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On choisit m de sorte que ma =1 §'éerive 3 9,0, PreZ. Aloxs la
13 .

S PR o
limite en question vaut, grice au lemme 2, (—1) *° " [] Iy, (Z7ety). Nous
1

utiliserons le lemme:

LEMME 3, Quel que soit & positif et quelle que soit la partie dénombrable D
de R il emiste une suite (n)psy de nombres véels telle que pour lout entier ,
tout entier p et toui élément non wmul ¢ de D, J,(tny) +# 0.

Soit, en effet, A(p,?) Vensemble des = réels tels que J,(iw) = 0.
Puisque J, est une fonction entiére, 4(p,?) est dénombrable et il en
est de méme de A = {J A(p, 7). Il suffit de choisir une suite (m;)..

B>
0x:isD

tendant assez rapidement vers 0 pour gue 3 || < & mais dont les termes
k=1
n'appartiennent pas & l’ensemble dénombrable A ce qui ezt possible.
Les 7, étant ainsi choisis, lorsque D = 2n./, le produit infini

[1J,, (2mtn,) est convergent et m’est done pag nol i fess.
: :
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ACTA ARITHMETICA
XVI (1970)

On the distribution of prime numbers
which are of the form #4211

© by
Yoreur Moromasar (Tokyo)

1. Tn 1957 Ilooley [2] proved under the extended Riemann Hy-
pothesis the asymptotic Lormulae for the sums

(1.1) | Srip—a),  Yr(¥—p),

N Yy

where « iy @ fixed non-zero infeger and p denotes generally a prime
number and further »(n) is the number of representations of n as the
sum of two squares.

After Tlooley’s very inleresting proof, in 1960 Linnik 4] proved
rigorously these asymptotic formulae applying his very powerful “Dis-
persion Method”. Therefore the longstanding conjecture of Hardy and
Littlewood is completely proved. '

On the other hand the large sieve method which is created by Linnik
ig recently astonishingly improved by Bombieri [1], and the extended
Riemann Iypothesis which was used by Hooley can be replaced by the
mean-value theorem for the remainder terms of the prime number
theorem in an arithinetical progression.

Now from the asymptotic formula for the swm (1.1) we can conclude
that there ave infinitely many prime numbers which are of the form

@4y 1, Then, how many such prime numbers ave there up to N ¢

This ig the problem that we will freat in this paper.
Tiot b(n) == 1 il » iy representable as the sum of two squares, and = 0
otherwise. Then fhe following asymptetic formula of Landau-

wy M o T - l)m'zN(lo wy
. ?TAJ h () Nvl/i'} | T g
. wN 2 1 e 1(mu(1L)

is a well known result. T"[ence onr problem iy to study the behaviour
of the sum

Iy) = Z b(p—1),

PN
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and it iy natural from the result (1.2) to expect the agymptotic formula
(1.3) I(N) ~ GN (log ¥)~"#,

where & is an absolute constant. Unfortunately we can not prove this,
and really this seems very deep. In the last paragraph we will state this

conjecture more precisely.
We will prove only the lower estimate of I(¥), and by the familiar

assertion this can be reduced to the upper estimate of the sum

Zv‘ﬁ(p»«—l).

PEN
Tor this sake we mmust study the behaviour of the sum
B¢, 1) = ' T (n).
n=i{mod )
neN

Namely we must prove the uniformity of the value r(r) in an arithmetical
progression, and actually this can be done by the large sieve method.

2, Let x, be a character modulo ¢ and ¢ he the non-principal character
modulo 4. Further let R(s, y,) be the Dirichlet series '

ifz(n)xq(%)%‘“ (s = a+1it),

which converges absolutely for ¢ >1.
Let 7(n)/4 = T(n), then it is well-known that T {n) is a multiplicative
funetion and has the property ' ‘
1 for p.= 2,
#-4+1 for p =1 (mod 4),
1 for p = —1 (mod 4) and even u,
0 for p = —1 (mod 4) and odd «.

