Metrizable subsets of Moore spaces by C. W. Proctor* (Houston) In [10], Younglove proved that if a space satisfies Axioms 0 and 1 of [8], then it contains a dense, metrizable, inner limiting subset. Fitzpatrick [4] has shown that a normal Moore space which is not a counterexample of Type D [2] has a dense, metrizable subset. Sufficient conditions are given in this paper for a Moore space to have a dense, metrizable subset. Fitzpatrick [3] pointed out that Mary Ellen Estill Rudin's example [9] of a non-separable Moore space in which every collection of mutually exclusive domains is countable, has no dense, metrizable subset. Theorems 1 and 2 show how close Moore spaces come to having dense, metrizable subsets. A Moore space is one which satisfies Axiom 0 and the first three parts of Axiom 1 of [8]. Suppose S is a Moore space with development G_1, G_2, G_3, \dots The development is said to satisfy Axiom C at a point P of S if and only if for each region R containing P there is a positive integer n_0 such that if R_1 and R_2 are interesecting regions of G_{n_0} containing Pin their sum, then $R_1 \cup R_2$ is a subset of R. A subset M of S is said to be m-dense in S with respect to the development $G_1, G_2, G_3, ...$ if and only if m is a positive integer with the property that for each point P in S and each positive integer n there are regions $R_1, R_2, ..., R_m$ in G_n such that P is contained in R_1 , R_i intersects R_{i+1} for $1 \leqslant i \leqslant m-1$ whenever m > 1, and R_m intersects M. A collection E of subsets of S is said to be a discrete collection if and only if the closures of elements of E are mutually exclusive and the closure of the sum is the sum of the closures of any subcollection of elements of E. The space S is collectionwise normal with respect to a discrete collection E of subsets of S if and only if there is a collection Gof mutually exclusive domains covering E^* such that each element of Gintersects only one element of E. The statement that a subset M of Scan be approximated by a class ξ of subsets of S means that for each open covering G of M there is a subset N of G^* belonging to ξ such that for each point in M there is an element in G containing it and a point of N. A subset K of the space S is said to be screenable in S if and only ^{*} Supported by National Science Foundation Grant GZ 614. if for each collection H of domains of S covering K there are countably many collections H_1, H_2, H_3, \dots of mutually exclusive domains of the space S such that their sum is a refinement of H covering K. LEMMA 1. If S is a topological space and G is an open covering of S, there is a discrete subcollection H of G such that for each element R of G the collection G contains an element which intersects both R and H^* . Proof. Let Ψ denote the family of subcollections of G which contains the collection G if and only if no element of G intersects two elements of G. Define a partial order \leq on Ψ such that $G' \leq G''$ if and only if G' and G'' are elements of Ψ and G' is a subcollection of G''. Suppose Ψ' is a subfamily of Ψ such that any two elements from Ψ' compare. The subcollection $(\Psi')^*$ of G is an element of Ψ such that $G \leq (\Psi')^*$ for each G in Ψ' . Using Zorn's Lemma, Ψ contains an element H such that $H \leq G$ for no G in Ψ except for G = H. The subcollection H of G is the desired collection. THEOREM 1. If S is a Moore space, then for each development G_1, G_2, G_3, \ldots for the space there is a metrizable, inner limiting set M which is 3-dense in S with respect to the development. Moreover, S has a development which satisfies