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A new kind of compactness for topological spaces
by
Allen R. Bernstein* (Maryland)

1. Introduction. A topological space X is said to be compact
if it has the property that any open cover has a finite subcover; X is
countably compact if every sequence of points has a limit point, or equiv-
alently, if every countable open cover has a finite subcover. For many
purposes the weaker notion of countable compactness suffices. However,
for other purposes this is not the case. The most striking example of this
is the Tychonoff theorem — the product of compact spaces is compact
vet it is possible to have two countably compact spaces whose product
is not countably compact [5]. It is our purpose here to introduce a new
notion, I -compactness (see Definition 3.2), which is intermediate between
countable compactness and compactness and yet which suffices to yield
results which usually rely on the full strength of compactness. In particular
we shall show that the product of any number of D-compact spaces is
D-compact (hence countably compact). We shall show furthermore that
D-compactness does not coincide with any of the familiar types of
compactness, i.e. that it is in fact a new kind of compactness for topological
spaces.

The framework in which we work is the theory of ultraproducts
as originated by Xiof together with A. Robinson’s Theory of Non-standard
Analysis ([6] and [7]). The principal definitions and results are all stated
in standard terms and the reader who is so inclined should be able to recast
those proofs relying on Non-standard Analysis into a standard framework.
‘However a certain amount of motivation may be lost in this process.
In addition the results presented here have an interest from a purely
model-theoretic point of view. Robinson has shown that a topological
space is compact if in a moderately strong elementary extension (an
enlargement in Robinson’s terminology) every point is mear-standard.
We examine here the consequence of assuming that every point in a weaker
kind of elementary extension is near-standard, which is in fact precisely
the notion of D-eompactness introduced here. It is interesting to contrast
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this situation with that of previous applications of Non-standard Analysis,
Tn most cases the non-standard models used have been either arbitrary
elementary extensions or else elementary extensions with the stronge;i-
property that they contain certain types of elements (e.g. enlargements
or saturated models [4]) whereas here we explore the usefulness of con-
sidering only models which are relatively weak (namely countably indexed
ultrapowers).

2. Ultraproducts and Non-stamdard Analysis. In this section
is presented a brief introduction to ultraproducts and to that part
of the theory of Non-standard Analysis needed later on. A full intro-
duction to ultraproducts may be found in [1] or [3] while a more
complete account of Non-standard Analysis is contained in [6] or [7].
Actunally we need here only the simpler first order theory as discussed
in [6] although some of the results used here are found in [7].

Let I denote the set of positive integers {1,2,3,...} and let D be
a non-principal ultrafilter over I. If A is any non-empty set consider the
set A7 of sequences (@) of elements of 4. For {a:>, (b:> e AT we define
an equivalence relation as follows:

{ay~<bsy it and only if {i| ai=10b}eD.

Denoting the equivalence class to which <a;) belongs by <a;»/D, the
D-power of A, Ap is defined by:-

(2.1) Ap = {<a)|D| Casy e ATy .

For a e A we identify the equivalence class of the constant sequence
{a,a,a,..} with a itself so we obtain 4 C Ap. Now let R be a relation
over 4 so R is either a subset of A or a subset of the n-fold Cartesian
product of A, n > 2. We define a corresponding relation Rp over Ap
as follows:

22)  (aD, <dPyD, ..., <a{">|D) e Ry it and only it

. {il (6P, d?, ..,a{ eR}eD.
To put this in the framework of first order model theory let
M = (4, R*®), where B is an enumeration of all the relations over A
M is called the complete model of A. Then the D-power of M .
Mp= (4p, BY), is an elementary extension of M. That is, if L is a ﬁrsé
order language containing an individual constant for eaclf element of .A
and a predicate symbol for each relation B over A, as well as the usual
connectives, individual variables and quantifiers over these variables
then any sentence of L which is true in M is true also in Mp K
N?W let (X, o) be a topological space where X is the set o;f points
and ¢ is the set of open sets. We adopt the usual convention of I'eferriﬂé,v

icm®

A new Lind of compactness for topological spaces 187
to X itself as the topological space when no confusion is likely to arise
as to the topology on X. The closure of a set P or sequence {x;) of points
of X is denoted by clP or cl{z;). In the framework of model theory as
described above we regard (X, ¢) as a submodel of the complete model M
of X since the open sets in ¢ are particular relations over X. Now
let D be an ultrafilter over I. Letting o' = {Op| 0 ¢ 0} we obtain the
non-standard topological space (Xp, ¢') as a submodel of the D-power
Of_ M ) M, D-.

Let # e Xp. If # ¢ X then x is called a standard point, otherwise it
is called a non-standard point. For standard = the monad of x, M(x) is
defined by

Mz)= ) Op.

ze0eq

(If X is a metric space then the monad of a point # in X is just the set of
points of Xp which are infinitely close to x.) For y ¢ Xp, y is called near-
standard if y ¢ M (x) for some standard point =.

