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Nun sei bei geniigend grofem € = o4

& & log, %
logz > log®— log—= (¢
g og @/’ gy g
(3.11)
§= ma,x(ya, kc); 4= M
. logy
und
(3.12) X =V

Inshesondere izt dann wegen (1.4) die Bedingung (2.5) und fir » = 1— 4,
0 <A< 08, Jo| < k/4 die Bedingung (2.26) erfills.

Wir diirfen daher die Siebungleichung von Hilfssatz 5 mit den Hilfs-
sitzen 3, 7, 8 und 9 unter Verwendung des Residuensatzes umiormen.
Dabei wird (3.10) in Verbindung mif (3.7), (3.8) nnd (3.9) in den Fallen
{3.1) und (3.2) benétigh. Der Vergleich der beiden Hilfssiitze 10 und 11
filhrt nunmehr zu der Abschitzong

8 ’

1 . -
(E —J:—;f‘_l—f”i A(m) (logn) o™+ O{w~*{1+ 6 (log" £) log )} +

-I-O(&(Io 2 3 n\' &
e | ()5}

1

Q

1
< Nlogw+ A+ - 4 6log2m,
logz

~wegen {3.11) und (3.12} erhiilt man also

1+ log, k
¥ _;f_x@) log*p =~ 4 é(log’a-+-1og'R)

pX

und damit wegen (1.1) und (1.4) sofort (1.2) bei geniigend grofem a,.
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On the Siegel formula for ternary skew-hermitian forms
by

8. RacmAvAN and S. 8. RANGACHARI (Bombay)

§ 1. Introduction. Let =/ be a simple algebra over an algebraic
nuraber field % and let ¢ be an invelution in 7. Then « is the total-matrix
algebra Wy (K) Pf m-rowed matrices over a division-algebra & with an
involution ¢ — £ and the involution ¢ takes @ in < to B4 b ofor o fixed
m-rowed nonsingnlar matrix b satistying the condition % = ph, 5 = £l
Let X be 2 left «/-module of rank n and let @ be the group of elements
in o for which % ' = L. @ is precisely the group of  in M, (K) for which
ty.h-u = k. Let 8, & be the dimensions over & of & and of the space of
clements & in & for which & = 5& and let & = 0'/s. Then for m >2n+-
4-d5—2, Weil has proved in [10] that the tempered measure B (d) defined
by means of the “Tisenstein-Siegel series” on the space & (X 4) of Schwartz—
Bruhat functions @ associated with the adele-space X, attached to X,
coincides with the tempered meagure I(®) defined by means of the

“4thets series” associated with &.

TFor m = 2n+ 4e—-2, the Eisenstein—Siegel series does not malke
sense, since it does not in general converge absolutely. It has been proved
in [4] that when n =1, m =4, ¢ =1, k = @, the field of rational num-
bers, and & is the orthogonal group of a quadratic form of index not ex-
cesding 1 and with rational integral coefficients, one can define by using
& limiting process, an Tisenstein-Siegel series and identify it with the
corresponding measure I(®) defined by means of theta series.

Here we take up the case when & is the total matrix-algebra Mg (D)
over an indefinite quatcrnion. division algebra D with the rational number
field Q as centre and with an involubion ~ (of the first kind). Let A be
the matrix of a non-degenerate skew-hermitian forra defined over X

" which is now o vector-space of dimension 3 over D. As pointed out earlier,

the main difficulty heve is that the Risenstein—Siegel series T{P) as defined
by Weil [10] does not converge absolutely and we have to modify ifs
definition by following an idea of Hecke and Siegel [5]. However the
“theta series” I{®) makes sense even in thiy case a8 ghown by Weil [10].
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§ 2. Notation and definitions. D stands for an indefinite quaternion
division algebra over the field Q of rational numbers and let o —a be
the involution given in D. Let R (= Q,), Qp denote respectively the
field of real numbers and the field of p-adic numbers (for a prime p).
We denote D ®g Qs by D, for a valuation v of Q and denote the dis-
eriminont of D by d. The involution « - a of D extends in an obvious
way to D,. By oy(a) and Ny(a), we mean respectively the reduced trace
and norm of aeD. They also extend o D,. For elements aeD, we take
the representation as two-rowed square matrices with elements in a (real)
quadratic extension K of Q. If

0 -1
J =2 y
(1 0) |

‘then “a = —a” is equivalent to the fact that the two-rowed real matrix
«f is symmetric.

