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1. Introduction. In 1987 Davenport and Schinzel ([2]) related & curious
problem of Diophantine approximation to a conjecture of B, M. Robingon
([5]) concerning swms of three roots of unity. If |j§|| denotes the distance
from # to the nearest integer their approximation problem was as follows.
Let oy, ..., a;, ¢ be given integers with '

(1) 0y g, q) =1.
Then can we find an integer » with (n,¢) = 1 for which

max {jna;/q} < 3,

1<k
where 6 is a small positive number? (The particular case & = 2 is velevant
to Robinson’s conjecture.)

. In discussing this question their method was partly analytieal and
the step from %k = 2 Ho0 general positive integral k involved no special
complications (see their elegant Theorem 3, [27]). However one of the draw-
backs of their approach was that it became effective only for compara-
tively large g, for example in the case & = 2 with & ~ 1/7 they required
g > 4 %1020 which left a finite (but large) nwmber of cases in Robinson’s
conjecture undeecided. '

Tn 1968 ([3]) T was able o settle Robinson’s conjecture by considering
the same question of Diophantine approximation (for ¥ =2 only) but
thix tfime nsing techniques from the Geometry of Numbers (see also [4]).
Tt was natural to ask if these techniques could be generalized to produce
a result, similar to that of Davenport and Schinzel, for general k. In fact
the step from % = 2 to general k& was not straight-forward and involved
proving several other related results beforehand. These results, on what
T have called eydlie overlattices, form the substance of this paper. In fact
the proof of a somewhat improved version of the Davenport—Schinzel
theorem will be postponed for a second paper concerned with applica-
tions of the ayclic overlatitice theory. '
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I would like to record here my gratitude to the late Professor Daven-
port who having given mueh helpiul advice during the early stages of
this work sadly never saw it§ completion. I would algo like o thank
Professor Cassels, to whom I am greatly indebted, for many stimulating
eonversations and mueh encouragement.

2, Some basic notions. Let M be any & dimensional lattice of deter-
minant ¢(M) = 1. (The assumpiion of unit determinant is merely fo
avoid a faetor d(M) continually occuring in subsequent formulae.) Suppose
further that M < A, where A is another & dimensional lattice such that
A]M is a finite cyclic group. In other words A is obtained from M by
taking some point @¢M, having the property that ge<M for some integer
q (naturally we take ¢ to be the least such positive integer), and then
eonsidering all points m-ta where e eM and ¢ iz any integer. In this
situation we say that A is a eyclic overlattice of M and refer to such points
@ ag generating points of A over M.

For any two lattices M, A, where M — A, the index of M in A, written
[A: M], is defined as the ratio d(M)/d(A). Ttis of course a positive integer.
There is another characterisation of [A: M] which is often useful. We
say that two vectors ¢, d of A are in the same class with respect to M if
¢—d i in M. Then [A: M] iz precisely the nmmber of digtinet classes
in A with respect to M (see for example Cassels [1], I, Lemuma 1).

It A is a coyclie overlattice of M the above observation has & useful
- implication. Put ‘

¢ =my-+ta, d=m-+ta,
where m;eM, ¢; is an integer (i =1, 2) and @ is a generating point of
A over M. Then ¢—d is in M if and only if ¢, = 4, (mod ¢) where g iz defined
as before. Consequently the number of distinet clagses in A with respect
to M is q_r, go that

: g = [A:M] = d(M)/d(A}
whenee '

L : aA) =1/q.

Let & be a distance function defined in the gpace of M and A and

associated with a bounded CONVeX body. Then F(x)£0if = #0 and

- F(e+y) < F(o)+Ply)

(see for example Cagsels [17], IV, § 2-3). Let M*, A* and F* be the duals
of M, A and ¥ respeetwely, 8o, that

(2) | A e M, [M*: A*] = ¢,
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and F* is convex since F is. In much of what follows we make the
following eondition :

Coxpition C. F*(&*) = 1 for all a*eM*, x* # 0.

For our purposes t]m is a necessary but quite reasonable restriction
on F.

Let D >1 be any given real number and consider the set Fp of
points x™eA* with F*(m )<< D. This set is always non-empty since
0ey and it spans a (possibly trivial) subspace W3, say, of the dual
space. Put

(3) A =WEAA, ML = WM
Then A7, and M}, are lattices and
@ o = M5,

Consider the following elegant result which is due fo Professor
J. W. 8. Cassels and appears here for the first tirne with his kind per-
mission.

