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Proof of Corollary. If f(0) # 0 we set g() = Ax"+ Ba™+ f(x)
and apply Theorem with 4 = B =1 if f(1) # —2, with 4 = — B =
Af f{1) = —2.

The inequality for ig,| follows,

If f(0) = 0 we set g(z) = Aa™+ Ba"™ 4 f(a)+ 1 and apply 'l‘heorem
with 4 =B =1 if f(1) # —3, with 4 = —B = 1 if f(1) =

-If f(x) # 0 we have |f( 50)-4-]\ = [fl, If (@) + 1| = f+1, which unphes
the inequality for |g,. If f(z) = 0, |f] = —co we seb g (2) = a.
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1. Let = be a real number bebtween 0 and 1. A classmal theorem of
Borel asserts that il we put

= 2 & (7)

i=1

“F (e =0 or 1)

Lo

then we have for alnost all »
1 7
2, g (v) ~ T
Rowsd = ’

An analogous result holds, of course, for expansions with respect to an
arbitrary basis, for instance, for decimal expangions.

Now let a he. an irrational number with the regular continued fraetmn
expansion

(1.1) . a={0; @, tby, ...}
and put
: ' (_]_)n
(12) D o= e i e Bna_-An!

" L-n.ll"Bn, i ]")n 1

where 4, /B, are the convergents of ¢ and &, = {a,; a1, ...}.
It is well known [3] that each = with D, < » < 1— D, can be repre-
sented in the form

0y

(1.3) Z T2 (1) Dy

&

“where Uy (7) < @y, 0 < Oy (7) € @py 800 Oy (1) = @y = Cie(3) = 0, We

have nnigqueness if in addition we do not allow C; yo = a,c 12 TOT gome k.

and 4 =1,2, ...
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For some purposes of the metrical theory of inhomogeneous dio-
phantine approximation it would be of interest to know something abous
the behavior of the ¢, (z)'s for almost all +’s, where « i a given irrational
number. In the present paper we prove such a theorem, which gives as
a special case that if « is & quadratic irrationality, then for almoest all ¢
the asymptotic density for each digit in (1.3) exists and is independent;
of =. .

The main result of the present paper iy the following

TueorEM L1.1. We have for almost all ©:

K

n
1= Y By Dy— Dyl = o(n),
Fre=0 k=0

=
(1.4) L . "
3= Y BiDd— D Byl =o(n)  (r>0).

h=0 . k=t fo=0
Cp1=r Cpt1>T B
Statement (1.4) hag particular inferest when the partial quotients
of a repeat periodically {i.e. « is a quadratic irrationality). We obtain
TEEOREM 1.2. Let o be a quadratic irrationality. Then for almost all 1

) 1 n
(1.5) N 2 1 =T(a),
- n—eo T Pry
O’k+1=r

where the limit k,(a) depends only on o and r, but not on 7. The value of
k() cam be delermined.

Ag a further problem we mention the convergence of -

n
P N 1—nel e V<
[l 2 1—nejiney <]
- Opgyr
to
’ @<

R 3
- 8—”"‘2 @
Vor f y

and the law of iterated logarithm. We intend to return o these in a forth-
coming paper. :
The following sections contain the ;ﬂoofs of Theorem 1.1 and 1.2.

2. Let « be an irrational number between 0 and 1 with regular
continued fraction expansion « = {0;a,as,...}; 4, B,, D,, and
(n=0,1,2,...} defined by (1.2). Denote by P(4) the measure of the set
of numbers ¢ for which the property 4 holds.
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Levama 2.1,
Blek“’Dkﬂl if = 0,
{2.1) 1‘)(01;-1--1(7):"‘") =1 By jDy] i <y <ag,,
B.’c-—l I-Dk| Qf o= Bpyq- .
Proof. Hach = can be written in the form {1.3). The set of s with
(2.2) T R UI'D(b_}"Gt&-Dlmi_'"+Oﬁ1+1'pk+‘“3

where (3, ..., are given iy the set of v’ between

{2.3) CrDyt oo O Db (85— 1) Dy + @y Dy 5+
and _
(2.4) UiDgeboo o Copa Dyt 0y Dy g 5 Dy o e

if ¢,,; = 1. This is an interval of length

(275) ‘ . ED:.e-H“‘(-DI;_DJ:-i-J)I = | Dyl

If Cppq = 0, then the length of the corresponding interval is equal to
(2.6) D= Dy

since then -in (2.3) the term {a; ,—1)D;,, is replaced by ' ) P

To each set (', ..., there corresponds such an interval and
obviously different intervals are disjoint.