Let X be a left vector space of dimension 3 over 2 and O, & maximal
order in I Let f(x) be a non-degenerate skew-hermitian form given on X.
Taking the standard lattice D in X, let § == (s;) be the associated 3-rowed
skew-hermitian matrix. We may assume that §;eD. Regarding § as
a 6-rowed square matrix with elements in K, we see that

J 00
§lo J ¢
o0 J

is symmetric, where (0 denotes the 2-rowed zero matrix. We denote by
4(8) the diseriminant of S. :

Let N,(2) be the quaternary form derived from. the reduced norm

Ny(»), taking a fixed base of © over the ring Z of rational integers. We
denote by D~ the set of aeD with a = — a. Similarly we define D; . The
restriction of Ny(x) fo D™ (resp. Dy’) is denoted by Ny (). For any order
D; in D, we get O7 = D™ ~ D,. '
- We observe that since P is indefinite, DR, R is isomorpbic to the
algebra M,(R) of all 2-rowed real matrices. For almost all », D, is iso-
morphic to the algebra M,(0y) of 2-rowed matrices over Q,. We reserve
the letter p to denote a non-archimedean prime. -

We denote by Ps, P and Mp, the psendo-symplectic group Ps(X jo7),
the parabolic group P(X|#) and the metaplectic group Mp(X|) as
defined in [9], respectively, We denote by Ps,, Py and Mpg, the Q-rational
points of these groups respectively. Further Ps., P4 and Mp s will denote
the ‘adelizations’ of these groups. We denote the ‘adelization’ of X
by X and the space of Schwartz—Bruhat functions on X, by & (X.).
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For o matrix ¥, 'Y and o(Y) denote the transpose and trace respecti-
vely. The ring of integers in Q, is denoted by Z,. For aeQy,, lalp 18 the
p-adic value of o normalized suitably.

§ 3. Bessel potentials. Let s be a real variable and let § > 0. For
X M, (R) = D@,R, we define the Bessel potentiol G ,(X) as the funct%on
in L,(®%,(R)) whose TFourier transform G o(Y) I8 just the funefion
(det ('Y Y))™*. We know from [1], [2] that _

1) Gy oo(X) 2 0 for XeDRyR,

i) [ Guw(X)dX =1 = value of G oY) at ¥ =0,

o (XE

iif) ﬁﬁ,;(xn L o oWt 7417, for snitable » and constants
0y, s, Where Ay, A, are the eigenvalues of X (using 7.3 and (5.7) of [2]).

For the p-adic completions By, = D@y Qy of D, the Bessel p‘otentia,l
8, ,(X) for real § > 0 is defined ag follows. Let for ¥eDy, the firss ele-
ménmry divisor A{¥) be the greatest commoen divisor of Ithe elem.epts
of {the two-rowed matrix representation of) ¥ when D is _mnmnlnﬁed
at p and the exact power of a generator of the unique prime 1dea1.m D,
when D ig ramified at p. We gee that A(Y) is well-defined and_. in the
former cage, we see indeed that any Y eD, may be written as A(Y) Y,
with ¥, primitive and integral and [A(Y)], is & power of p: Now Gi,g, {(X)
is defined as that function in Ly (D) whose Fourier transform G p(Y)
is (Max(l., [l(Y)lﬁ,))—s. Then Gsp(z) has the, following properties:

i) Gyp(X) =0 for X 5 0 in Dy,
i) [ Gap(X)dXp =1 for the “normalized measure” dX,
Dy

iii) Gy, (X) has support contained in M, (Z,) Tor _D unramified at p
and in the unique maximal order D, of Dp = D®q 0, in the case when D
is ramified at p. :

Let D4 be the adele-space corresponding to the affine v.acriety‘ D,
Then, for real s > 0 and for Xel., the Bessel pﬂtential*Gs (_X_) i Qefmed
on D, a8 the function in L'(D4) whose TFourier transform 65 (Y) is defined as

g
GH(Y) = det(B+"Ty L) * [ ] (Max(t, A(Tp)b))

2

B

for T = (Vs ers Yoy oo)eDoa

§ 4. The Eisenstein-Siegel series. Aggoclated to a Schwartz—Bruhat
function @ on’ D, the Bisenstein—Siegel series is defmgd for m >3, ad
follows. Denote by < the algebra of all m-rowed matrices over D. Let
Pz and P denote respectively the pseudo-symplectic group and the para-
bolic group agsociated with D), considersd as an M-—modgle of rank 1.
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. ' L
(See [10].) For o<Pyp, define (ry (o) ¥} (0) = #(0) and for ¢ =( ’;) <Py,
with 4 52 0, define v

(1) (rg(e) B (0) = [ Blw*y)5(lrdf (") doty
. "

ﬁfhere 2= [T is the fixed character of D, setting it in dunality with
v

itgelf. Then Weil defines the Fisenstein-Siegel series (D) associated with

D by '

(2) B(@)= D (rglo) ®)(0)
. . cePQ Prgy

where ¢ runs over a complete set of representatives of the left cogets
of Psg modulo Py. We may rewrite (2) as

B(O)=00)+ D F(Y

oy Mok gy
% J(DQJ -DQ

where ©* runs over all the elements of D,, such that ¢* = —%* and where
(3) Foli') = [ () y(i*f(w)) v, .
o

In (1) and (3), do% and dw, denote the Tamagawa measure on D™
The series (2) is known to converge absolutely only for m >3. In
the case m = 3 which iy our concern, we modify the definition of (P
by introducing a parameter s > 0. For real s > 0, we introduce the series