THEOREM 1 (Gassels). Suppose that Ay = M%. Then
(5) Fla) >1/D

for every ach which gemerates A over M.

Proof. We denote the canonical pairing by (, ). Let @ generate
A over M and let x*e%;,. Then (x¥, a)cZ, where Z denotes the set of
mtetrere, from the definition of a dnal lattice.

If (@) 50, we have

(w,a)| =1
and so (see for example Cassels [1], IV, Theorem III, Corollary 1)
(%) Fla)>1,
that is
. Fla)= 1/F*(2*) > 1/D
since a* ey,
Hence the conclusion of the theorem holds unless

(2%, a@) =0 (all &*<Fp).
But then

(x*,a) =0 (all ¥ W5)
which implies ' |

(a1l " < M)
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Now any xeA is of the form @ = m--t¢ where wm <M and teZ. So for
" any <M} we have | *
(%, @) = (2%, m+1a) = (&, m)+i(x", a) = (a7, m)

i d «* M} which i a subset (but
by (6). Now (&, m)cZ since meM and p Which hset
11§t(rzenessarﬂy ;L sph-lattice) of M*. Thus (6) implies that for any

3 * )
Hi EMD

(m*, CU)EZ (_a]_]. ?BEA).

Hence &% <A™, But &« Wh so that & must be a point of Af,.'.’]?herefore
o A by (4) A%, = M% which is confrary to hypothesis.
M3 < Ap and so by (4) Ap p whi . -
Our first objective is to show that this theorem has a good CONVErse
(cf. § 4, Theorem 2), originally conjectured in a slightly wealker form by
. ‘ 1
Professor (assels.

3. Two preliminary lemmas. . . .
Tmawa 1. Tet V be o k dimensional vector space with dual V° and let
A, M be any lattices in V such that

Mc A and [A:M]<< oo,

Tet W be a b—r dimensional subspace of V such that W nA contains

k1 linearly independent points (i.e., is a laftice). Let Ny M* be the dual

Iattices amd define W, am v dimensional subspace of V¥, by

(7) . W = {beV"|(2, w) =0 Vw;W},.

then . _ : o

8) [WaAWAOMIWAM:WAAT=[AM] (= [M:A]).
Proof. Let ¢ be the projection V= V/W = ¢(V) onto the quotient

space. The kernel of ¢ is just W and so

@ [AMI=[W AW o MI[e(A): p(M)].

But (V) = V/W is r dimensional and the duality between ¥ and V*

- o oL
clearly induces a duality Dbetween @(V) and W, for qJ.(V_)*-ﬁ (V/W?
is the set of all funetionals on ¥ which vanish over W and this is isormorphic

to W in the obvious way. Clearly (A) is the dual lattice to W M A" and:

similarly for M. Hence . -
[p(A): p(M)] = (W A M*: W A%,

and this fogether with (9) gives (8).
 Leb Ay, Ay, ..., 4 be the successive minima of A with respect to F.
Then - o :

(10y B P A
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and by a classical theorem of Minkowski
(11) 2PNV < Ay e 2 Vi << 2EA(A)

where Vy, is the volume of the bounded convex set {z| F(x)< 1.
If gy, pigy ooy are the successive minima of A* with respect to the

distance function F* dual to F then by a well known theorem of Mahler
we have

(12) 1< Athn s <K (L<F<R).
Further we may choose a basis Ty ®ayoony i, 0of A 0 that, if @},
@, ..., ® is the basis of A* defined by
: 1 i §=j
(13) (], ) = ’

0 otherwise,
the following three conditions are satistied. Firstly
B (agy) = py,

(14) . a .
25 (a6) < (B4+1—fptpy g

(k—1>j>1).
SBecondly if a7, a},. ., e} is a fixed set of minimal points for A* so that

(15) T = QL<i<Hh,

then a, Ly yyeeey Tho, (L<r<k) form a Dbasis for the subspace
spanned by the first r of the previously chosen minima)l points (note
that in general this subspace really does depend on the ] since the minimal
poinfs are not pecessarily wnique). Finally

(16) Fla) F (@) < (D* (1) (1<j<h).