Axiom C at each point of M. Proof. Let H_1 denote a discrete subcollection of G_1 such that for each region R of G_1 there is an element of G_1 which intersects both R and H_1^* . Let P_1 denote a function from H_1 into S such that $P_1(R_1)$ is a point of R_1 for each R_1 in H_1 . For each R_1 in H_1 , define G_{2,R_1} to be the collection which consists of all the regions of G_2 whose closures lie in R_1 . Let H_{2,R_1} denote a discrete subcollection of G_{2,R_1} such that $P_1(R_1)$ is contained in an element of H_{2,R_1} and each element of G_{2,R_1} has an element of G_{2,R_1} that intersects it and H_{2,R_1}^* . Defining $G_{2,S-\overline{H_1^*}}$ to denote the regions of G_2 whose closures are subsets of $S-H_1^*$, $G_{2,S-\overline{H_1^*}}$ has a subcollection $H_{2,S-\overline{H_1^*}}$ such that each region of $G_{2,S-\overline{H_1^*}}$ has an element of $G_{2,S-\overline{H_1^*}}$ intersecting it and $H_{2,S-\overline{H_1^*}}^*$. The subcollection $H_2 = \bigcup_{R_1 \in H_1} H_{2,R_1} \cup H_{2,S-\overline{H_1^*}}$ of G_2 is discrete. Since each region intersects an element of $H_1 \cup \{S - \overline{H_1^n}\}$, each region has an element in G_2 intersecting it and H_2^* . Define a function P_2 from H_2 into S such that $P_2(R_2)$ is a point of R_2 for each R_2 in H_2 and $P_1(H_1)$ is a subset of $P_2(H_2)$. Two sequences are being constructed, H_1, H_2, H_3, \ldots and P_1, P_2, P_3, \ldots , such that H_1, H_2, P_1 , and P_2 are as defined above and (1) for each region R the collection G_n contains an element which intersects both R and H_n^* , (2) if R_n and R_i are elements of H_n and H_i respectively such that \overline{R}_n intersects \overline{R}_i and i < n, then \overline{R}_n is a subset of R_i , and (3) P_n is a function from H_n into S such that $P_n(R_n)$ is a point of R_n for each R_n in H_n and $P_{n-1}(H_{n-1})$ is a subset of $P_n(H_n)$ for each positive integer n > 1. Define M to be the inner limiting set $\bigcap_{i \ge 1}^{\infty} (\bigcup_{n \ge i}^{\infty} H_n^*)$. Notice that $\bigcup_n P_n(H_n)$ is a subset of M; thus, M is 3-dense in S with respect to the development $G_1, G_2, G_3, ...$ The sequence of discrete collections $H_1, H_2, H_3, ...$ forms a base at each point of M, so M is perfectly screenable. Bing has proven in [1] that perfectly screenable Moore spaces are metrizable; thus, M is metrizable. We now show that S a development which satisfies Axiom C at each point of M. Let G_1, G_2, G_3, \dots denote a sequence of collections of regions such that (1) G'_1 is a subcollection of G_1 , (2) G'_{n+1} is a subcollection of $G'_n \cap G_{n+1}$, (3) R is a region in G_1 not in G'_1 if and only if R intersects $H_1^* \cap H_2^*$ and is not a subset of an element of H_1 , and (4) R is a region in $G'_n \cap G_{n+1}$ not in G'_{n+1} if and only if R intersects $H_n^* \cap H_{n+1}^*$ and is not a subset of an element of H_n . Since $H_n^* \cap H_{n+1}^*$ is a closed subset of H_n^* , G'_n covers S for each positive integer n. Since G'_{n+1} is a subcollection of both G_{n+1} and G'_n , S has G'_1 , G'_2 , G'_3 , ... as a development. Suppose P is a point of M and D is a domain containing P. There is an integer m_0 such that each region in G_{m_0} which contains P lies in D. Pick $n_0 \ge m_0$ such that P is in $H_{n_0}^*$. Choose elements $R_{n_0,P}$ of H_{n_0} and $R_{n_0+1,P}$ of H_{n_0+1} such that they each contain P. Notice that $\bar{R}_{n_0+1,P}$ is a subset of $R_{n_0,P}$. There is an integer $k > n_0$ such that each region in G_k which contains P has its closure lying in $R_{n_0+1,P}$. Now if R' and R" are intersecting regions in