4) B(®,5) = B(0)+ Y Fa(*)GH (")
: *epg :

where for every Schwartz—Bruhat function & on D%, the corresponding
Fg is defined by (3) and 4 runs over all the skew-symmetric elements
of Dg,. The convergence -of the series (4) may be proved ag follows just
a8 in [10]. In fact, let Mp,, be the ‘adele-group corresponding to the meta-
plectie group Mp associated with Ps. Let = be the canonical projection
from Mp, to the adele-group Ps, associsted with Ps. There exigty then
a function f,, on Ps, defined by

Josln(8)) = (s8)(0) 45" (o) [ ] tn v, 015"
n :

where s is an element of Mp, with a(s) = (o,]) and o m(a {Z)
: ¥
= (0w, Op, ...) being the “first component” of 7 (8),

[Nu('}")ipM&X(la M(?-la)lp) it D, ~ My (Dp),
m(y, 0)lp = 1 )
o Ay Max (L, 3¢y 8)jp) it D is ramitied at p.
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For ﬁon—amchimedean primes p, A{y~"4d) is ag defined on page 329 and
2 (0,0) 18 the product of the two simple roots 4,47 and 22 of o, regarded
as an element of Sp(4, R). For any peP., we have

Joo{p7m(8)) = v(p)|pls*

12

where w(p) = ||z for p of the form #{g)d(u) with t(g), @(x) having

‘ 1 0 ‘
their “firgt components” (0 g), ('g M_l) respectively, 'We apply the
Godement criterion for the convergence of Eisenstein series ag in [10],
in order to conclude that the series H(P, s) defined by (4) converges
abolutely for real & > 0, uniformly for @ lying in a compaet subset
of #(D%). :

It iz now immediate that the series

(8) DTGt Y+ )

e 6

converg'es absolutely for s > 0 and uniformly for ¢* and & lying in compact
subsets of D, and & (D%) respectively. In fact, for all i*< Dy, we have
s (g*+1%)

By K s S O
(6) ('3 G: ( ?‘* ) 4
for suitable constants ¢, ¢, depending only on s and the compact seb
to which ¢* belongs. This results from the existence of constants e, ¢
such that for XeDy,

6 < debt (B (X4 TP ~*(det (B4-X4)° <65,
provided that Y lies in a compact set of Dj. Further
Fo(g" i) = «FZ;H* (#*), where @p(w) = P(@)x(g"f(2)).

A gimilar result holds also for the Besrel potential G;’,p and the inequadi-
ties (6) ave immodiate. Now when ¢ and ¢* le in eompact subsets of
F(DY) and D, respectively, so does b and hence tho convergence of
the sories 1% a consoquence of the uniform convergence of B (P, 9).
Remark 1. Denoting Fa(g )G (") by Fo.(g") for g eDy, we
have just seen that 3 | .(g"+»")| converges uniformly for &
e
and ¢* Iying in compaet mﬂmets of #(D%) and D,y respectively. By tahe
sane arguments as in [107], we see that I 4 (§*) e Ly (D 4) for every @ e (D).
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§ 5. A Poisson summation formulfa. Our object iz to define the
E1senstem—81ege1 geries E (@) as hm E(®,s) for every P& (D 3y it it

exists. In order to study the behakur of B(®D,s) as ¢ tends to 0 from
above, we need to prove a Pomson gnmmation formula, as in [10]. It
suffices to asvume that 0 < s < 1. Let D7 denote the adele-space corre-
sponding to Dg and d 24 the canonical measure on D3.

PropoSITION 1. Let W be a compact neighbourhood of O in Dy and
let pp be a non-negative continuous funetion on DI with support con-
tained in W such that [ gw(#)d @y =1. For g, heDZ, define

Dy
t (h) == (r* Gs* Sy % o) (1)

where * denotes the convolution-product in L.(D7) and dy, stands for the
Dirac distribution with mass 1 at g. For @eL {(DA) ), if the indegral

8(@,9) = [Fol—yg

Dy

GG 2 (— a9 )d 7

conwerges  absolutely, then

(7) : 8(®, g) = lim f & (@)t () v

**{0}

the Timit being taken over a filior of neighbourhoods W of 0 én DZ. If S(®, g)
converges uniformly for @ lying tn o bounded subsel of Ly ((D A)] then
the limil iaken over W 2 also uniform on that bounded subse.

Proof The'propoaltlon is a consequence of Lemma 1 of Weil [10],
by ta,kmg D7 and (D,)° for & and X respectively and 7(g") = G5 (g") %
X x(—gg"). In view of Remark 1, the conditions of the proposition are
fulfilled for @5 ((P.4)) and we have therefore the expression. {7) for
8(®, ) as a limit with respect to W.

Denoting S(®, g) a8 Fp,(g), this is, by definition, the value at g
of the Fourier transform of Fm +(g"). Now clearly Fg,(g) is continuous,
bounded and non-negative for non-negative functions @ in & ((D_,; )
Hence Fy .(g*) is a continuous function of positive type and is the Fouriex
transform of a bounded positive meagure, which ig nothing but a4 (g).
Hence Fy,(g) it in L,(D3). Now any & in 5"((1)_4)) may be written os
the difference of two non-negative functions in $°((D4)%} so that Py (g,
is in L, (D7) for every @ in & (D%). Thus Fy os(g *Yis the Fourier transform
of Fy, for every @ in &(0%).

