Metrizable subsets of Moore spaces

by
C. W. Proctor* (Houston)

In [10], Younglove proved that if a space satisfies Axioms 0 and 1
of [8], then it contains a dense, metrizable, inner limiting subset. Fitz-
patrick [4] has shown that a normal Moore space which is not a coun-
terexample of Type D [2] has a dense, metrizable subset. Sufficient con-
ditions are given in this paper for a Moore space to have a dense, metrizable
subset. Fitzpatrick [3] pointed out that Mary Ellen Estill Rudin’s
example [9] of a non-separable Moore space in which every collection
of mutually exclusive domains is countable, has no dense, metrizable
subset. Theorems 1 and 2 show how close Moore spaces come to having
dense, metrizable subsets.

A Moore space is one which satisfies Axiom 0 and the first three
parts of Axiom 1 of [8]. Suppose 8 is a Moore space with development
Gy, Gy, Gy, ... The development is said to satisfy Axiom C at a point P
of § if and only if for each region R containing P there is a positive in-
teger n, such that if B, and R, are interesecting regions of @y, containing P
in their sum, then B, v R, is a subset of R. A subset 3 of § is said to be
m-dense in S with respect to the development Gy, Gy, Gy, ... if and only
if m is a positive integer with the property that for each point P in § and
each positive integer n there are regions Ry, R, ..., Rm in Gy such that P
is contained in R,, R; intersects R;;; for 1 < ¢ < m—1 whenever m > 1,
and Ry intersects M. A collection F of subsets of S is said to be a discrete
collection if and only if the closures of elements of F are mutually exclusive
and the closure of the sum is the sum of the closures of any subcollection
of elements of E. The space § is collectionwise normal with respect to
a discrete collection F of subsets of § if and only if there is a collection &
of mutually exclusive domains covering E* such that each element of &
intersects only one element of . The statement that a subset M of §
can be approximated by a class £ of subsets of § means that for each
open covering G of M there is a subset N of G* belonging to & such that
for each point in M there is an element in G containing it and a point
of N. A subset K of the space § i3 said to be screenable in S if and only
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if for each collection H of domains of 8 covering K there are countably
many collections Hy, Hy, Hy, ... of mutually exclusive domains of the
space § such that their sum is a vefinement of H covering .

LeMmMA 1. If 8 is a topological space and G is an open covering of §,
there is o discrete subcollection H of G such that for each element B of G the
collection G contains an element which intersects both R and H*.

Proof. Let ¥ denote the family of subcollections of G which con-
tains the collection ¢ if and only if no element of ¢ intersects two elements
of C. Define a partial order < on ¥ such that ¢’ = 0" if and only it ¢
and " are elements of ¥ and €’ is & subeollection of C''. Suppose ¥’
is a subfamily of ¥ such that any two elements from ¥’ compave. The
subcollection (¥')* of & is an element of ¥ such that ¢ < (¥')* for each (f
in ¥, Using Zorn’s Lemma, ¥ containg an element H such that H - ¢
for no € in ¥ except for ¢ = H. The subcollection I of ¢ iy the desired
collection.

TEEOREM 1. If 8 i8 o Moore space, then for cach development
Gy, Gy, Gy, ... for the space there is a metrizable, inner limiting set M which
is 3-dense in 8 with respect to the development. Moreover, 8 has o development
which satisfies Aziom O af each point of M.

Proof. Let H, denote a discrete subeollection of & such that for
cach region R of @, there is an element of &, which intersects hoth R
and Hf. Let P, denote a function from H, into § such that Py(R,) is & point
of I, for each R, in H,. For each R, in H,, define Gz, t0 be the collection
which consists of all the regions of 6, whose closures lie in I,. Let Hap,
denote a discrete subcollection of Gz, such that P,(R,) is contained in
an element of Hop, and each element of Gypp, has an clement of Ghg,
that intersects it and Hig,. Defining Gbg_gx to denote the regions of G
whose closures are subsets of S§—Hf, Gz,s_fl% has a subcollection Hy g%
such that each region of Gs,5-7F has an element of Go,s-% intersecting it

; * o s 1 . .
and Hz,S-H;“‘ The subeollection H, = UHHZ’R‘ w Hyg- ¥ of @, is discrete.
€0,