3, D-compaectness. Before introducing the basic definitions of
this paper we first state the following theorem of Robinson [7]:

THEOREM 3.1. Suppose X is compact. Then every point of Xp is near-
standard.

"~ Proof. Suppose there were a point y e Xp which was not near-
standard. Then to every z ¢ X we could find an open set O which contains
but such that y ¢ Op. Consider the collection of all such open sets as
ranges over X. This collection covers X so there must be a finite sub-
collection, say {O%, 0%, ..., 0™} such that

VeeX, 2¢0% orze0® or ... or ze0™.

This statement can be formalized as a statement in L which must then
be true in Mp, i.e.,
VzeXp 5

But this contradicts the fact that y is a point in Xp which does not belong
to any of the 0%, 1 < i< n. Hence every point of Xp must be near-
standard.

Now let ¢w> be a sequence of points of the topological space (X, o)
and let D be an ultrafilter over the positive integers I.

DermNeroN 3.1. An element # of X is a D-limit point of (x> if and
only if given any neighborhood N of z, {il @ eN}teD.

This definition is of interest only in the case that D is non-principal
since if D is principal, say D = {8 CI| k e 8} for some k eI, then any
sequence (x;) has as D-limit point simply @x. If D is non-principal then

e 0% or 2 09 or ... or 2 0% .
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any set in D is infinite so any neighborhood about & D.-lj:mit po.int @
of (x> must contain an infinite number of the z;; thus # is in particular
a limit point of {z:).

TamorEM 3.2. Let X be Hausdorff. If {xi) is a sequence of points
of X and D an ultrafilter over I, then {%:) has at most one D-limit point,

Proof. Suppose y and 2 are two distinet D-limit points of <w:} and
let N, and N, be disjoint neighborhoods about y and = respectively. Then
since Ny~ Ny =g, {i] #re N} n{i] @ie N,} = @. But this is impossible
since the definition of D-limit point requires these sets both to be in D.

DEFINITION 3.2. X is D-compact if and only if every sequence of
points of X has a D-limié point.

Clearly if X is D-compact for some non-principal ultrafilter D then X
is in particular countably compact. (Note that for principal D, any space
is D-compact.) 7

DErFINITION 3.3. X is wltracompact if and only if given any ultra-
filter D over I, X is D-compact.

THEOREM 3.3. X is D-compact if and only if every point of Xp is
near-standard.

Proof. (i) Suppose X is D-compact. Let ye Xp s0o = {&:H[D
where ;¢ X. Let ¢ ¢ X be a D-limit point of <x;> so given any open

set O containing #, {i| ®; ¢ O} ¢ D. But then by the definition of Op (2.2), .

y = {x:)]D e Op. Thus y ¢ () Op, i.e. y e M{z). Thus y is near-standard.
xe0

(i) Now suppose every point of Xp is near-standard. Let {w:; be
a sequence of points of X. Consider the point <z;)/D in Xp. {@:)[D is
near-standard so for some x, <{@:)/D ¢ M(x). This says that given any
open set O containing #, <@:)[D € Op, i.e. {i| #ce 0} ¢ D. Therefore x is
a D-limit point of <(@:).

As a direct consequence of the above theorem together with Theo-
rem 3.1 we obtain:

CoroLLARY. If X is compact then X is uliracompact.

THEOREM 3.4. Suppose X has the property that the closure of any
countable set of points of X is compact. Then X is uliracompact.

Proof. Suppose not. Let D be an ultrafilter such that X is not
D-compact. Thus we have a sequence {x;) of points of X with no D-limit
point. Around each pecl<z:) let U, be a neighborhood such that
{i} @i e Up} ¢ D. Since D is an ultrafilter, {i| 2: ¢ U,} ¢ D. But the U,’s
cover cl {x;) and el {®;) is compact so

{23 CUp, v Up,w i w Ty, .

Restated,
{2 UpwUpu..vlUpl=9p.
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n
But {#| 2i¢ Up, v Upy v o v Uy} = kﬂ {il xi¢ Up}eD sinee D is closed
=1

under finite intersections. But then ¢ e D which is impossible, proving
the theorem. The converse to Theorem 3.4 is true at least under the
following circumstaneces.

THEOREM 3.5. Let X be a completely regular Hausdorff space which
is ultracompact. Then the closure of any sequence of points of X is compact.

Proof. Embed X in a compact Hausdorff space T (cf. [2], p. 145).
Given a sequence {wx;> of points of X we may then consider its closure
in ¥, cly {m:) as well as its closure in X, cly <x). Since T is compact
and Hausdorff, cly {z;> i3 compact so if it ean be shown that clx (ri>
= cly {@;> the theorem will have been proved.