Remark 2. As s tends to 0, 7}, tends 130 Fy so that Fy, tends
t0 Fy. From {107, we know however that gy f @ dp,, with guppor
of the measure 4, being contained in f=' {'y}

iom
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Remark 3. If &z H(DU(% with &, eSF(D3) then we see that

Fos(g) = HF%,S(%) for g =(g),

where

Foalto) = [ o (—03)Gaalgh) to(— gu8is) g

by
Applying Lemma 1 of Weil [10], to

G=D;, y=1yx and (@) = () r(—gutn);

we' 566 thsyt
Fo,olge) = lim [ Do), ((22))d,

{0}
v

the limit being taken over compact neighbourhoods W, tending to 0.
We shall compute l’m s(gp) explicitly, for a special function &,
namely, the characteristic fllIlUf}lOIl @, of a lattice L, in Dj. It O, denotes
the (standard) maximal order in D,, we assume that the given skew-
hermitian form f(x) hag on L, its values in D, and we denote Fp s(¢)
by bp(s, gy). We further suppose that (g, = ¢™@> for gneDy;
here o, denotes the reduced trace from D, to Q, and for any aeQy, (x>
denotes its “principal part”, For a lattice M, let M’ denote its yp-dual
 We choose a special filter of neighbourhoods W,, namely
Wy == p™ My (Zy) if D is unrvamified at p and W, =p"?Q, it D, is
a division algebra with O, as its unique maximal crder. We may then
set gwr,, (gm) = p*P or 0 according as g, i3 in W), or not. The Fourier trans-
torm, (pW of @, has suppert contained in p~ I, (Z,) or p~"2Dy
accordmg ag D is unmmﬂled or ramified at p. We have therefore

ffPU (g3) X'p(gp(f(wms)‘l‘ 9:?)) (Max(l Mo 1?’)) a6
Dy

== f Ko ((]; (j('ﬂﬁ) + 92»)-) (Ma,x(l y 1A (gn) ]p))_s 4" gy,
p~ 5,

twr, (f (@) + 91’1) =

where po = D7 ~ My (Z,) oxr Dy ~D, and in the sequel g, is the
measure of O,.
- Hence writing

- " Mg o~ -
POy = Oy Ulﬂ_l (_Dﬂr"_PDﬂ)
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we gee that '
tW ‘7‘771 +9"p ZP&M f +.ot f%’p(gp flag) +gﬂ:l))
r=1- 2y — )
Tp
. — 328 _ &p lff(mp '}"ggaGD
B ;p (g,—éﬁ w(pmfnﬁ?) +l0, otherwise

p o
= Zp_avs[pav f Xp (_ngyi (f(mp)”l““gfp)) d~g;_

P f ( (-1 g _f{mp)+qp))d gp] _J_‘_Qm

T )+ gp¢ D5, then th(f(wp)+gp) = 0. We may therefore ass
that f(L)—i—gpch, ie. g€y, Denoting fdmp by m(Ly), we |

| ®otanyto, (Flan)+ gr) iy

3
Dy

=L{[1+ 21}‘”"{?3’ éf Zo (195

Y 5 f o5 () w3

(f(wp)+gp))d‘y$—

[ mlo~ gb(r(@n+gil)a

zpeLp mod. p”Lp ﬁp

_Ps(v_l)p_l"(v—l) Z f P (p—(v—l) g;;(f(mp.) + gﬂ))d'

wpemeudp”"'le 5?3
For @, in L, modulo 9" L,, we have

_9 : ) if @ "b'

f X;u(? g;(f(%)"i"gp))d‘g; _ | o, 7( .10)+9p€17 7

O - 0, otherwise,
since yp 18 & non-trivial character of D,.

Denote by Az, (f(#), ,u) the number of distinet @, in L, mc

'L, for which f(w)——,uep (3 Then

f D () th( f _(mp) + gp)

3
n}"

np o
= m_(L'p) [1 + ;qu {«Dp”,Lﬂ (f(mﬁﬂ)! _.f)':u) _D:u”‘l,Lp (f(m’ﬂ)7 _g'P)
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where, by definition, for » > 0
(8) Dﬁ",Lp(f(mp); '*‘9'11) = p_gvAp",Lp,(f(%): _gp)<
Setting
By 1, = -Bp”,LQ;.(f(mp) ? _Q':p) = Dp“’,LJ,(f(%), —gp) —Dpv——lin(f(_mp), ——-gﬂ),
we have

e
e——w—~9pm ) fclip(wp by ( () + g} B0y = 1+ Z =By, 1, (F(#0), ~ g}
=1 -

27
We gee then thatb

lim f Dy, (wp) tW,,(f (6p) + 9'15) dy = lim f Dy ()1 npb—-(f (@) ‘H]p) da,
Wp—+-{0} p 00 D%

= 0y (Lp)br,, (83 —Gn)

where bz, (s, —p) = 1+ ZP—MBWL (f@n), — gp) -

Referred to a base of DB in D? let the skew-hermitian form. f(a)

be represented by the mairix § with elements in a maximal order D of D.