Since each region intersects an element of H, v {8—HF}, each region
pas an element in @, intersecting it and H¥. Define a function P, from H,
into 8 such that Py(R,) is a point of R, for each R, in H, and P,(H,) is
a subset of Py(H,). Two sequences are heing constructed, H,, H,, JIS.,
and Py, Py, Py, ..., such that H,, H,, P;, and P, are ag defined above
é,ud (1) for each region R the collection Gy containg an element which
intersects both R and H}, (2) if R, and R: are elements of Hy, and H;
respectively such that R, intersects B; and i< n, then R, iy a subset
of Ry, and (3) Py is a function from H, into § such that Pu(Ry) i8 a point
of B, for each R, in H, and Py y(Hp-1) is a subset of Py(Hy) for each

positive integer # > 1. Define M to be the inner limiting set ﬁ (D Hy).
izl n=t

icm

©
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Notice that | Pu(Hy) is a subset of M; thus, M is 3-dense in § with

n
respect to the development Gy, G, Gs, ... The sequence of discrete col-
lections H,, Hy, H,, ... forms a base at each point of M, so I is perfectly
sereenable. Bing has proven in [1] that perfectly screenable Moore spaces
are metrizable; thus, Al is metrizable.

We now show that S a development which satisfies Axiom C ab
each point of If. Let G1, G4, Gi, ... denote a sequence of collections of
regions such that (1) Gf is a subcollection of Gy, (2) Gh+1 is a subcollection
of Gf, ~ Gpa1, (3) R is a region in & not in @ if and only if B intersects

¥~ Hf and is not a subset of an element of H,, and (4) R is a region
in &, n Guey N0t in G, if and only if R intersects Hj ~ Hj4; and is not
a subset of an element of H,. Since Hj ~ Hj., is a closed subset of Hj,
@y, covers 8 for each positive integer n. Since Gp.; is a subeollection of
both Gy and Gr, 8 has Gf, G4, Gi, ... as a development. Suppose P is
a point of M and D is a domain containing P. There is an integer m, such
that each region in @, which contains P lies in D. Pick n, > m, such
that P is in H,,. Choose elements Ry, p of Hy, and Rpo1,p Of Hypyer Such
that they each contain P. Notice that Bupe1p is a subseb of R,,.p. There
is an integer k > n, such that each region in G4 which contains P has
its closure lying in Ru.y1p. Now if R’ and R are intersecting regions
in G4 which have P in their sum, then either R’ or R", say R’, is a subset
0f Rpg41,p- The region R’ intersects Rpy41,p; thus, R’ intersects Hy, ~ Haoia
which shows that R’ is & subset of an element of H,,. Since R" intersects
Rp,.p, B’ must be a subset of Ry, p; thus, B’ v R’ is a subset of D which
proves that Gf, G3, Gi, ... satisfies Axiom C at each point of M.

TeroreM 2. If S 4s a Moore space, then for each development
Gy, Goy Gy, ... for the space there is a melrizable, inner limiting subset M
which is 2-dense in 8 with respect to the develepment. Moreover, 8 has a de-
velopment which satisfies Awiom C ai each point of M if 8 is normal.

Proof. Let H, denote a maximal collection of mutually exclusive
regions from @;. Define P, to be a function from H, into 8 such that
P,(R,) is a point of B, for each B, in H;. For each R, in H,, let Gy, denote
the subcollection of G, which contains all the regions which are subsets
of R,. Let H, p, denote a maximal collection of mutually exclusive regions
from Gz such that Pi(R;) is a point of some element of Hsr,. Now
H,= |J Hsp is a maximal collection of mutually exclusive regions

from Iél;.g Define P, to be a function from H, into § such that Py(R,) is '
a point of R, for each R, in H, and P,(H,) is a subset of Py(H,). In general,
Gh11.m, denotes the subcollection of @iy which contains all of the regions
0f Gny which are subsets of B, for each R, in Hy. The collection Hyi1,R,
is a maximal collection of mutually exclusive regions from Gniir, SO
that Pu(Ry) is & point of some element of Hpi1,r,. The collection Hyy1
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is defined to be the maximal subcollection] ) Hpgr,my of mutually ex-
tpelly )

clusive regions of Gny1. The function Ppyq is defined from M., into §
such that Ppii(Rnq) is & point of Ry yq for each Rypq in Hypy and Py Hy)
is a subset of Ppii(Hpt1)
Letting M =() Hy, M contains | JPu(Hn) as a subset. Since
n n

|J Pu(Hy) is 2-dense in § with respect to the development, the set 37
n

is 2-dense in § with respect to the development Gy, Gy, @y, ... Notice
that | H, forms a base at each point of M such that if P is o point of I
n

and P is a limit point of HY, then P is a limit point of the clement of 17,
which contains P. This shows that I is perfectly screenable, so M ig
metrizable.
Suppose that § is normal. Let Dps, Dy, Dy, ... denote o sequence
of domains such that () Dn;= S—H}. Using normality, define O
%

