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Continuation in metric spaces

by
M. Swierczewski, C. Sloyer (Delaware)
and S. Gulden (Lehigh)

The purpose of this paper is to formalize the topological aspects
of “Riemann Surfaces” by constructing function elements on metric
spaces and showing that the behavior is similar to the analogons surfaces
over the complex plane.

We consider a metric space (X, d) and a set Y. For any we X and
r e BE (extended positive reals), if f: S(z, r)=¥ is a function, then f is
called admissible. We call @ the center of f, denoted ¢(f), and » the radius
of f, “denoted #(f). If F is a family of admissible functions from X" to Y,
we call F a family of function elements iftf it satisties the following:

(1) If f ¢ F, then there does not exist a g ¢ ' such that e(g) ¢ S(c(f),
7(f))7 ’(g) < T(f)'—d(c(f)7 C(g)), andfl;S’(c(g), Y(Q)) =4.

@) It f, g e F, W=8cf), () ~ 8le(g), r(9)) # D, and there exists
an a e RL, X such that S(z,a)C W and flS(z, a) = gi8(z, a), then
AW = g|W.

" An easy application of Zorn’s Lemma yields

TaeoREM 1. If F is a non-empty of function elements, then there
ewists a mawimal family containing F.

Hereafter, such a maximal family of function elements will be called
an A -family.

The maximality of an A-family immediately yields

Tumormat 2. Let T be an A-family, feF, yeS(c(fl,r(f), and
v = r(f)—d(e(f), y). Then there ewisls a unigue g e F such that c(g) =1y
and g|W=fIW where W=_8((g), () ~ 8(e(f), r(f)). Moreover,
r{g) ="

Suppose how that F is an A-family on (X, d). Given an feF and
aeRE such that a <r(f), let Nu(f)=1{9 < F| dle(g), e(f)) < o and fIW
= g|W where W = S(c(g),7(9)) ~ S{e(f), 7(f))}. We now define a topolo-
gy G for F as follows: U ¢ G iff for each f e T, there exists an No(f)C U.
It is easy to see that the topology obtained is Hausdorff. Indeed, if we
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define p: F—X by p(f) = ¢(f), then p is a local homeomorphism so that
(F,p,X) becomes a topological sheaf. One cam, of course, obtain the
same sheaf by constructing the sheaf of germs of F'-functions on X,

One can now define direct continuation, continuation, and con-
tinuation along a path in the obvious way (1). Standard methods then
yield:

THEOREM 3. If f; is a continuation of fy along a path a, then 115 a con-
tinuation of fy.

TreeoREM 4. If fi and f, are continuations of f, along a paih a, then
fi=fe

THEOREM 5. Let f be an A-family over (X,d), a a path in X, and
a's I—F o lift of a. Then there exists am & in R such that if Bis a path in X
with d((t), a(2)) < & for all t € I, then there. ewists B': I—F over B. Moreover,
if a(0) = B(0), and (1) = B(1), then B’ can be chosen such that a'(0) = B'(0)
and ao'(1) = B'(1).

We now obtain a generalization of the classic Poincaré—Volterra
theorem. )

TeROREM 6. If F is an A-family over a separable and locally convex

melric space X, then for any path component O(f) of F and = € X, the set
p~Hz) ~ C(f) is at most countable.

Proof. Since X is separable, there exists a countable set 4 CX
such that 4 = X. Let C(f) be any path component in R. Let Yy, € X be
a point such that p=(y,) ~ O(f) # 0, yo=p(f) and f' < p—2(z) A o).
Since f’ ¢ C(f), there exists a path & in F such that @(0) = fand a(1) = f.
For ¢/4 with the ¢ of Theorem 5, there exists a &; ¢ RY for each te I guar-
anteed by loeal convexity such that & < /4 and any two points of
8(a(t), &) can be connected by a unique segment which lies in §(a(t), £/4)
where a(l) = poa(t)= c(&(t)). Since « is continuous, for each % e I there
exists an & e RS such that al8(t, &)1 C 8(a(t), 6;). The collection {S(, &)
t eI} is an open cover of I. Since I is compact, there exists a finite sub-
cover {8(f,, &) i=1, ..., m}. Let B = {8, &)| there does not exist an
B(ty, &) such that 8(ts, &) C S (4, &)} © {8(0, s,), 8(1, &;)}. Renumbering
the /s, we have B = {8 (t;, &)l i=0, ..., n} where ¢; < biy1,0=0, ..., n—1,
t=0, and t,=1. It is easy to see that for 8(ti, &), Sy, i) € B,
8(tsy e1) ~ 8 (bizay £i11) 7 9. Moreover, a[S(t, &) A S(tir1, £041)]1C a8, e0)] ~
™ a[8(tir1, 641)]C Wi ~ Wiyy where W, — 8la(ts), ). Thus, Wi~ Wi
#9 and hence W;n Wiy is an open neighborhood of some element
of X = A. Therefore, W; ~ Wi mn A #£ . Let Yo

=Ty Byy Bay ey Bnpr = Yy
be such that e W,

) Tngy e Wy, and iy, e W; A Wi 4 for

(*) See G. Springer, Introduction to Riemann, surfaces, Massachusetts 1957.
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i=0,..,n—1. Note that each consecutive pair z; and z;., can be
joine(i by a unique segment in S(a(ﬁ) s 3/4). Let o; be the segment
joining @ t0 @i for 4 =0, ..., n. We construct a path g in X as follows:
Define (1) = ay((t—t:)/(frpr— )} for @ e[ty tesal. For ¢ e[ti, tipal, we
abbreviate ai((tfti)/(ti.ﬂ'“ti)) by ﬂz(t). Since ﬁi(ii-i—l) = ﬂi+1(ff+1), A‘L = 0,
n—1, B is a map by the glueing lemma. Clearly, d{8(t), a(t)) < ¢ for
ey
1 tel. B 3
’ By Theorem 5, § can be lifted to a path f: I—F such that §(0) = f
and (1) =f" _ N
Thus, to each element f' of p~(y;) ~ C(f) we have &531gnef1 ‘akﬁmte
d the segments joining o
seb {@g, 1y Bay wery Tn1) CA U {yg, ¥} such that b '
Zﬁ w{t:;, il,zz()’, ’, n, form a path which can be lifted to a path finF
With%BZO) =f and ;5"3(1) = f’. If the same finite set {zy,2;, 7, ...,,o:,,ﬂ[};
is assigned to an f” e p~1(y,) ~ C(f) in the above manner, then f‘=f
by Theorem 4. Thus, no two elements of p~(y;) ~ O(f) can be assigned
by our method the same finite subset of 4 v {y,, 4:}. Since .A w {Yo, Yo}
is countable and the number of finite subsets of a countable set is countable,
p~Xy,) » C(f) is at most countable.

Regu par la Rédaction le 6. 6. 1968
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