T(pY) =

Hence we have

01 EEs ) =[]+ 3 6T @)

» #w=1
= (L— 5,(2)27%)* (1— 2@ x
. pe=—1(mod 4) . ‘
x J] e Y e nigmr
pe=l (modd) u=1

= (l— g2 %

x - [] (4w @)= 24 [] - 2@p ™)

p=1{mods) p=—1{mod4) °
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gince
[ae]
\ ! 2 it
Z (w4102 = (L+a)(1—a) (o] < 1).
u=0 ‘

On the other hand
L3(s, XQ)LHI(E"S’ x;)

= (L4 2227 1= 5@ 27 [ [ {1 ()97 (1= s (2)p™9)

73
and
s, ox,) = {1— 2 P)p o)

Pa=l(maod)

[T (+z@py,

e (mod 4}

and 0 we have

(2.2) T (s ) L2 (85 02) L7428, ) = (14 2,(2)279)(1— ,(2) 27 x

x ] U+ e ) i— g, @)

p=) (med )

L~ (e~

po=—1 (mod 4)

Therefore from (2.1) and (2.2) we obtain

(2.3) .R(ss L) = 16(1"1" ZQ(Z)Z_S)WILE (s, x,ﬁIf‘(s, Q?CQ)L_l(Zs: X?z)

And hence completely analogonsly as in our previous paper [5],
Lemma 2, we have for arbitrary M, N > 1 and o = {--(logN)"! the
inequality

24 Noe@™ Y Ris, x) < Ms'log ¥ (log I |s|y*.
<A gonad g . '
3. Let us consider the eguation
{3.1) exg = 1.

It 4 does not divide g, then the congruence

n e —1 (mod 4)
has a solution, and so if satisfies (3.1), then we have
L == gy(n) == g(n) g(n) = —1.

This is a contradiction. Therefore it must be 4|g, and for this case it is
easy to see that (3.1) has only one solution gy,, where ¥y is the principal
character modulo ¢.. Moreover in thiz cagse we have -

Ris, axy) = Rls, 23)-

Acta Arithmetics XVL 4 : : 3
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Now let B,(y;¢,?) be the sum

. .
Eyt Y (log—%).

P,
ne=l(modg)
sy

1 Y
25{4(1 g fR(S:%q)?ﬁds

ymodg @) '
Fence under the above consideration on the characters we have easily

from (2.4)

(32) > maxmaxiB(yig,)—
g PN (@l)=1

Then we have

Re(y; 9.0 = o)™

Eqm(q)."llzjffi’i’f(s, P

< MN"log N (log MY*,
whera & is 2 it 4jg, and 1 otherwise.

4. Now let us caleulate the residue of R(s, yg)$ s~y at s = 1.
We have the following expansions (as s — 1)

s7y =y {1+ (logy—4)(s—1)+ Ol(s—1%)},
{1+ 2@)27 ™
= {1+ 7(@)2 71— {1+ 2(2) 2

s, ) = [ [o—pmree

»id

= =12 ] Ja—»™) {1+22 — —1)+0(s—1)2)}

- plg | wla X{l+2y (5— 1140 (( _1)2)}
logp . RS
= -1 [ [a—p™ {1+2(y+2|‘p_“1)(s—1)+0((s 1))},
Pl

lg

)1 (2)2  log &(s— 1)+ O ((s— 1))} »

2, e =[] (1—@(p)p-*)2L2(s, )

2la

= (%)Q( 1—a(p)p™") {1+u2 of p)

pig

- (s— )+ Of(s—1) )}x

xb+—Lmawwen+OW~nﬂ

()”(1—910)13‘1)2{ ( I ,9)+29 logp)(.__lH

iﬂlﬂ " oplg

+ 0((s-~1)2)},

On the disivibution of prime numbers which are of the form z24- 9741 355

and further

_I( 8y Xq —H(l*—zﬂ‘“)“i(%)“

ly

& Jomrros 3

i Dlg
j 12

XL E @ s—1)+0((s—1 )3)} |
{1 2(_5’ @+ Y 1°°1“) (s—1)+0{(s~ 1) )}

Pl

(s—1)+0 ((s—l)~)}

-%[Jo-r

v

Here the nuber y in the expansion of 12 (8, xg) 18 Euler’s constaus.
Ience collecting these expansions we obtain

(4.1) _ 1331813( » 20)87Y° = fuld)ulogy +£.(0)y,

v 1b- 31 -3y

Fals

where
(42)  filg) = 6 (14 22

and

@3 o) =1, g){9211,°_g§('] op )”Eo“i_l)*

hdis
—(1+ (@27 2 2)2- 110g2+00}
Here ¢, is an absolute eonstant and is equal to

8 : 1%
Gy—d+ — L'(1, o)— — ' (2).
K T

5. Now Ry(y; ¢, 1) is a non-decreasing funetion of 1 , and hence for
any positive 4 < 1, we have the mequa,llty

dé
fﬂﬁmww<m24, fR (50,0
v

The left integral is equal to
By(y; g, 1) — Ra(ye™; ¢, 1)
= &, (q) "' A f: (g yloa'w(fl( )+ fa(a))y}+
+O @ (fula)ylogy +if (0¥} +
—&O{lnmxilﬁ £ q, 1) e, (q) l(fl )Elog £--1u(9) &)}