Ny1y

Onzy Ons, .. such that (1) Onltis open for each positive integer 4, (2)
8—Hi is a subset of Opy and Ony is & subset of Dyy, and (3) §— H* is

— . i %
a subset of On,; and O,,; i3 & subset of the set Op 4y ~ () Du,y for eachin-
=1

teger i > 1. For each positive integer 4, define H,: to be the collection
contaming 0 if and only if there is an element D of H, such that O =
p ~ (8—0n,:). Suppose K is any subcollection of H,; for some pair of
Integers » and 4. Suppose P is a limit point of K*. Now P is & limit point
of §—0y,; since K* is a subset of §—0,,. Due to §— 0 being a subset
of 8—0,,; which is closed, P is a point of §— O,,;. This ’showswtlmt Pis
contained in an element Rp of H, since § — Oy, is a subset of H¥. The
open set Ep intersects only one element of K. This proves that H,, is
a discrete collection for each pair of integers n and 4. Notice that U iHM

is a r«.eﬁ.nement of H, covering Hj and that ﬁ is a subset of I};*, for
each 4. For each positive integer #, there is a development Gy, Gop,
,Gs’“’ ... for the space such that each element of @i which interseéts H‘é‘, 1
13 a subset of some element of Hyi. Let G, G5, &%, ... denote a (1ev0101)’—
ment for § such that ¢ consists of all regions R in @; such that R is a subset
of some region of @, for each n =1, 2, ..., 4. Now suppose that A is
a point of M and that D is a domain containing A. There is an inetger ng
such Fha;t each region in @,, which contains 4 is a subset of D. Choose
?hl(:iui)snalzﬁ from H,, Which containg 4. There is an integer 4, such that
oo ® 01?en §et(,2 in _Hm,H,l-‘, cpnmining A. There iy an integer k such
f at each region in G, W.hl(}h containg 4 is a subset of Q. Letting R’ and R/
i I;a ;?ihpsur ?f'mtersectmg regions fr(?m ot iptno SUCh that 4 is contained

, then R is & subset of  and R’ intersects Q. The region R is a subset
of some region of Giono+1 Which shows that R” is g subsgt of some element
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of H,,. Due to R’ intersecting R4 which is an element of H, , R is a subset
of R,. Now we have that the sum of B’ and R’ is a subset of R4; thus,
their sum is a subset of D. This proves that 61, Gz, G4, ... satisfies Axiom O
at each point of M.

Grace and Heath [5] have shown that each connected, locally con-
nected, locally peripherally separable, pointwise paracompact Moore
space is separable. In comparison, the following theorem is now offered.

THEOREM 3. Bach locally connected, locally peripherally separable,
Moore space conlains a dense, metrizable, inner limiting subset.

Proof. Suppose S is a locally connected, locally peripherally sepa-
rable, Moore space. Let Gy, Gs, Gy, ... denote a development for § such
that the regions in each ¢, are peripherally separable. Let H, denote
a maximal collection of mutually exclusive elements from G,. Define P;
to be a function from H; into § such that Py(R;) is a point of R, for each R,
in H,. Assuming that H,, H,, ..., H, and P,, P,, ..., P, have been de-
scribed, let R, be any element of H,. Define R, to be a region in Gy
that containg Py(R,)such that its closure is a subset of R,.Choose a count-
able dense subset {Qn;, @n2; @ns, ...} of the boundary of R, if the boundary
of R, exists. For each positive integer 4, define {Rni1, Bniz, Rnisy -
vy Rn,ii} to be mutually exclusive regions from Gp.q such that (1) By
is a subset of R, which does not intersect R, and Ry, is a subset of

1
some element of G,.; which contains @,; and (2) | Rn:; is a subset
i=1

_ -1k _
of the set Rp— (Rupv U U Rurg) and R, ;; is a subset of some element
k=1§=1

of G4, which contains @, ; for each positive integer j < i. Letting G,
denote the regions of G4, which are subsets of Ry, define Hp.y,r, to be
2 maximal collection of mutually exclusive elements from Gy.q,r, such
that Rue is in Hyp1,p, and Ry iy is in Hayo,r, for each positive integer ¢
and each positive integer j < 4. If the boundary of E, does not exist,
let Hypi1,r, denote a maximal collection of mutually exclusive elements
from Gyi1,r, SO that Ry oisin Huq1,py. Now Huyy = | Hyi,r, is a maximal