Denote by D = D(®P, f) the produet of 2, odd primes p dividing 4(8),

odd primes p for which @, is not the cha;mctemstlc function of the stan-

dard lattice ©F in D3 and the odd primes p over which D i3 Tamified.

Then for a prime p not. dividing Dy = N,(g).D, we can show that
B, o (f(ap), —g) = O for » >1 and further that

I L1 8(8)’ Nu(g)
Bﬂ,Dg(f(mp): "‘9'). = "_(T P P 1+ |— P P P
Further, we observe that there exists an integer D, divigible by D, such
that for a prime p mnot dividing D,, we have

(9) prts,—g) IN » | 55) | ¥(9)
= [ ) b (5]
_ 1mp_5_733( Nu(g’)) _ ( 5(8))P—suas; (MM@) Pt

p ¥y D
Yor functions @ = []®,(m) in & (DY) with @, equal to the characte-
2

vistic function of O3, we have ‘then for g # 0 in O~ that,

(10 Foplo) = [ [z, —9) ”( (f@_)_grﬂ_(@)p-z_ss+o(pﬂs))

Dy

by choosing W, = p"0, and n, = ~—10g(|w'1p)/logp and taking the
limit a8 » tends to mflmty
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© where (M,(8)

_ Hence the set of primes p for which f(») fails to represent zero in L

= b (s, (s 1) H{bL (s 0)(1— p-(1+3)}” (1 p=CH20) =l
PiDg

- where [ (s) denotes the Riemann zeta function.
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If g = 0 and if p is & prime not dividing 2 suitable multiple D, of D
we can show that
(11) 1B

snd that

p”,sis,(f(m)’ O)i < 19_(”‘”4‘)y K =2

(SN
7 )10 Yp®-1).
Now

(12) by, (s,0) o b
o1 H,—m,s)( p‘*s')) Bes) _ gyt _ (_.__m”‘ i{‘g)) PO M (s)

f’p—("—““)*’"is‘< p~** for gmall s. Thus, from (12
=2

we 5ee that HbL (8, 0) converges absolutely for ¢ >0, provided tha
Dy .

—§(8) is nogsi square.

Tt remains then to congider the case when —d(8) is a sguarc
In this case f(#) eannot be a zero-form (i.e. f(z) cannot represent 0 non
trivially}; for, if it did, there would exist 4 = —7% 7 0 such tha
8(8)e Ny (2)Q®, ie. No{i) = —o? for some & in QO sinee — 3(8)Q*
ie. A= —N,(1) == a? ie. 1= --acQ* contradicting the fact tha ]
A= —4 = 0. We now observe that f{z) represents 0 non-trivially i ?

D it and only if there exists A = —A # 0 in D, such that No(2) = 4(8

iy precigely the set of primes at whieh the norm-form Ny(z) of D fai
to represent zevo in D,. (In view of —4(8) being a square, the norm
form Ny(z) is just Ny (y)— 8(8)w;, writing o = w,+y with #,¢Q.) Tht
the set of primes p for which f(x) does not represent 0 over D) is eve
in number, (In the special case when — §(8)is a square, the Hagse Theorer
for f(z) is just the Hasse~Brauer theorem for D.) Now I is a divisio
algebra so that the number of primes p for which f(z) fails to represent
in D is at least two. Let p,, p, be two primes such that f(x) does nc
represent O in Dg,o and. Df,l. Then, in view of Remark 2, we see that

Lt by,(s, 0) = Lt Py o(0) =Fp (0) =0, ©=0,1.
&0 340 v By .

Now we ges that ‘ 'E
(18)  Foul0) = bult; 0)¢(s+1) [ ] bz, (s, 01— p*aﬂ})}x
Dl _
% H (1_1,“(11-3))(1 'i"ﬁ-"—(l'l's)—"}?_(“ B}—I‘Mg (S)) i
Dt

04Dy
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Since B} ig an indefinite quaternion algebra, Ny(z) represents 0 in R?
and hence by our remarks above, f(#) represents 0 in DS,. Hence we may
assume that p, and p, are non-archimedesan primes‘ Now, by (18)

Fpsl0) = bosls, 0) bz, (5, 0)L{s+1)(1—py 1+ x
X{n (L p @+ _ n f(1— p-(us))bL (s, O)}

PtDg T
bq

Since bLﬂo (s, 0) vanishes at & = 0, If’d,,f,((}) is regular at s = 0. Further-
more, . '

Fpo(0) == (8, 0)(L—p5 ) (1‘I‘-Dp029”38+ {1/3.+Y+---}><
X (eoteust..) [ [ {—p=+0g, (s, 0}

B0y

13#270
has at § == 0, the eonstam term, a” bz, (0, 0) aind sinee by, [(0,0) = 0
it follows ’rh% : S

lim P4 (0) = 0.
B0
PrOPOSITION 2. For any Pes (DY) and for s> 0, let
8@ = [ Fu—ME&ENG = D Fa(—yNE0Y.
. DG =Dy rg
(This series comverges absolutely, wniformly on compact subsets of & (D%).)