(For this regult see Cassels [1], VIII, Theorem VII, Corollary, where
we have interchanged the lattice and its dual.)
Observe that this choice of basis of A has the consequence that

an . Pla) < (B0 (1<) <R,

For it follows from the definition of u; that F*_(a:?); #rr1-5 50 that
(16) implies _
Fiay) < (B (51 ki
whenee (17 )' on uging the left-hand inequality in (12).
If a is a fixed generating point of A over M and 2 is any point of
A we write ag usual -
(18) % = m-hia

Acta Arithmetiea XVILS T 6
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where meM and teZ. Let m,, My, ..., 1y be any basis for M. The basis
' x; for A may be written as
I '
ml = Zﬂlimi—i-tla,
i=]

(19) e

where the 4y and the % are all integers. The integers 7; will assume consi-
derable importance in what follows.
Next define infegers =1, sy ».y T DY
7y = (t, @),

. Ty = (b1 bay )y
ey,

T = (f1yfay ooy By @), .
‘We observe that 7, = 1. For every point of A iy expressible in the form
X o= Uy Byt ... Uy X,

for some integers ., ..., u,. If 2 i3 so expressed, then the value of ¢ which
corresponds to 2 in (18) is given by

t. = u1t1+ .s ."I— ‘uktk .

Bince ¢ can take all integral values, we must have (i, ...,%,) = 1 and
80 a fortiori, 7, =1. ' .

Let W, (1 <4< k—1) be the subspace of ¥ (the space of A and M)
spanned by @y, ®,, ..., #,_,. Similarly let A; == W, " A and M, = W, 0 M,
‘be the corresponding k—i dimensional lattices. Let :

W = {ipeV") (o, w) =0 VweWy

hence by (13) T, is spanned by @, X i,y gy I Ay = W,n A"
and M; = W;n M" we have the following corollary fo Lemma 1.
- COROLLARY 1., For 1< i< k—1

(21) _ ['C“«;Z i\ﬂ = T4

where the T, _; are defined by (20).
Proof. Clearly, from (19),

.. [Wen At W,n M] = q/(t., "'tt}'ﬂ—-—it-_q) = g[Tp_s-

icm
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Since [A: M] =g we deduce from Lemmsa 1 that

[W, 0 M*: W, 0 A¥] = [M: A = 7,
a8 required,
‘We also have :
COROTLARY 2. If dim W;, =r (0 < r < h—1) () and A} = M2, then

(22) Ty =Tp g == eee =Tp_p = L,

Pioof. ¥ dim W5 — 0 we have only to show that =, =1 which
we have already proved is always the case. Otherwise there are exactly
r linearly independent points in £7,. This means that

fp << D‘-<\:UH-1

and so Wp is the space spanned by the snccessive minimal points
@ ,...,a;. By the second econdition on our choice of hases for A and
A" this space is the space spanned by af, ..., @ +1-r Which is precisely
W,. Hence A5 = A, and M5, — M, so that

Tpmr = [Mer A = [M;: A;i] =1

by (21) with 4 =7 and hypothesis. The conclusion is now immediate
since by (20) v, |Ti_gf ... |7y = 1. _
LemMa 2. If F* satisfies the condition C ihen

(23) Tems S OR e - gy (1EE—1),

~ where c(k) denoies o positive constant depending only on F.

Proof. The points of l‘“'LL are of the form
| T SUNET" I |
where the (a;, -y Og) TUN OVer a lattice of determinant d = r,;“j,; by (21).
Consider the convex symmetric body in a-space, defined by
(24) o gl < 1@ )

I this body has volume #» greater than 2'd then, by Minkowski’s “first”
theorem, it must contain a point (ay, ..., a;) of the lattice other than the
origin. If

(I=<j<i).

% & A+
@ =a1mk+---+aimk+1—i
then as F* is convex we have

F*(.’.c*) = IallF*(mi)—F---—%lailF* (‘32-1-1—@'),

(*) We agree to adopt the convention that » = 0 if #p = {0} = WB. .
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whence by (24) and (14) F*(2*) < 1 for "<M", & # 0 which is contrary

to the condifion C.