RneHn
collection of mutually exclusive elements from Gy1. Define P,y to be
a function from H,.; into § such that Ppii(Ryt1) is & point of Ry.q for
each Rnyp in Hyp: and Pu(Hy) is a subset of Puia(Hn)-
Define M = () Hi. Notice that Pn(H») is a subset of M for each

positive integer 1zv.nSuppose Q is a point of S— M and D is a domain con-
taining ¢. There is an integer n, such that @ is not contained in HF,.
Choose a connected domain D’ which is a subset of D and contains @.
Since H,, is a maximal collection of mutually exclusive elements from Ghgy
D’ intersects an element R,, of H,,. Due to D’ being connected, D’ must
contain & boundary point of R,,. This shows that D’ must contain
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a POt Quoj, 0f the countabe dense subset {Qny1, an,g,‘(v)nu,s, } -of the
boundary of R, which was used to define I-'{’,,,O.H. There is a pps1t1ve 1&
teger 4, such that if R is a region in G-, containing Qu,,j, then J..E Is & subset
of D'. Now Ry 18 @ subset of some element of Giomo Whl,eh_ containg
Qngiio; TS, Bagigso 18 & subset of D', Since Rp,z,9, contains a point of M,
the set M is denge in 8.

Defining Hj = {Bn ~ M: Bu ¢ Ha}, Hi, Hi, H, ... is & sequence of
discrete collections of open sets in the space M such that [%) H}, forms

a base for M. This proves that M is perfectly screenable, so M is metriz-
able. )

Leama 2. If § is @ Moore space and if M is @ subset of S, then there
are countably many discrete subsets Ky, Ky, Ky, .. of 8 such that their swm
is a dense subset of M.

Proof. For each positive integer n, let on denote & well-ordering
of the elements of G, which intersect M. Let fn denote a well-ordering
of a subset K, of M such that (1) the first term of g, is a point of the
first term of a, and (2) for each proper initial segment fr of S, the first
term « of 8, that has each term of f;, preceding it has the property that »
is not a point of a regionin @, which containg a term of f and  is a point
of the first term of a, whose common part with M is not a subset of {E: R is
a region in G, containing a term of f,}*. The set K, is a discrete subset
of S since no region in G containg two points of K. Due to the fact thut
each point of M has a region of G, which contains it and a point of Ky,
the set | J Ky is dense in M.

n

Theorems 4 and 5 give conditions under which normal Moore spaces
have dense, metrizable subsets.

TaeoREM 4. If 8 is a locally conmected, normal Moore space which
has a base G with the property that S is collectionwise normal with respect
to each discrete subset that is contained im the boundary of some element
of @, then S contains a dense, metrizable subset.

Proof. Let G, Gy, Gy, ... denote a development for the space §
such that G is a subcollection of @ for each positive integer n. Define H,;
to be a maximal collection of mutually exclugive clements from Gy
Choose any element R, from H,. Suppose that R, has a boundary. There
are countably many discrete subsets Ky, Kig, Kig, ... ¢f the boundary
of R, such that their sum is dense in the boundary of R,. The space is
collectionwise normal with respect to Ki; for each positive integer i,
80 let Ju,q; denote a subcollection of mutually exclusive regions of Gy
covering K, ; for each pair of positive integers ¢ and j so that each clement
of J5;; contains one and only one point of Ky,i. For each pair of positive
integers i and j, define Hy g, ;; t0 be a subcollection of mutually exclusive

©
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regions of @, such that (1) each element of Hy,g,,; is a subset of R, and
a subset of some element of J;;; and (2) each element of J,,; contains
an element of Hy g, i; a8 & subset. If R, does not have a boundary, define
Hy,g,,i; t0 be any collection of mutually exclusive regions from @, such

that Hig,i; is a subset of R,. Now the collection Hy ;0= ) Haryij
RieHy

contains mutually exclusive regions from @, for each pair of integers 7
and j. Defining Gr, to be the collection of all regions in ¢, which are
subsets of R, for each R, in H,, let H, g, denote a maximal subcollection
of mutually exclusive regions of Gy z,. The collection H, is defined to be

the maximal subcollection | J Hy gz, of mutually exclusive regions of G,.
R1€Hy

A function P, is defined from | ) Ha,; into § such that Py(R,) is a point

nLI
of R, for each R, in | ] Hs ;0. In general, let R, denote an element of Hy,.
ij