Then 8 defines o tempered measure on & (D%) and further

B(#y= D Fouly).

VED

Before we prove Froposition 2, we need to introduce some notation.
For o in DF, denote by & the image of » under the homomorphizm Dy
— D3/Dy (which may be identified with (44/Q)). Corresponding to

- the Beasel potential G5 on D, we define its “periodization” Gg on D5/Dy,

a8 a digtribution by the “h(‘}bla;l product 1‘011'111.1]21”,

(14) Gy (g) = (@, ¢ )»,,!3 = D e*y)

?:DQ

. where ¢ iz any function in 5”( 7)) with compact support and ¢(g)

= 3 @(g--y) for any geDy. Since ¢, is the characteristic function of

veD o

Og Jfor almost all primes p, the summation over y on the yight hand
gide of (14) is carried out ‘essentially over the. elements of O ~ D™ for

Acla Arithmetica XVL3 . ”
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aﬁ order £, in Dy. The convergendce of the series on the right hand sid
may be verified as follows:

Yametol=| X @] G () () 7|

?d}é oD

—a D B,
pey I
since G ,(y) <1 and Gip(y) =1 for almost all p. Now since g, (D)
wo Imow that, for any B0, lgh(y) < o) (st +ai)™" wher
y = Gy 0yt By 0yt By 0. HeTe @y, oy g is a Q-bage of D™, w,,x,,
Dbeing rational numbers with bounded denorainator d (uniform for a
yeDy ~ D7), Bince

(4 + )P (L AL+ o )7 < 0 dP(2B) < o0
YD1~ DT

our assertion is frue. - _ ; L

For any geb7/Dyg,we define the distribution () = (@rir* Gar ) (¢
where W is a compaet neighbourhood of 0 in D3 such that for n
two distinet @,y in W, o—y lies in Dy. We take W = W+ Dy. Let ¢
be a ron-negative continuous function with support contained in W an
[ ppd o4 =1 Then gw(d) = 3 owlg+7) Now #r(f) is o contir
ny veD g
uous function on D3/Dy, with the Fourier coefficient

o= [ twlf)xler) ¥z = e (IE ().
D4iDg .
For every non-archimedean prime p, we know that &Wp* G P, h:
support contained in Oy (choosing W, = p™D, as before). Hence i
the series ) (pwxGykgw)(g-y), the summation i3 over the elemen

vel¥ oy
of O ~ D~ for an order O, in D. Further

(@t Gt Prr) (@) = [ (P pmro) (1) Qoo (5~ )y
Rg. .
= [ (owt P ¥) 6 o (0 —y) dy
wil)

where WO = support of gw_rpp,. For || > 2¢, (depending only «
W), we know that G (%) < cge” "> 50 thab

(18)  UPma Gt ow,) (@)] < oyge 1 Cfor |z = 26

iom
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(If @ = @, 01 By 0y By 0, then [off, = &l 25+ 25 and Jo(ow) = B+ A
where A, A, are the eigenvalues of zJ'). Hence the series

a T
D (Fprlaray g +)
erDE
is majorized by
i3 (92 D)
€10 P
ny, Mg, ged™ 1z

for a suitable integer d = (D7) and uniformly for g lying in a compact
subset of DZ. It comverges to o conbinnous function ou D7/ D,} whose
Fourier coefficients are given by

G;, = f 2 ($;V’4=G3*(va) (g+v)xlgy)d ga
DDy viDy,
= [ (pp*Carep)(9) 2lgr) 8 ga
D '
in view of the uniform convergence of the series 3, ie.
. ¥
& = lop, (WP (v) = o,.
Thus we obtain '
by () = ) PpGerap) (g+7)-
. v

Proof of Proposition 2. Applying Lemma 1 of Weil [10] to the
ease where G = D;/Dg, X = D% and =(g") = G;(g*), we get

8(2) = lim [ D(@)t,{f(@)dad,
Weal0} DE‘l

the limit being taken over compact neighbourhoods W of 0 in DZ/Dg.
We now assume @ to have compaet support ¢ in DY so that f(C) is again
compact. Since the series

* (DE

converges uniformly on f(0), we have

(16) CA@ = 1m 3 [0+ o

Ir
T {0} W‘DB DEJ.
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. Since @, has compact sapport €, only those y for which f(\O,,)—l—n,

c Dy ~ D, for every p would give a DON-zero contribution to & (D) 8c
that the summation in the series (16) over y is just over the elements of
O, ~ D~ for an order Dy in Dy. Using the estimate (1) for tw.(f{®)+ %)
we see that

) f () by () + ) dau\ i@l D e,

o yely
Ve Q

where @[], is the norm of @ in L,(D%). Thus the series

2 ft.’D Ve { @)+ ) das

?EDQ Da

econverges unjformly with respect to W and we may interchange in thi
geries above for S((b), the order of the summation over y and the proces
of taking the Limit over W 80 that

J(D) = 2 hm f@(m trlf (@) ) dmy == Z‘ Fos(y).

reD gy Q

Hence, for functions @ in & {D%) with compact support,

8(0)= D) Fasly)

?sj)é

In other words, they coincide ag measures. But § i3 a tempered distr
bution and for @ 2> 0; we know that 8 (®) > 0 50 that for all non-negative ¢
in #(D%), we may conclide the absolute convergence of the serie
> Fgyq(y) and hence for all @ in F (D).