G'_k which have P in their sum, then either R' or R'', say R', is a subset of $R_{n_0+1,P}$. The region R'' intersects $R_{n_0+1,P}$; thus, R'' intersects $H_{n_0}^* \cap H_{n_0+1}^*$ which shows that R'' is a subset of an element of H_{n_0} . Since R'' intersects $R_{n_0,P}$, R'' must be a subset of $R_{n_0,P}$; thus, $R' \cup R''$ is a subset of D which proves that G'_1, G'_2, G'_3, \dots satisfies Axiom C at each point of M. THEOREM 2. If S is a Moore space, then for each development G_1, G_2, G_3, \ldots for the space there is a metrizable, inner limiting subset M which is 2-dense in S with respect to the development. Moreover, S has a development which satisfies Axiom C at each point of M if S is normal. Proof. Let H_1 denote a maximal collection of mutually exclusive regions from G_1 . Define P_1 to be a function from H_1 into S such that $P_1(R_1)$ is a point of R_1 for each R_1 in H_1 . For each R_1 in H_1 , let G_{2,R_1} denote the subcollection of G_2 which contains all the regions which are subsets of R_1 . Let H_{2,R_1} denote a maximal collection of mutually exclusive regions from G_{2,R_1} such that $P_1(R_1)$ is a point of some element of H_{2,R_1} . Now $H_2 = \bigcup_{R_1 \in H_1} H_{2,R_1}$ is a maximal collection of mutually exclusive regions from G_2 . Define P_2 to be a function from H_2 into S such that $P_2(R_2)$ is a point of R_2 for each R_2 in H_2 and $P_1(H_1)$ is a subset of $P_2(H_2)$. In general, G_{n+1,R_n} denotes the subcollection of G_{n+1} which contains all of the regions of G_{n+1} which are subsets of R_n for each R_n in H_n . The collection H_{n+1,R_n} is a maximal collection of mutually exclusive regions from G_{n+1,R_n} so that $P_n(R_n)$ is a point of some element of H_{n+1,R_n} . The collection H_{n+1,R_n} 88 is defined to be the maximal subcollection $\bigcup_{R_n \in H_n} H_{n+1,R_n}$ of mutually exclusive regions of G_{n+1} . The function P_{n+1} is defined from H_{n+1} into S such that $P_{n+1}(R_{n+1})$ is a point of R_{n+1} for each R_{n+1} in H_{n+1} and $P_n(H_n)$ is a subset of $P_{n+1}(H_{n+1})$. Letting $M = \bigcap_{n} H_{n}^{*}$, M contains $\bigcup_{n} P_{n}(H_{n})$ as a subset. Since $\bigcup P_n(H_n)$ is 2-dense in S with respect to the development, the set M is 2-dense in S with respect to the development G_1, G_2, G_3, \dots Notice that $\bigcup H_n$ forms a base at each point of M such that if P is a point of M and P is a limit point of H_n^* , then P is a limit point of the element of H_n which contains P. This shows that M is perfectly screenable, so M is Suppose that S is normal. Let $D_{n,1}, D_{n,2}, D_{n,3}, \dots$ denote a sequence of domains such that $\bigcap D_{n,i} = S - H_n^*$. Using normality, define $O_{n,1}$, $O_{n,2}, O_{n,3}, \dots$ such that (1) $O_{n,i}$ is open for each positive integer i, (2) $S-H_n^*$ is a subset of $O_{n,1}$ and $\overline{O}_{n,1}$ is a subset of $D_{n,1}$, and (3) $S-H_n^*$ is a subset of $O_{n,i}$ and $\overline{O}_{n,i}$ is a subset of the set $O_{n,i-1} \cap \bigcap_{i=1}^{i} D_{n,j}$ for each integer i > 1. For each positive integer i, define $H_{n,i}$ to be the collection containing O if and only if there is an element D of H_n such that O = $D \cap (S-O_{n,i})$. Suppose K is any subcollection of $H_{n,i}$ for some pair of integers n and i. Suppose P is a limit point of K^* . Now P is a limit point of $S-\bar{O}_{n,i}$ since K^* is a subset of $S-\bar{O}_{n,i}$. Due to $S-\bar{O}_{n,i}$ being a subset of $S-O_{n,i}$ which is closed, P is a point of $S-O_{n,i}$. This shows that P is contained in an element R_P of H_n since $S-O_{n,i}$ is a subset of H_n^* . The open