If R, does not have a boundary, then define H, 11, z,,:; t0 be any collection
of mutually exclusive regions from Gy, such that Hyii1r,:; i8 & subset
of B,. If R, has a boundary, then there are discrete sets K1, Knp, K, -
such that their sum is a dense subset of the boundary of R,. For each
pair of positive integers ¢ and j, define Jy s to be a subcollection of mu-
tually exclusive regions of @; covering K,; such that each element in
Jn,i,; contains only one point of K, ;. In this case, define Hy1 g, t0 be
a subcollection of mutnally exclusive regions of Gpy: such that (1) each
element of Hpyir,i; is a subset of B, and a subset of some element
of Jn.; and (2) each element of J,;; contains an element of Hnyyryii
as a subset. Let Hyiy450 denote the collection | ) Hpy1,g,is of mutually

RneHn
exclusive regions from G,... For each m = 2, ..., » and each pair of posi-
tive integers ¢ and j, we define Hy, i jn+1—m t0 De a collection of mutually
exclusive regions from Gpii covering Pm(Hpm,zj0) such that each region
0of Humijnt1—m contains only one point of Pu(Hm,iz0) and is a subset
of only one element of Hy, ijn-m. By letting Gnis,r, denote the collection
of regions of .1 which are subsets of Ry, we define Hy41,z, to be a maximal
subeollection of mutually exclusive regions of Gny1,r,. The collection Hyy
is the maximal subcollectionR“L%[ Hpp,gr, of mutually exclusive Tegions

n

of Gy4q1. Define a function Py, from the collection U Hp44,5,4,0 into S such

7

that Ppyi(Bnpyi) is a point of Ruyq for each Ry in \J Hutrag0-
7

. o n
We now show that the set M = () (Hx v | {U Hmijn—m) I8 a dense,
n=2 i

i m=2
metrizable subset of 8. There are countably many elements in the family
{Hn: m is a positive integer} v {Hm,ijn—m: M, 4%,j,n are positive in-
tegers with 2 <{m < n} of collections of mutually exclusive regions such
that their sum forms a base at each point of M. This shows that M is

Fundarnenta Mathematicae, T. LXVI 7
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sereenable. Due o § being a normal Moore space, M is also a normal
Moore space; thus, M is metrizable. Suppose P is a poin_t of 8—M. There
is an integer m, such that P is not a point of Hy,. Lefting D denote any
domain which contains P, there is a connected domain D’ which is a subset
of D and contains P. Since Hy, is 2 maximal subcollection of mutually
exclusive regions of Gy,, there is a Ry, in Hy, which intersects .D’'. Due
to D' being connected, D’ must contain a point of the boundary of R, ,
50 D’ contains a point @ of Ky, for some integer 4, where K, is a discrete
subset of the boundary of E,, which was used to define Hyy41,z,,,7 for
each positive integer j. Now there is an integer j, such that each region
of @, which contains @ is a subset of D. The element B’ of Jy, s, which
contains @ is in @, so R’ is a subset of D. The region R’ contains
a point of the subset Puyss(Hngt1,Rupind) Of M. This proves that I is
dense in 8.

Under the hypothesis of Theorem 4, one can say that S has a dense,
metrizable, inner limiting subset. We have shown that § has a dense,
metrizable subset. In [3], Fitzpatrick proved that a normal Moore space
which has a dense, metrizable subset possesses a development which
satisfies Axiom C at each point of a dense subset of the space. The set
of all points where this development satisfies Axiom C is an inner
limiting set.

The author wishes to thank B. Fitzpatrick for bringing this to his
atitention.

The following theorem generalizes a theorem by Fitzpatrick of [4].

THEOREM 5. A normal Moore space 8 has o dense metrizable subset

if and only if each discrete subset of S cam be approzimated by subseis of S
which are screenable in §.

Proof. Suppose § is a Moore space with a dense, metrizable subset M.
Letting K denote any discrete subset of § and @ any open covering of K,
the set M ~ G i3 screenable in § and dense in G*; thus, each discrete
subset of § can be approximated by subsets of § which are screenable
in 8.

Suppose § is a normal Moore space such that each discrete subset
of 8 can be approximated by subsets of § which are screenable in §. For
each positive integer n, let K, be a discrete subset of 8 such that | JEn

n

ig dense in 8. For each pair of positive integers n and m, let My, denote
a subset of § such that (1) M, , is screenable in § and (2) for each point P
in K, there is an open set in @ containing both P and a point of My m.
Now the subset M = H‘MM,, of § is screenable. Since M ig also normal,

M is metrizable. Due to | J K, being a subset of i, the set M is dense
in 8.
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