:vd}a . . .
PROPOSITION 3. For @ in F (DY) the series 3 Fg.ly) cor

D#WDQ

verges uniformly for s Zymg i the mterml [0, 1] and also for @ lymg q
a compact subset of & (DY).

- Proof, Let & = [[®,(2,) where &, iz the characteristic functio
g _

of £ for almost all primes p, O being an order in D. We take D, d
visible by D and N,(y) as on p. 335. Then using formula (9) for Foy, s(
= bL (8, —y) for p ¥+ D,, we have

‘nl’ﬂm s(}’)l 2 77 < b

4Dy n=1
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We now take primes ¢ dividing D,. In this case

Foys(y) = bg(s, ) = 1 X By (@), ~),

pe=1

Bypp,[f(@), —¥)(= Dp—Dp-1 = ¢V dypr,— g7 Vdp-17)

12 2wiq~”a {(fay— e
DD I s

'ﬂh o . xmoaqg
mﬂamodaﬁ’ 3

4 .’.Eef.}q.
mg“ﬁlg(”ml) 2 ‘ ol 62n'iq"(“"I)uu((f(a:;my)ml)

apmmiy i mod gt~ 108
wymad g 4 o

_ S'W (l"'.lgv Z Gﬁniao((f(m)—?’)‘")
Led .

q“meD:I ol Q”D?[ :
amnod, Do‘ azebg . : !
i 1w¢b;,

Thus nsing the eagily proved estimate for Gauss sums, namely
< BN, (8(8Y) 1N (y),

' § Gin'iaﬂ[ﬁszu}a"'l)
Tmod OF '

where d ig the discriminant of D, and where a0y = O, we have

(=)
brg (8, V) < L e D)™ g0 < 01—

el

Thus for primes ¢ dividing D, P ()] < 019m{Dy) (1—@"3)‘1. Hence
| n Fopaly)| < ow [ [ A—g% " < caloglog|No(y)l

41Dy
Thus
s ()] < ey (10g10g W { }’)i Foosly)

. We proceed to estimate Fp  (v). Let us observe that Fy () =

= (@ oo Fp00) (@). (The oqnal]ty holds firgt in the BEDSL of digteibutions
but singe @, is temapered and since Fy is bounded, they are equal as
functions.) We have Fg,(y) = O(ly|3") for every » > 0. (The constants
in the O-egtimato may depend on ».) Further, for y # 0 in D,

[me‘s(?’)i mi f@mm('}:)lﬂmw('y—-m}d"m i _ ‘—|~
] . 1% co*ad1¥] 20 1 co3l¥| co

ot ~tigalvloy e '

K One Yoo f G, o () 00+ 033'5 g, (y = w) d ™
121 e ¥ hoo - [®] oz ¥lao

VI ai

KOsy |0 I Cas [Falli, #nce fGE o W = 1
' n

S A Ly
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this being valid uniformly in s, for 0 <& <1. Here | F sl i8 the norr
of F, in L,(D). Choosing » == 2, we derive the uniform convergenc

of Zﬂ Foslr)
-y’]_i‘rom Proposition 3, it is clear that > Fosly)is a continuou
O#WD;?' o
function of & for 0 < s <1 and
. . : e -
lim M Fou(y) = DlimTas(y) = D Faly)-
-0 529 poml 80 P
We have &till to congider the congtant term. ¥y ,(0). Now

Fas(0) = Faogsl®) [ [ Fopo(®) | [ Faps(®)

Dy ptDg
= Fa_4(0) n Py s(0) X
: 4| Dg :
T B I ST P
71Dy b . P '

where M, (s) = O(p~*?) for gmall s, If — 4(8) is not a square, the produc

J] converges absolutely, uniformly for s> 0. Hence, in this cas
3 P)
F5(0) = lim Fyp4(0) exists. Moreover, if f(x) does not represent 0 no:

80"
trivially in D% then U(0), = @ and hence by a result of Springer [6
U(0)4 =@ so that at least one factor in Fy(0) = [] Fp (0) vanishe
2

and consequently Fy(0) = 0. If — 6(S) is a square, then we know frol
page 336 that f(z) does not represent 0 in D? nontrivially and as we hay

seen already on p. 337, we have in this cage as well that Hm Fg ,(0) =
. 80

§ 6. The Siegel formula. For ieDy, denote by Ul(i)g the =
weDy | f(w) =1, w 0} Let, for ieDy, Ul)y # @ and leb &eU(i),
Denote by H;, the isotropy subgroup of & in ¢, where ¢ is the (specia
orthogonal group of f(z) (being defined over Q). Let {dg) 4 be an invaria
gauge-form on G, and let A(dh:)y = [[ Aw(dhs)y De an invariant gaug

form on (H;), with suitable convergence factors i,. Then

[T, - [T
L) v

dg . . .
where (), = |——) , is & gaunge-form on U({),4 with convergence facto

dh;
izt By [8], we know that

) wEy [ elge [t [ olg(@)dea

U 4 G’A,IGQ EsU(i)Q

s g

Siegel formula for lornary skew-hermitian forms : 343

for any P (D). Heve w,(H,) is the volume of (H;).a/(Hilg with respect
o the meagure A(dh;).. Formula (17) is valid even if U(é), = O, since
then by the theorem of Springer [6] on the Hasse principle for skew-
hermitian forms over D, U(i), = @. Thus both sides of (17) are zero and
hence equal.