- An ama,logous equality holds for the right integral.
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Hence from (3.2) we have

(5:1) > max max | Rs(y; 4 D —enw (@) e ylogw(fl ) +Fa()y)

gir YN (ah)=1

&IV M log N (log M-+ 4 Y o(a) {fi(9) Mlog N+ [f2(q)| ¥}

g -
= F NV MYog N (log M)* + A3, say.

Now we have from (4.2)

1 —1
(5.2) gy fulg) <€ q‘*“” (1—1— —1;) < g *loglog(g+3),

olg
ginee ) )
”(1+£)€6XP {25}\<, exp{ +(10g(q+3) legp}
»la P g » n=<log{g+3) vl

= exp {logloglog(g+3)+- 0 (L)}.

Further we have from (4.3)

g~ {loglog(g--3)}%,

(53) @@ fuln) <4g

olg
gince _
> %2 £ N 282 | {log(q-+3))" 2 logp <loglog(g+3).
p—1 P
Dlg . p<log(q+-8)

Hence frem (5.2) and (5.3) we have
2, < logM (loglog M) Nlog N
and therefore we obtain

(5.4) > maxmax By(y; ¢, Y &0(@) 7 [f2(Q)ylogy+(flg)+:(0)y)]

oS3 v<N @)=t

& AV NV i Tog N (log MY+ szgN (Jog MY .

By the same assertion taking A'* instead of i we have from (5.4)

G5 3 maxmax|Bi(y; g, D— sel0 (0 vlogy +2f(0) + @)y

g<hr SN (@h=1

< z-_afZNif?MlogN(iogM)i"Jr AP Nlog N (logM)*.
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Finally faking 1* ingtead of 2 we have ﬁ'om (5.5) the fundamental ine-
qumhty

(5.6) 3 maxmax|R(y; g, 0 —ep(@) " { F2(g) ylogy + (3fi (@) -+ FulD) v} |

g VSN (gl)=1
L 2T N Mlog N (log MY* + 14 N (log N) {log M)®.

6. Let-w >0 and b >k, >... >k, = 0. Let ve (0 < 85 k) be real
numbers such that 0 < y, < 1. Further we define g, by

1 for §=0,
: 0<m<u.
(6.1) ¢ = Z Vs Vey oo ¥y for 0 < i< 2u,
8 38n 5 :)»st>1q
=

Now if the conditions

(62) . Lm = ” (1»-«. '}"S} ;’)g for 1

o <9z,

/AN
g
M
®

nm—1

are satisfied, then we have

(6.3) |2(— Yol< 2 an

i=f T ome=1

The proof of this familiar result can be found in [3]
In the following paragraph we need to improve this as follows. Let I

be a subset of integers {s}. Let y; be defined by

vi=7 for sl
yy =0 for sel.

Further we comstruct of and Lj, analogously as in (6.1) and (6.2). Then
we have under the condition (6.2)

21

(6.3)* . | IZ(“J«) ! <2 HL*
I=0

M=

7. Now we will prove the upper estimate of the sum.
' (p—1).
ren
From (4.2) we have for p > 7

filp) 1L ( 1)"‘( o(P) )
7.1 . = St B L 24 RPN
ik 4p(p) P 1+ P P < 11
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—1 1 : l -1 2
4 I3 -2 b
b P » p I
where the last product converges as & - oo, and hence there is an abgolute
constant ¢, > 1 such thab

1 fl(P)) -6
— < 1— L.
elogé '7n ( 4p(p)] " logé

358

Moreover we have

[16-52)- [1h-

<p< Tepss

(7.2)
< pegé
Now we pub
(7:3) o = (2706)77,

and let p, < Pa<.... < Py De all prime numbers that are larger 7 and
not larger than N*

Let %, be the least integer > ¢ such that
4
I = n (1 i"l(m )>__
o Ky s P(Ps)
If &, > 0, we define k; to be the least integer > 0 such’ that
L2 . (1 . 4:fl (ps) )
By | ¢(ps)
Tn such way we define %, > % > ... >k, (= 0) inductively.