Hence
¢
v = [[1/6iu) <2'a
§=1
go thatb
(2 () g€ 0 = Ty
whence

T S O(0) fly oo s GU“)Hl Ry

which eoncludes the proof of the lemma.

We next introduce a useful function. For any positive integer » define
g(n} to be the least integer g such that amongst any g consecutive integers,
there is at least one that is coprime to . This funetion was studied in
some detail by Jacobsthal and references to his work, which is not strictly
televant to this paper, can be found in [3] or [4]. Clearly ¢(n) depends
only on the square-free part of #, if m|n then g(m) < ¢g(n) and

g(l) =1, g¢(p) =2 for any prime p.
It was proved in Lemma 6 of [3] that
(25) g(n) < 2™ g (n)

where »(n) denotes the number of distinet prime factors of n. Since
2 = 0),  wipin) = O(n)

(25) clearly implies that

(26) g(m) < cle)n®

for any £ > 0.

4. The principal results. We are now in a position to prove

TaE0REM. 2. Suppose that F* satisfies condition C, Ay =M} and.
that dim W3 =7, Let [A:M] = ¢ > 1. Then 0<r< k—1 and given any
&> 0 there 18 a point e which genemtas A over M- and smsfws one of
the following inequaliiies

2n Flx) <ok, o) D7 if 0<r<k—3 (k2 3),
(28). F(®) <ok, )¢ min{2(Veq) ", KD} -a(k) D,

where Vp is. the volume of the body A = {m|F{ax < 1, if r =6—2
(k=2), or

(29) Flx)<
ifr =k—1 (k>1)

mm{2 (VF q)‘”" BDTY
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Here (k) (or ¢(k, ) represents a positive constant, depending only
on % {or k and &), which is not neeessarily the same on each appearance.

We. note in passing that condition C on F* implies that Vz' < ¢(k).
For by Minkowski’s “first” theorem condition C implies Vp. < 2*d(M")
where V. denotes the volume of the body ™ = {a"| F*(a") < 1} dual

o . Now d(M*) =d(M) =1, hence Vi' < (k) since

e(h) < Vi Vs < 6(K)

(see for example Cassels [1], IV, Theorem VI). A consequence of this
faet is that (29) implies an upper bound for F(x) of the form o(k)q ",
and if we choose ¢ =1/{k--1) (sav then (28) gives a bound of the :Eorm
o{k) D1
~ Proof. We first deal with the dimension of Wy.If v = k then W}
is the 'WhOle dual space and so by (3) and the hypothesis of the theorem
we have A® = A}, = M}, =M", an obvious eontradlctlon sinee [A: M]
=[M*:A*] =¢> 1. Hence 0<r<k—1

We shall congtruct a pomt ®of A Whmh generates A over M and
satisfies one of the inequalities {27), (28) or (29) according to the value
of 7

If x is any point of A expressed in the usual form

x = m-itia (mecM,ted)

then recalling the discussion in § 2 concerning the classes in A with respect
to M we make the following observation. The point @ will diself be a gen-
erating point of A over M if and only if (1, q) = 1.

Consider the point

(30} & = al ®yt U Byt Xy

which has

(31) U=yl oot U pafpp 1t pe
By Lemma 1 Corollary 2

(32) Ty = (biyev iy by @) = 1.

We shall chaose the integers #, _,_y, ..., %; (in that order) so that (i, g) = 1.
Divide the primes p which divide ¢ into k—r—1 disjoint sets defined
as follows. Let -

= {p| plg, pti}

and for 2 <i<k—r—1

={p| pla, Dites e Dy P
Pirstly choose y,_,—;. 1f p;eS8;_,_; and p,|#,_, we require thab

Wy_py 2 0 (100l y).
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If poely..,._, and pyTi,_, we require that
“k—-r—lt}curhl_}"tk—r =0 (1110(1_?72)-

By the Chinese Remnainder Theorem and the definition of Jacobsihal’s
function we can find an integer u;_, , to satisfy these conditiogn such

that .
[t —pa] < %9‘(172’1”192):

whers the prodﬁe’ﬁs are taken over all primes with the appropriate prop-
erties. It follows from (26) that for any given ¢ >0

it < o[ [ 2: [ [ ) <

where the last inequality follows from (20) and the definition of 8,_,_,.
In general having chosen u;,, we chooge u; as follows. If P1 e, and
Pol(Uepti+ o gyl p - 8,) We Tequire that

#, 2 0 (mod p,).