Let y be a limit point (in ¥) of <{a>. Let F be the set of all sets of
integers of the form

{i| z:e N}, N a neighborhood of y.

The intersection of any finite number of elements of F is clearly non-
empty so we may obtain an ultrafilter D-over I which contains F. Then y
is a D-limit point of <{z;) since given any neighborhood N about y,
{#{ @i ¢ N} ¢ F CD. But since X is ultracompact {z;) already has a D-limit
point in X. But then by Theorem 3.2 y must be in X. This shows cly {z;>
CX 50 cly <&y = cly (&) and hence clx {z;)> is compact as required.

4. The Tychoneff Theorem. In this section the analog of the
Tychonoff Theorem is proved for D-compactness, that is, that the product
of D-compact spaces is D-compact. The proof itself is essentially the
same as that given in [7] for the ordinary Tychonoff Theorem.

Suppose {(X“’, a;)} is a ecollection of topological spaces where j
ranges over some index set J. Let (X, ) be the product ;>.<z (X2, o).

€,
Thus

(41) X = {fl (j) « X%}
and a base for the topology o on X consists of all sets of the form

0 = {fI f(ju) e O},

where OUP is an open set of X”"‘). Then for each j the continuous projection
funetion P from X onto X is defined by

Pf) = 1(3) -
Then we may rephrase (4.2) by saying

(4.2) k=1,..,m

0= {pecX| PWp)e0™ k=1,.,m.
13*
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To put this in the framework of first order model theory, we Iet
A=1J 9 o X and let M be the complete model of A. Then the topologi-

j€7 .
cal spaces (X(”,a]-) and the product space (X,o) may be considered
as submodels of M. Also the projection functions P are relations of M.
~Now let D be an ultrafilter over I and let Mp be the D-power of M.

TesoREM 4.1. Let ve X, y ¢ Xp. Then
y e M(v) if and only if PR(y) e M(P(@)) for all jed .
Proof. (i) Suppose ¥y e M(x). Given jed, let 0" be an arbitrary

apen set of X which contains P(j’(m). We need to show P(]f.)('y) 50%)_
Sinee P is continuous there is an open set O of X, # <O, such that

VeeX(z e 0>PP2)e 09,
This statement can be expressed as a sentence of L which interpreted

in Mp says
Vze Xp(z e OD»P%)(z) € O%)) .

Sinee y e M(2), in particular y e Op s0 Py) e 0F as required.

(i) Suppose PP(y) « M (P(x)) for all j ed.
Tet O be a bagie open set of X which contains x, so there are open
sets 0 e gy, k=1,2,...,n such that

(43) VeeX(ze0oPP(E) 0™  or P) e 09 or...or P/(z)e0™).
The corresponding statement true about Mp is
or P#(2) e 0% or ...

wor PPy o).

(4.4) VzeeXplze 0p—>PE2) « OF

Now ¢ 0 50 P‘fk’_(m) € o‘fk{, k=1,2, ..., n. Thus since PE¥(y) e M (P9(x)),
in particular PEP(y) < 0%, k=1,2,..,n. But then by 4.4, yeOp
showing v € M(z) as required. T ’
. TEROREM 4.2. Let D be an ultrafilter over I. Suppose for each j that XY
is D-compact. Then the product space X is D-compact. )
Proof. By Theorem 3.3 we need to show that ever i
) v ; y point of X
I nea,r-standaxrd.()_Let yeXp. For any jed, P(l’;)(y) eX(f;’ a;nlzl since X(g
is D—co.mpact, Pé’(y) must be near-standard by Theorem 3.3. Thus there
is a point ; ¢ I such that PY(y) e M(z;). Let = be the element of X
whose (%th coordinate is «; for each jeJ, thuy PY(z) = x;. Fence PH(y)
€ M(P"(x)) for all jeJ. Then by Theorem 4.1 ye M(z) so y is near-
standard which shows X is D-compact.
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5. Examples. In this section we show that for a given D) the
notion of D-compactness does not coincide with the other usual notions
of compactness. To this end we construct spaces (all of them Hausdorff
and completely regular) which are
(i) ultracompact but not sequentially compact,

(ii) ultracompact but not compact,

(iii) countably ecompact but not D-compact for any non-prineipal
ultrafilter D.

TFinally in order to show that the characterization given by Theo-
rems 3.4 and 3.5 does not work for D-compactness we construct for
any D a separable completely regular Haunsdorff space whieh is D-compact
put not compact and hence has a countable set whose closure is not
compact. In addition this provides by Theorem 3.5 a space which is
D-compact but not ultracompact.

Exawere 1. A space X which is ultracompact but not sequentially
compact.

Let X be a space which is compact but not sequentially compact
(e.g. the product of 2% two point discrete spaces). Then X is the required
example since it is ultracompact by the corollary to Theorem 3.3.