Then following Brun we obtain

-1 < Y p@RE; g — 1)+ 0(Flogh),

. PEN ged -

(7.4)

where © is the set of 1 and all integers ¢ such that
(7.5) [f 1)’

 Here the rest term N°logN is obtained from the inequality
N orp—1)< ) r*(n) < N°log¥.

] pENT n<N®
On the other hand we have

Y @R g, ~1)

q=0 .
= (Mlog¥+3%) ¥ u(@¢(@H(@+F X u@e@ i@+
qsR ge2

+0{ Y max max|R(¥; ¢, ) — (@) {fi( (@)ylogy+ (3% (@)+F(@) )]}

ge VSN (0,0)=1

= (Nlog¥+3N) X+ N5+ 0{5}, sy

Q= PrDryee Doy N >y > > Ty 7 < 0<1i<2u.

b
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Then by the asserfion of the preceding paragraph, considering

47 (ps) " fi(ps) a8 y,, we have from (6.3)
‘u:
2] < 8 ]—1 Lm:
ma=]
where

L

m

- A1 bags)

A -

Namely we obtain from (7.2)

(7.6) 1Z,] < 8¢, 0™ (log N)™L.

Now let us consider the sam Z;. From (4.3) we have

Sﬁ logp

2y = {0 1
. p—

—410g2) %2 > ul@)p(9) " ulg)

asR 'p!q

= O{(log ¥)™) +2 Zy, say,

1
1 L
(+e(19) 1?-5-1)

since 21¢ and the inequality (7.6).
We have

1 logp : 1 ' '
e = Z . p—1 (_1.+9(p)— p+1){2‘4‘— N e e (q)‘l}
TapEN a2
otq .
- ' -1 10g 1o
= Oflog N (log ) ™) ? ( 1te(p)— +1)Z#(q)f1(q)¢(q)‘1-
TEpEN® Qe

wig

Now it is easy to see that the last inner sum can be estimated by the
nnproved form of the nssertion of the preceding paragraph Hence from

(6.3)" 'we have
<8( ))1’113 < (log N)™!
1 ‘it

‘ Z (@ (g)™!

aqeid
By

Therefore we obtain

X5 €1  and hence

Zy €1,
At thiz point we have

(1.7) D rlp—1) <N+ I

NRN
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Now we must estimate the sum X, amd for this sake we must find
the size of gel.

By the construetion of k&, we bave for 1< m < u—1
h Py, J1(s) ) 4

L, = <

(1 4¢(Pkm)) " I ]  p(p) 5’

k1< 85k, —1
and so from (7.1) we have
L,<1l—g

Hence ﬁjom (7.2) we have

IY ( f1 ips) ) < aclog N]YL < adtlog N (1— )m

1<.g<.,km i=1
This gives

(7.8) 90c]n

(Pkﬂpkl . p]u—l)z Q _N = N”a

by the definition of «, (7.3).

Now by the definition of ¢<£, (7.5), we have g < N 1%, Therefore
if we put M = N¥® and 4 = N~V in the fundamental inequality (5.6),
“we obtain, noting that s, = L for ¢ef,

Z, <€ NV (10gN ¥,

This completes the proof of the following fundamental result:
TaeorEM 1. There is an absolute constant ¢, such That
Mrp-1<alN
BN .

8. Now we will prove our main theorem. -
Thanks to Hooley and Linnik we know that

Zw(gﬁ»—l) = ﬁH(l+

DEN
where 6 is an absolute constant > 1/35.
' Hence applying the Cauchy inequality we have

(M) < S rp-1) Yop-1).

nsN pEN

e(p)

T i iog ¥ + 0¥ Gog I,

Therefore from Theorem 1 we obtain our main result:

icm
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THEOREM 2. There are infinitely many prime numbers which are of
the form @*4-y +4-1. And their number up to large N is larger thon
s N (log ¥)~2,
where ¢y 18 an absolute consiani.

9. Remark 1. In the preceding paper [5] we have proved the agsymp-
totic formula for the smm

2 {(n)r (n4-1),

N

where z(n) i§ the number of divisors of n. Hence it may be interesting
to consider the same problem for the sum

2 rA{n)r{n4-1).

ne N

If we can prove the inequality for (g,1) =1, ¢< N?,

7 {(n) < cﬂg"llﬂogl\?

n=l{mod g}

B

where § is an arbitrary posiﬁW number < 1 and ¢, is & constant depend-
ing only on 8, then it is possible to deduce the asymptotic formula by
virtue of the fundamental inequality (5.6).