() Thwpg)

It PBES and Pz‘f( +1t1.+1+ +%k—r—lt]s—r-1+tk~1') we requlre t]l&t
u’ii'i."l' (ui-}-l 12-{-1"]'" s + ufa—r—ltlc—rml_[f tIc-—r) gé 0 (mod PZ) -

- As before we can choose u; to satisfy these conditions and also

w| < o(e) ([ [ ][ o) < 0lehriy

provided ¢ 2. For i =1 we follow the game 'procedure except that
then the primes to be considered are in 8, and so the final bound on, », is

el < ote) ([ [ 22 ] [ a)" < o(e)q

_T]a_is choice procedure is to be used for 0 <» < k—2 and for these
choices of the u; the # given by (31) has (¢,q) = 1. If » = k—1 we have

from (32) vy =(t;,¢) =1 and so in this case we simply take u, = 1
and ® = &,

From (30) and the com'exmy of F we have
(33) P(m) S [ F(@) oo g | F (R )+ T ).
From (10) and the right-hand inequality in (11) we bave
_ <2{VFanj*
which by (1) gives
(34) ML 2(Vpg) ™t
Also because dim W} —r we have “

=D for Jzril (0<r<k—1).

icm
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Hence by the right-hand inequality in (12)

(35) 2 <RIDT (1< i< her).

Applying (17), (34) and {(35) with i =1 to (33) and using the Bounds
for the |u;] (1 <i<<k—r—1) we have in the case 0 < r<< kb2

(36) F(x) ' ‘

< o(k, o) (¢ min {2 (Vo) V51 D74 oi 4+ TR S S () P

To estimate the terms zi4;.; we write

Thin < (GU" Hifly ... /“k—i)eﬂ'iﬂ -
by (23). Thus
o(ky &A1 | (Mphy.. 1 v i)

by the right-hand mequaﬂlty in (12). Now since A, 224, = ... = Ay
we have

TALI

SJ'H-I GUG ll_(k i)e

for 1< i< b—r—2. Hence by (33) with 2 <1
remark that V' < e(k) made earlier we have

Flx) < elk, D7 (e
E—3. Iy = %—2 we have
P() < o(h, )gmin{2(Veg) ', b1D 4 (B D
Finally if » = k—1 so that & =®, _

P(2) < o(k) Ay < o{k)min {2 (Vpq)™ %, k1 D7}

< k—r, (36) and the

= (k—1)eyy)
ifogr<

which coneludes the proof of the theorem.
As a final exercise in cyclic overlattices we shall prove

THEOREM 3. Suppose thai F* satisfies condition O, Ap % My and
that dim W% =r. Then 1<r<k and thereis a point 2" <A}, which is
primitive in A* but not primitive in M* such that

(37) F*"y <o) D",

Furthermore if IM*: A" = g then L < r < k—1 provided q > ¢(k) D?‘.
Proof. A} is spanned as a vector space by the vectors of &5, and
so has a basis b}, ..., by with

(38) ' P <eB)D (A<j<r).

Let @ be the index of A} in M},. Then the points of M} are of the
form

albf—}j...—l—arb:
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where (a;, ..., &) runs through a lattice of determinant @~'. Hence by
Minkowski’s “first” theorem we can find a point (e, ..., &) of this lattice,
other than the origin, for which

(39) ] < 2@
it

(L<j<n).

w' = abi+...4aby
we have
P (") < | FF D))+ -l | B (D)) < e(B) DGV

by (38) and (39). But F*(w") =1 by condition C, and so
(40) Q< e(B)D.

We may suppose w® is primitive in M} and furthermore 2" ¢Aj,
since the b; span Ap and the a; are clearly not all integers. Let s be the
least positive integer such that sweA%. Then 5. Put 2* = see*. Then

Fr(e*) = sF" (w*) < QF (w*) < ¢(K) Q" D < o(k) D'

ag required. :
To obtain the lasht assertion of the enunciation we observe that if
r =k then Ap = A and M7 =M go that

Q= [Mp: Ap) = M A'] =g
In which case we have a contradiction to (40) if ¢ > (%) D"
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