set R_P intersects only one element of K. This proves that $H_{n,i}$ is a discrete collection for each pair of integers n and i. Notice that $\bigcup_i H_{n,i}$ is a refinement of H_n covering H_n^* and that $\overline{H_{n,i}^*}$ is a subset of H_n^* for each i. For each positive integer n, there is a development $G_{1,n}$, $G_{2,n}$, $G_{3,n}$, ... for the space such that each element of $G_{i,n}$ which intersects $H_{n,1}^*$ is a subset of some element of H_{n-1} . Let G_1' , G_2' , G_3' , ... denote a development for S such that G_i consists of all regions R in G_i such that R is a subset of some region of $G_{i,n}$ for each n=1,2,...,i. Now suppose that A is a point of M and that D is a domain containing A. There is an inetger n_0 such that each region in G_{n_0} which contains A is a subset of D. Choose a region $R_{\mathcal{A}}$ from H_{n_0} which contains \mathcal{A} . There is an integer i_0 such that there is an open set Q in H_{n_0+1,i_0} containing A. There is an integer k such that each region in G'_k which contains A is a subset of Q. Letting R' and R''be any pair of intersecting regions from $G'_{k+i_0+n_0}$ such that A is contained in R', then R' is a subset of Q and R'' intersects Q. The region R'' is a subset of some region of G_{i_0,n_0+1} which shows that $R^{\prime\prime}$ is a subset of some element of H_{n_0} . Due to R'' intersecting R_A which is an element of H_{n_0} , R'' is a subset of R_A . Now we have that the sum of R' and R'' is a subset of R_A ; thus, their sum is a subset of D. This proves that G'_1, G'_2, G'_3, \dots satisfies Axiom C at each point of M. Grace and Heath [5] have shown that each connected, locally connected, locally peripherally separable, pointwise paracompact Moore space is separable. In comparison, the following theorem is now offered. THEOREM 3. Each locally connected, locally peripherally separable, Moore space contains a dense, metrizable, inner limiting subset. Proof. Suppose S is a locally connected, locally peripherally separable, Moore space. Let G_1, G_2, G_3, \dots denote a development for S such that the regions in each G_n are peripherally separable. Let H_1 denote a maximal collection of mutually exclusive elements from G_1 . Define P_1 to be a function from H_1 into S such that $P_1(R_1)$ is a point of R_1 for each R_1 in H_1 . Assuming that $H_1, H_2, ..., H_n$ and $P_1, P_2, ..., P_n$ have been described, let R_n be any element of H_n . Define $R_{n,0}$ to be a region in G_{n+1} that contains $P_n(R_n)$ such that its closure is a subset of R_n . Choose a countable dense subset $\{Q_{n,1}, Q_{n,2}, Q_{n,3}, ...\}$ of the boundary of R_n if the boundary of R_n exists. For each positive integer i, define $\{R_{n,i,1}, R_{n,i,2}, R_{n,i,3}, ...\}$..., $R_{n,i,i}$ to be mutually exclusive regions from G_{n+1} such that (1) $\bar{R}_{n,1,1}$ is a subset of R_n which does not intersect $R_{n,0}$ and $R_{n,1,1}$, is a subset of some element of G_{n+1} which contains $Q_{n,1}$ and (2) $\bigcup_{i=1}^{n} \overline{R}_{n,i,i}$ is a subset of the set $R_n - (\bar{R}_{n,0} \cup \bigcup_{i=1}^{i-1} \bigcup_{j=1}^{k} \bar{R}_{n,k,j})$ and $R_{n,i,j}$ is a subset of some element of G_{i+n} which contains $Q_{n,j}$ for each positive integer $j \leq i$. Letting G_{n+1,R_n} denote the regions of G_{n+1} which are subsets of R_n , define H_{n+1,R_n} to be a maximal collection of mutually exclusive elements from G_{n+1,R_n} such that $R_{n,0}$ is in H_{n+1,R_n} and $R_{n,i,j}$ is in H_{n+1,R_n} for each positive integer i and each positive integer $j \leq i$. If the boundary of R_n does not exist, let H_{n+1,R_n} denote a maximal