clese to a given 6. In



icm
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faet, we can show
(2.58) 10— w(g, k)] < 2/g"" ") 20

where @(g, %) is normal to some base g such that (g, ky) = L.
This follows from (2.0) by noting that

(g, m)—2Z,fm|

< (Baf g 4 2o fmg ™)+ | )j (Zoy1— M) /mn +1 80 m)

R B

Since Z;/m < 1 and the constants Z, can be chosen independent of n,
we may Set Z, = 1 for » =2 and obtain

[0(g, m)—Zafm] < 1mAg 4 1jg 0 1 Zl/m’”’“+2

< 2)g M (m A1) mt (m—1) < 2/g°®™ -1 /m2

where 1jm™ g5 < 1/m™ ! and (m—1)fm*(m 1) < 1/m?holds for m > 3.
Therefore, from the well-known fact that for convergents h,/k,, we bave

— Bfbon) < 1 Eop Ko yy < 13,

and from the above |z(g, m)—Z,/m| < 2/¢"*™ -1/m?, we obtain (2.58).

(learly then, we may exhibit a normal number ag close o a given
# <1 as we please by this congtruction. This is a constructive result in
contrast to the same derivable existential conclusion baged on Borel’s
theorem that almost all real numbers are absolutely normal ([37, Th. 8. 11,
p. 103]) which, of course, as most meagure-theoretic conclusions proceed,
does not indicate any method for the construetion of the conclusion.

However, at present, there iy still an open question which Iria,y not
be trivial. Can we decide in & constructive sense, the base to which
#{g, ka) constructed from the h,/k, is normal? The Theorem 1 requires

that g be such that (g, %) =1 and, of course, for a given k,, we know
such & g exists. '

On the other hand, can one determine another sequence of rational
approximations to a given irrational for which all denommzhtors i’c,. are
relatively prime fo some fixed positive integer g9

In some future gtudies of these results, we will show that we ¢an
relax the requirement on the g in Theorem 1 to thoge ¢ such that (g, m) = L
Algo, recently, in & private communication which will be published, E.
Wirsing has shown that these transcendental non-Lionville normal nur-
bers -have measure zero.

The author would like to expless here hig apprecmtmn for a valuable
correspondance with D. A. Burgess.
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- An asymptotic formula in the theory of numbers
by

Yo1cEr MOTOHASHT {Tokyo)

§ 1. Introduction. Asymptotic formmnlase for the sums

2, 7w Te(n-ta)

"N _

have Dbeen considered by Ingham [4], Hooley [3], and Linnik [5]
for the case k=2, k=3 and all %, respectively, where 7z(n) i8 the
number of the representation of = as the product of % factors and
r(n) == 7, (n).

The purpose of this paper is fo prove an asymptotw formmula for the
sum

Z‘ (n)r(n-+1).

neN

Our method depends on the recently obtained result in the theory of the -

large gieve. It may be interesting to remark that the method of Hooley

and Linnik largely depends on the very deep A. Weil’s estimate of Kloo-
sterman’s sum, but our proof does not make any use of it.
Our result is as follows: -

THEOREM.

M ar(n)r(n-+1) = GN (log N)+ O(N (log ¥’ loglog ).
ng N

Here the congtant G ig defined by

eIl )

Notations. Let p be generally a prime, y a Dirichlet character
and p(m) the Buler ¢-function. The notation “~<’f is the usual Vinogra-
dov'e gymbol. '