ExAMpLE 2. A space X which is ultracompact but not compact.

Let X be the space of ordinals less than the first uncountable ordinal
under the order topology. X is not compact but the closure qf any countable
set of points is compaet so by Theorem 3.4 X is ultracompact.

The remaining two spaces are constricted as subspaces of the Stone—
Cech compactification A1 of the integers I (cf. [8]). We regard fI as the
space of all ultrafilters D over I topologized by basic open sets of the
form

(D| SeD}y, SCI.

Tt = is a permutation on I, then for D « pI, we define (D) by S ea(D) =
tor some T eD, 8= {=x(@)] ieT}h Clearly (D) el and we say (D)
is a permutation of D. For i eI we denote by 4 the principal Alﬂtrafﬂter
{8] ieN}. Then pI is 2 compact Hausdorff space in which {i] ieI} is
dense. If we denote by c the cardinality of the continuum then |pI| = 2"
A further fact we shall use about fI is that any infinite closed subset
must contain 2° points [5].

BYAMPIE 3. A space X which is countably compact but not D-com-
pact for any non-principal ultrafilter D.

We shall construct X ag a subspace of AI. First we construct a trans-
finite sequence (X dycx, OF subsets of AI, with | X, < c for all 4 <<x;.
The definition is by transfinite induction as follows:
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e ~
() Xo={il i}
(ii) Suppose 7 < %;, and that X, has been defined for all « < ,
X <
We wish to define X,. Note since n<x; that |{J Xo| < s8j-c=¢

a<<ny
Thus there are at most ¢ countable subsets of | J X, and we index them

by ordinals < ¢ obtaining a transfinite sequerfcle {Bere<c. Now define
{¥s e by transfinite induction.
Let { < ¢ and suppose «, has been defined for y < {. Consider the
set of permutations of the set Z = (|J Xu) v {@g}e:-
a<n

|1Z} < ¢ 3o the set of permutations of elements of Z, P(Z), has car-
dinality ¢-¢= c. Now §, has 2° limit points in BI so we define x; to be
a limit point of §, which is not in P(Z). Then we define X, = {z]),..
Finally let X = | J X, with the topology induced by pI. Note that we

N<N8L
have constructed X in such a manner that if D is a non-principal nltra-
filter in X, D e X —X,, then no non-trivial permutation of D ig in X.
Let us first verify that X is countably compact. Liet S be a countable
subset of X. Then for some n<<;, §C [ J X,. But in our construction
a<

1
of ¥, we added a limit point of each § so § has a limit point lying in X,
and hence has a limit point lying in X. Thus X is countably compact.
Next let D be a non-principal ultrafilter over I. We wish to show that X
is not D-compact. By construction there is a non-trivial permutation =
of I such that =(D)¢ X. We wish to show that the sequence

- N 7
(5.1) (), #(2), 7(3), ...
hag no D-limit point in X for suppose it did have a D -limit point ¥ in X.

Let J I.Je any set in B and let N be the meighborhood {F ¢ X| J ¢ F}.
Then since B is a D-limit point of (5.1)

(5.2) I = {i| 7@ e N} eD.

But (i) ¢ Ny <= J e () <= n(i) ¢J. Thus J' = {i[ a(i) e J}. But this
says that = (J’) = J where J €D by (5.2). Thus we have obtained an arbi-
trary set J ¢ E by permuting a set J’ in D by =, 50 B = w(D). But this

is impossible since m(D)¢ X, hence the sequence (5.1) has no D-limit -

point so X is not D-compact.

.EX'AMPLE 4. A separable completely regular Hausdorff space X
Whl@h s D-compact for a given D but which is not compact.
We shall construct X as a subspace of BI. First we conmstruet by

induction a transfinite sequence (X, of sub i
for 1 5 2 ollows: non<sy ubsets of SI, with |X,| <¢
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() Xy={i| ieI}
(i) Suppose 5<%, and that X has been defined for all e <<y,
[ X4l < c. Then sinece 5 <<w;, || Xl < 8;-c=c so-there are c°=c se-
quences of elements of | ) X,. =
a<n
Let X, be a set containing one D-limit point (in pI) of each such se-
quence 50 [X,| < c. Finally let X = | | X, with the topology inherited

<t
from pI. We must establish three facts about X.

(i) X has a countable dense subset, namely X, since X, is dense
in gI. i

(ii) X is D-compact since given any sequence {x;> of points of X,
{#;} C X, for some n < &,. But then by construction X,:, contains a D-limit
point of (x> and since X,.; C X this shows X is D-compact.

(iii) X is not compact because if it were it would be a closed subset
of 31 and would have cardinality 2% But |X|=|U Xl<src=c

n<Ry
Hence X cannot be compact.
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