When i % 0, we know from [8)] that H; is the orthogonal group
of o mon-degenerate binary skew-hermitian form and choosing A, = 1
tor all p, we have by the classical isomorphism theorems ([10], p. 82)
that v (Hy) = 2. But Fy(i) = [[ T, (1) = y (f ] &, dp, (1). Now, for each v,

. Uy

[ Budmy = [lddly [ @udp(i)
Dy

»} TUlihy

[ ooy = [ [of5) < [ [ oo
Dy ot Y By

Dg"‘{"} ( )@J U(!:)’U

and

where {*} denotes the set of points of Df‘; of rank < 2. By Proposition 1
of Weil [10], g, = (J4), for every v and for ¢ = 0 in Dy, . Then, for every
i# 0 in Dg, we have by the foregoing '
18) Foli) =[] [ ol = [ @@da=1% [ > @)ldgla.
v Ty Uid) g G 4flg 8U(g .
We now consider the case when ¢ = 0 and U(i)y  @. First, let
— 8(8) be not a squave. Then M, is the semi-divect product of the speeial
orthogonal group U of a skew-hermitian form in one variable, Le faf
with ¢ = —& and Ny(a) = —34(8) and the additive group 8, = G-
Hence U is an anisotropic torus defined over @ snd contained in the
group of elements of D, of norm equal to 1. It gplits over the quad-
ratic field Q(I/»-—é(‘S)).’For U, we choose the convergence factors i,
- - 8(8) |
= (L— % (p)p~") where x(p) =( ,
the convergence factors A, == 1. Henc:e, by [8), (4,) 18 a-seb of CONVOTZence
factors also for H,. From [3], we have

w(Hy) = 1 (V) 2@} = 1 (U) = 2 [ [ (L= 2e(wp7) ™" == 2L(L, 2)
K

), Ay = 1 and for 8, we choose

gince Uy == L. Moreover,

[ g8 [T 5" Bohy = [ ] 7 Fa,(0)
3

Ul0)q - /Py .
% [T 1= m@s )L+ @7 = — 7 10(2)+ M (0)

ﬂ-{’Dg : . .
= [1326,(0) [ | (1—5s(0))

¢ Dg iy
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‘ icm

i

where f,{s) = p“z 23_(1 o(p)p~ B (p it —
and f,(0) = 0(p~®). Thus we have

(19)  Fol0) = lmPyy(0) = [] 7y, (0)xm []

71Dy 820 5t 1oy

Ty, o (0)

= H'qu(oyx

i1, _
xlim [ [ (t—m(0a) L (145, ) [ 1-ﬁp
88 g1 P, -y
= ”A LRy, (VL(L, ) [ [ (1 £p(0))
4Dy Diidg
'::-L(l,xu) f cp(ge)n I (%)
U() 4
=in(H) [ B8 Hz (8o}

Uit}

=3 f D B(gé)idgla.

GA/GQ EEU(O]Q

The relation above ig valid even if — §(S) is not a square and if f{z) d«
not represent 0 non-trivially over PP, since then F,(0) = 0 and t
right hand side is zero, U(0), being empty. In view of our remarks
P 336, f(2) cannot be a zero-form when — 4(8) is o square and here aga
we krow that Fy(0) = 0 from p. 348 and further U(O)Q = o that 1
expression on the right hand mde of (19) is zero, again. Thus (19) is va
in this case ag well.

We now define E(®) = lim B(®, s). Then F iy a positive temper
measure on (D% and 0

B(®) = $(0)+1im D Fh(* CAC I

50 ’L"EDQ
= G(0)+1im Y F,,(6) (by Proposition 2)
Sl 'LEDQ .
= O0)+Fs(0)4 D Fyld)
u,«én;epg
= $6(0) f ldglatt > Blgé)ldgla,
Q ’LEDQ GAIGQ ﬂ‘U(f]Q
(in view of (18}, (19) and in view of (6 Deing equal $0 2), i.e
B@ey=% [ 3 oslag =I,(8)

GAI‘GQ EED;

where » 1§ a normalized measure on Gy with »(¢4/6g) = 1. Thus
have proved the following |

— 2{(P) P My

-
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THEOREM. For @ e (DY),
| e =L@,
wheve B @) is defined as
| hm{rp(o ) T 7 ()61 ()

80 "
) eDQ
and
L@ = [ > digev(y).
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