collection of mutually exclusive elements from G_{n+1,R_n} so that $R_{n,0}$ is in H_{n+1,R_n} . Now $H_{n+1} = \bigcup_{R_n \in H_n} H_{n+1,R_n}$ is a maximal collection of mutually exclusive elements from G_{n+1} . Define P_{n+1} to be Define $M = \bigcap H_n^*$. Notice that $P_n(H_n)$ is a subset of M for each positive integer n. Suppose Q is a point of S-M and D is a domain containing Q. There is an integer n_0 such that Q is not contained in $H_{n_0}^*$. Choose a connected domain D' which is a subset of D and contains Q. Since H_{n_0} is a maximal collection of mutually exclusive elements from G_{n_0} , D' intersects an element R_{n_0} of H_{n_0} . Due to D' being connected, D' must contain a boundary point of R_{n_0} . This shows that D' must contain a function from H_{n+1} into S such that $P_{n+1}(R_{n+1})$ is a point of R_{n+1} for each R_{n+1} in H_{n+1} and $P_n(H_n)$ is a subset of $P_{n+1}(H_{n+1})$. a point Q_{n_0,i_0} of the countable dense subset $\{Q_{n_0,1},Q_{n_0,2},Q_{n_0,3},\ldots\}$ of the boundary of R_{n_0} which was used to define H_{n_0+1} . There is a positive integer i_0 such that if R is a region in G_{i_0} containing Q_{n_0,i_0} then R is a subset of D'. Now R_{n_0,i_0,i_0} is a subset of some element of $G_{i_0+n_0}$ which contains Q_{n_0,i_0} ; thus, R_{n_0,i_0,i_0} is a subset of D'. Since R_{n_0,i_0,i_0} contains a point of M, the set M is dense in S. Defining $H'_n = \{R_n \cap M: R_n \in H_n\}$, H'_1, H'_2, H'_3, \dots is a sequence of discrete collections of open sets in the space M such that $\bigcup_n H'_n$ forms a base for M. This proves that M is perfectly screenable, so M is metrizable. LEMMA 2. If S is a Moore space and if M is a subset of S, then there are countably many discrete subsets $K_1, K_2, K_3, ...$ of S such that their sum is a dense subset of M. Proof. For each positive integer n, let a_n denote a well-ordering of the elements of G_n which intersect M. Let β_n denote a well-ordering of a subset K_n of M such that (1) the first term of β_n is a point of the first term of a_n and (2) for each proper initial segment β_n' of β_n the first term x of β_n that has each term of β_n' preceding it has the property that x is not a point of a region in G_n which contains a term of β_n' and x is a point of the first term of a_n whose common part with a_n is not a subset of a_n entaining a term of a_n is a discrete subset of a_n since no region in a_n contains two points of a_n . Due to the fact that each point of a_n has a region of a_n which contains it and a point of a_n , the set a_n is dense in a_n . Theorems 4 and 5 give conditions under which normal Moore spaces have dense, metrizable subsets. THEOREM 4. If S is a locally connected, normal Moore space which has a base G with the property that S is collectionwise normal with respect to each discrete subset that is contained in the boundary of some element of G, then S contains a dense, metrizable subset. Proof. Let G_1 , G_2 , G_3 , ... denote a development for the space S such that G_n is a subcollection of G for each positive integer n. Define H_1 to be a maximal collection of mutually exclusive elements from G_1 . Choose any element R_1 from H_1 . Suppose that R_1 has a boundary. There are countably many discrete subsets $K_{1,1}$, $K_{1,2}$, $K_{1,3}$, ... of the boundary of R_1 such that their sum is dense in the boundary of R_1 . The space is collectionwise normal with respect to $K_{1,i}$ for each positive integer i, so let $J_{1,i,j}$ denote a subcollection of mutually exclusive regions of G_j covering $K_{1,i}$ for each pair of positive integers i and j so that each