Urnfortunately we can not prove the above inequality, and so we
can prove only the lower estimation:

Zfrz (myr(n-+1)

n=Y
>6 (1+o(1_))n{1_— % 4 (1+ -;})_ (1__ _9_;_91_’1) } N (log N
» !

The right gide must be the main term of the azymptotic formula.

10. Remark 2. We will state the conjecture (1.3) more precisely.
Tollowing Turdn [6] we comsider the sum

W) = ) bn)

n<N

A(n+1),

where A(n) iz the von Mangoeldt fonction. Then we get at once

) == D oplglogg Y b,
g N+1 . m=-—1l{mods)

naN

Hence we must find a heuristical a,symptotxc forinuls for the last
inner sam B(N, ¢). \ : ‘
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Now let E*(s, y,) be the Dirichlet geries

b/ja

b(m) x(m)n™*,

i

5

which converges absolutely for o >>1. After some easy calculation we
can see that :

(B (s, 4))® =(1—%,2)27)7 (L—za(p)p™™)™"

p=—1(mod4)

L(s, xg) L8y 0%y) -

Hence the regularity of R”(s, g,) in the region o > 1/2 depends on the
existence of the critical zeros of Dirichlet’s I-series. Namely we must
agsume the extended Riemann Hypothesis.

Then the main term of B(¥, g) must be deduced from the integral

0w (@) meR* ' s,

where the contour ¢ starts at s = 1/2-4 (log N)~', encircles s = 1 in the
positive direction and returns to s == 1/2+ (log¥)~* along the real axis.
And after some calc111&t1011 we can conclude that this mtegral iz asympto-
tically equal to

L ILb e T ()

2 p=—1(mod4) P VlOg'N = 1(mad.4)
Pl

where .s;‘ = 2 for 24¢ and 4|g, and = 1 otherwise.
Replacing B(X, ¢) heuristically by the above value we. have

-3 s
1——} —— %
p* ViogN
1
X {— (@) ey g~ logy (1+ —)}
Z H a g P
pe—]{mod 4)

gSN+1
On the other hand ag in [6], Lemma III, we can prove rigorously
the following asymptotie formula:

- Z.ﬂ(q)%‘q_llogq n (H—i)

1
INEF) ~

4]
p=-1(mod4)

gEN+1 p=-m I(mod4) P
Pl .
' 1
=3 (1-— ———) + O ((log N)y™).
pm—lllodr;) (p_ 1)

Hence we may introduce the- following conjecture:

icm
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CONJECTURE J*. There are infinitely many prime numbers which are
of the form x*+y?+-1. And their number up to large N is asymplotically
equal 1o

5T ot )_m (1 ! )1\*(1 Ny
— — ————| N(log?
p(p—1) 8

2
n==1{nould4) P
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ACTA ARITHMETICA
XVI (1970)

On sums of four cubes of polynomials
by

L. J. MorpeLr {Cambridge)

It is well known that all integers » 5 44 (mod 9) ean be expressed
as a sum of four integer cubes, and numerical evidence suggests that
this i8 nlso true for integers = --4 (med 9). A method of trying to prove
this is to find polynomials P, ¢, B, § in » with integer coefficients and
degree < 4, such that '

(1) P QP+ B8 = 9o+ 4.

Schinzel (Y has recently proved the more general result that smch
a representation with polynomials not all eonstant cannot hold for

(2) PP R+ 8 = Le+- M,
where L and M are integer constants and M == 4 (mod 9). Let
P = axt L bttt et - dote

and write (2) 48 say,
(3) Daat+ b2 + e+ do-t-of = 3°La+M, a0,
where here and throughout, summations will refer to the four sets typified
by a, b, ¢, d, e. Suppose a representation is taken where the product of
the leading coefficients of P, Q, R, 8, has its least absolute value. Schinzel’s
proof, which is really -a 3-adic one, is rather complicated gince it requires
the expansion of P in powers of » and so it is not easy to see what underlies
his proof. - :

Te shows that @ ==0 (mod8l), b =0 (mod2T7), ¢ =0 (mod9),
d =: 0 (mod 3). Since obviously > 1, then on replacing » by /3, we
have a representation '

a b 4 e o d g ael
. E e g e e g — — =3 LA
(8 %" - 0‘750-1-‘ m+3m+e) @ - M

with a smaller product for the leading coefficients.

(*) J. London Math. Boc. 43 {1968), pp. 143-145.