If we want to fix only C;,,, we have to let (', ..., ¢, run over all
possibilities. There are B, possibilities if ¢, , < @, and B,_, otherwise
since (', == @, = C) == (. Thiz proves our Lemma 2.1.

Using the same reasoning we obtain a similar formula for the
measure P (O, ==, O, =7} whieh shows that we have
Lomma 2.2, There 4y oo, 0 << g < 1, such that

Py =y Gy = 1)

L 140 (g,

(2.7) " r i
Py o ) DAy = my)

3. Now we are in a position to complete our proofs.
Proof of Theorem 1.1 Let ¢ be a random variable uniformly
distributed in (D, L— Dy). Define the random varviable &, &,... by

1ot Geale) =1,

3'1 X o | ') ==,
(3.1) €ppr == Epga () 0 otherwise;
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put
Lo = Lalr) = D) &urrs
R=0

[
Z-Bfa

Dy— Dyl i r=0,
=0
MiEy=4{ o - n
2 BUD+ Y Bl i >0,
F=1 k=0
Capr ap=r

Equation (2.7), (Jebyéev’s‘ inequality and & divect application of Borel-
Cantelli’s lemima give that almost everywhere in 7

(3.2) L M (L2) = o ().
An even stronger statement holds almost everywhers, namely
(3.3) Ly MA(L,) == o(n).

~ This follows by repeating the argument of Khintehine [1], pp. 89-95,
which proves Theorem 1.1. '

Proof of Theorem 1.2. If « is a quadratic irrationality, then the
Sequence a;, 4., ... is periodic. Suppose that

By 41 = By 13 ", m' = My 5
which is equivalent fo
(3-4) : : Ckm+l = ":km‘+17 W, m' = Wy«
Bince, as well known (ses Perron [2], p. 27)

B
n-1
5 {07 Qs Cpoxy raey ’1’1}
n .

and, therefore, the limits

N -
lim 22l oy om0, .., B—1
M0 Ban, 1
exist, the limits
limi By, . Dinsr— Dzl s

=03

lim Byt | Dyl
M—eo

icm

and

On a generalisalion of o theorem of Borel

liln Bk-m,i!—l 1-ka + l|

M=

397

exigt for 1 = 0,1, ..., k—1. By Theorem 1.1 we obtain Theorem 1.2.
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L. Introduction. In part I of this paper [4] there appeared various
numbers, which, it was asserted, could be effectively determined, but
which in fact were not explicitly calenlated. The purpose of the present
paper is to derive appropriate values for these numbers, and thereby to
obtain expliciti statements of the principal results of [4]. As in (4], f(z, )
will signify a binary form with integer coefficients and degree = > 3,
irreducible over the rationals, and m will gignity a non-zero integer. By
Pry .-y Py we ghall denote a set of = 0 prime numbers, and vwe shall -
usem to denote the largest integer, comprised solely of powers of p,, ..., p,,
which divides m. We denote by § any number not less than the maximum
of the absolute values of the coefficients of f(z, ¥), and we suppose that
& = 2. We write P for the maximum of p,, ..., p,; if no primes p,, ..., 9,
are specified, we take J2 = 2. Finally, we signify by » any number satis-
fying 2 > n(s-+-1)-+1. Then we shall establish the following explicit
form of Theoren. 1 of [4].

TusorREM 1. Al solutions of the equation f(x,y) = m in inlegers
&, y, with (2,4, py ... po) = 1, satisfy '

max(lxl, |yl < exp {3"21326”'6” ’{gi"s"—{-(log(}mUm))”},
where v = 645 (34 1) [(x—n(s+1)—1).

It will be observed that when ¢ = 0, that is when no primes p,, ..., p;
are specified, Theorem 1 reduces to a slightly weaker form of the main

result; of Baker’s paper [2]. On the other hand, if m is comprised solely

of powers of p,, ..., p, 50 that |m|/m =1, then Theorem 1 implies thab
all solutions of the equation f(x, ¥) == m in integers @, y with (=, ¥, p; ... 7;)
= 1, satisty

1y max(jw], ly]) < exp{2’ P .

The interest of this result lies in the fact that the number on the right
does not depend on the exponents to which p,, ..., p, divide m. In partic-