element of $J_{1,i,j}$ contains one and only one point of $K_{1,i}$. For each pair of positive integers i and j, define $H_{2,R_1,i,j}$ to be a subcollection of mutually exclusive regions of G_2 such that (1) each element of $H_{2,R_1,i,j}$ is a subset of R_1 and a subset of some element of $J_{1,i,j}$ and (2) each element of $J_{1,i,j}$ contains an element of $H_{2,R_1,i,j}$ as a subset. If R_1 does not have a boundary, define $H_{2,R_1,i,j}$ to be any collection of mutually exclusive regions from G_2 such that $H_{2,R_1,i,j}^*$ is a subset of R_1 . Now the collection $H_{2,i,j,0} = \bigcup_{R_1 \in H_1} H_{2,R_1,i,j}$ contains mutually exclusive regions from G_2 for each pair of integers i and j. Defining G_{2,R_1} to be the collection of all regions in G_2 which are subsets of R_1 for each R_1 in H_1 , let H_{2,R_1} denote a maximal subcollection of mutually exclusive regions of G_{2,R_1} . The collection H_2 is defined to be the maximal subcollection $\bigcup H_{2,R_1}$ of mutually exclusive regions of G_2 . A function P_2 is defined from $\bigcup_{i,j} H_{2,i,j,0}$ into S such that $P_2(R_2)$ is a point of R_2 for each R_2 in $\bigcup_{i,j} H_{2,i,j,0}$. In general, let R_n denote an element of H_n . If R_n does not have a boundary, then define $H_{n+1,R_n,i,j}$ to be any collection of mutually exclusive regions from G_{n+1} such that $H_n^{*}+_{1,R_n,i,j}$ is a subset of R_n . If R_n has a boundary, then there are discrete sets $K_{n,1}$, $K_{n,2}$, $K_{n,3}$, ... such that their sum is a dense subset of the boundary of R_n . For each pair of positive integers i and j, define $J_{n,i,j}$ to be a subcollection of mutually exclusive regions of G_j covering $K_{n,i}$ such that each element in $J_{n,i,j}$ contains only one point of $K_{n,i}$. In this case, define $H_{n+1,R_n,i,j}$ to be a subcollection of mutually exclusive regions of G_{n+1} such that (1) each element of $H_{n+1,R_n,i,j}$ is a subset of H_n and a subset of some element of $H_{n+1,R_n,i,j}$ and (2) each element of $H_{n+1,i,j,0}$ denote the collection H_n and H_n of mutually as a subset. Let $H_{n+1,i,j,0}$ denote the collection H_n and H_n of mutually exclusive regions from G_{n+1} . For each m=2,...,n and each pair of positive integers i and j, we define $H_{m,i,j,n+1-m}$ to be a collection of mutually exclusive regions from G_{n+1} covering $P_m(H_{m,i,j,0})$ such that each region of $H_{m,i,j,n+1-m}$ contains only one point of $P_m(H_{m,i,j,0})$ and is a subset of only one element of $H_{m,i,j,n-m}$. By letting G_{n+1,R_n} denote the collection of regions of G_{n+1} which are subsets of R_n , we define H_{n+1,R_n} to be a maximal subcollection of mutually exclusive regions of G_{n+1,R_n} . The collection H_{n+1} is the maximal subcollection $\bigcup_{R_n \in H_n} H_{n+1,R_n}$ of mutually exclusive regions of G_{n+1} . Define a function P_{n+1} from the collection $\bigcup_{i,j} H_{n+1,i,j,0}$ into S such that $P_{n+1}(R_{n+1})$ is a point of R_{n+1} for each R_{n+1} in $\bigcup_{i,j} H_{n+1,i,j,0}$. We now show that the set $M=\bigcap\limits_{n=2}^{\infty}(H_n^*\cup\bigcup\limits_{i,j}\bigcup\limits_{m=2}^nH_{m,i,j,n-m}^*)$ is a dense, metrizable subset of S. There are countably many elements in the family $\{H_n\colon n\text{ is a positive integer}\}\cup\{H_{m,i,j,n-m}\colon m,i,j,n\text{ are positive integers with }2\leqslant m\leqslant n\}$ of collections of mutually exclusive regions such that their sum forms a base at each point of M. This shows that M is 92 screenable. Due to S being a normal Moore space, M is also a normal Moore space; thus, M is metrizable. Suppose P is a point of S-M. There is an integer n_0 such that P is not a point of $H_{n_0}^*$. Letting D denote any domain which contains P, there is a connected domain D' which is a subset of D and contains P. Since H_{n_0} is a maximal subcollection of mutually exclusive regions of G_{n_0} , there is a R_{n_0} in H_{n_0} which intersects D'. Due to D' being connected, D' must contain a point of the boundary of R_n . so D' contains a point Q of K_{n_0,i_0} for some integer i_0 where K_{n_0,i_0} is a discrete subset of the boundary of R_{n_0} which was used to define $H_{n_0+1,R_{n_0},i_0,j}$ for each positive integer j. Now there is an integer j_0 such that each region of G_{i_0} which contains Q is a subset of D. The element R' of J_{n_0,i_0,j_0} which contains Q is in G_{i_0} , so R' is a subset of D. The region R' contains a point of the subset $P_{n_0+1}(H_{n_0+1,R_{n_0},i_0,j_0})$ of M. This proves that M is dense in S. Under the hypothesis of Theorem 4, one can say that S has a dense, metrizable, inner limiting subset. We have shown that S has a dense. metrizable subset. In [3], Fitzpatrick proved that a normal Moore space which has a dense, metrizable subset possesses a development which satisfies Axiom C at each point of a dense subset of the space. The set of all points where this development satisfies Axiom C is an inner limiting set. The author wishes to thank B. Fitzpatrick for bringing this to his attention. The following theorem generalizes a theorem by Fitzpatrick of [4]. THEOREM 5. A normal Moore space S has a dense metrizable subset if and only if each discrete subset of S can be approximated by subsets of S which are screenable in S. Proof. Suppose S is a Moore space with a dense, metrizable subset M. Letting K denote any discrete subset of S and G any open covering of K, the set $M \cap G^*$ is screenable in S and dense in G^* ; thus, each discrete subset of S can be approximated by subsets of S which are screenable in S. Suppose S is a normal Moore space such that each discrete subset of S can be approximated by subsets of S which are screenable in S. For each positive integer n, let K_n be a discrete subset of S such that $\bigcup K_n$ is dense in S. For each pair of positive integers n and m, let $M_{n,m}$ denote a subset of S such that (1) $M_{n,m}$ is screenable in S and (2) for each point P in K_n there is an open set in G_m containing both P and a point of $M_{n,m}$. Now the subset $M = \bigcup M_{n,m}$ of S is screenable. Since M is also normal, M is metrizable. Due to $\bigcup K_n$ being a subset of \overline{M} , the set M is dense in S. ## References - [1] R. H. Bing, Metrication of topological spaces, Canad. Journ. Math. 3 (1951), pp. 175-186. - [2] A translation of the normal Moore space conjecture, Proc. Amer. Math. Soc. 16 (1965), pp. 612-619. - [3] B. Fitzpatrick, On dense subspaces of Moore spaces, ibidem 16 (1965), рр. 1324-1328. - [4] On dense subspaces of Moore spaces II, Fund. Math. 61 (1967), pp. 91-92. - [5] E. E. Grace and R. W. Heath, Separability and metrizability in pointwise paracompact Moore spaces, Duke Math. Journ. 31 (1964), pp. 603-610. - [6] F. B. Jones, Concerning normal and completely normal spaces, Bull. Amer. Math. Soc. 43 (1937), pp. 671-677. - [7] J. L. Kelley, General topology, Princeton 1955. - [8] R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloquium Publications 13, New York 1962. - [9] Mary Ellen Estill Rudin, Concerning abstract spaces, Duke Math. Journ. 17 (1950), pp. 317-327. - [10] J. N. Younglove, Concerning dense metric subspaces of certain non-metric spaces, Fund. Math. 48 (1960), pp. 15-25. Reçu par la Rédaction le 10. 6. 1968