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Two complexes that are spines of the three ball
by
Paul F. Dierker (Moscow, Idaho)

Let M® be a 3-manifold with 2-sphere boundary. Using the usual
terminology, we will call M® a fake 3-ball it M® has the homotopy groups
of a 3-ball, and a homology ball if M® has the homology of a 3-ball. It is
well known that there are homology 3-balls that are not 3-balls while
the 3-dimensional Poincaré Conjecture (every fake 3-ball is a 3-ball)
is unsolved.

A 3-manifold with non-empty boundary can be collapsed to a 2-com-
plex K in the interior of the manifold. Moreover, we may assume, without
loss of generality, that K is a normalized spine of the 3-manifold. That
is, every one simplex in K is a face of at most three two simplexes [2].
In this paper we develop a criterion on a normalized spine of a homology
3-ball that will ensure that the homology 3-ball is in fact a 3-ball.

Let K denote a finite geometric #-complex. The following notation
will be used.

F(K)= {o"1|om1 is a face of exactly one "¢ K},

8(K) = {omjom1 ig a face of more than two "¢ K} .
That is, F(XK) is the union of all (n—1)-dimensional free faces of K,
while S(K) is the set of singular points of K.

Then we have:

Lemva 1. If L= 8(K) v F(K), then either Hyu(K, L) is non-trivial
or H,1(K, L) has a subgroup of order two.

Proof. Suppose that Hn(K,L) is trivial and let {c¥i=1, ..., g}
be the set of all n-simplexes in K. Using the fact that every (n—1)-simplex
in K—L is a face of precisely two n-simplexes, an eagy calculation will
show that if 6( ?o’}) = 21 %a;07" then 121 a;07"! is in fact a non-trivial

1€ €
element of order two in H, 1(K,L). We will call a connected complex K
homologically trivial it Hy(K) = 0 for all ¢ > 1.

Lemuva 2. If K is a homologically trivial n-complexr with n == 2 and
L= 8(K) v F(K), then either H, (L) is non-trivial or H,_o(L) has a sub-
group of order two.
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Proof. From the augmented homology sequence of the pair (K,L)
and the hypothesis we find that Hy(K, L) = Hy(L) for ¢ > 1. The pre-
vious lemma then yields the desired result.

Note that in case n = 2 in the above lemma H,(L) must be non-
trivial.

Lmvwa 3. If K is a homologically trivial connected 2-complex with S(K)
homologically trivial, then K 0.

Proof. From the previous lemma we must have H(K) # @. Thus
we may start collapsing K. Suppose that K 2K, and we here reach an
impass in our collapsing. That is, Kn is 2 2-complex with no free faces.
Clearly 8 (&) C 8(XK), so 8(Ha) is homologically trivial, and from the pre-
vious lemma F(Ky) # @, a contradiction.. Thus K™0.

Let D, be the polyhedron which is » disjoint copies of 8 joined by
line segments as in Figure 1.
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Fig. 1

Turther, let D be any polyhedron which is a disjoint union of copies
of various Du's. If K is a two-complex, let 8;(K) denote the set of all »
in 8(K) with a neighborhood which is the product of an are and a triode,
and let S,(K) denote the set of all # in §(K) with & neighborhood which
is a cone over D.

With this notation the following theorem may be given.

TarorEM 1. Let K be a 2-complex which is the spine of a homology
three cell M®. If for each simple closed curve C in S(K), € ~ 8,(K) +# O,
then M® is a 3-ball.

Proof. The idea is to expand K to a complex L C M*® Then since
MK and L2 K, we have by [2] that M xL. L will have been constructed
in such a way that L\0. Thus M0, and by [2] we have the desired
result.

First expand K-at each point of S,(K) by introducing a 3-ball into
each cone as indicated in Figure 2. The 3-complex so obtained is L.

Tt is clear that Z’xK. We now show L0. First we collapse L to
a two complex I’ by collapsing out all the copies of B® introduced in the
expansion of K to L. The result of such collapses is indicated for a typical
case in Figure 3.

Note that these operations introduce no new singularities so that

8(L') C 8(K). Moreover, note that by hypothesis these operations rermove
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a 1-cell from every simple closed curve in S{(X). Thus S(L') is homoto-
pically trivial.

Since expansions and collapses are homotopy equivalences, and M*
was homologically trivial, L” is homologically trivial. Thus by Lemma 3,
L’~0 and the proof is complete.

Fig. 2

It is clear that the proof of the previous theorem depends only on
“preaking” the simple closed curves in S(K). This theorem was not
intended to be exhaustive. For example, the sitnation may arise where

Fig. 3

a simple closed curve in §(K) is embedded in K as indicated in Figure 4
(consider the house with two rooms for example). This simple closed
curve may be broken by ‘“fattening” the disk D to a 3-ball and eollapsing
the 3-ball across the 2-ball B* as indicated in Figure 5.
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Fig. 4 Fig. 5

Perhaps a modification of the method uged by Casler in [1] could
be used to establish the following:

Conjecture. Bvery connected 3-manifold with non-empty boundary
has a spine K for which S(K)= S,(K) v SyK).
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Measurable cardinals and analytic games
by
Donald A. Martin (New York)

Introduction. A subset P of we is determinate if, in the sense
of [5] the game G,(P) is determined. The assumption that every projective
set is determinate implies that every projective set is Lebesgue measurable
(see [6]) and leads to a complete solution to the problem of reduction
and separation prineciples in the classical and effective projective hi-
erarchies [1], [4]. Because if these and other consequences it would e
pleasant to have a proof that every projective set is determinate. The
best available result is that every F,; is determinate [2]. It is not provable
in Zermelo-Fraenkel set theory that every analytic (¥) set is determi-
nate [5]. (})

We assume the existence of a measurable cardinal and prove that
every analytic set is determinate. Our proof is fairly simple and makes
a very direct use of the large cardinal assumption (we present it in terms
of a Ramsey cardinal) and the fact that open games are determined.
We believe that larger cardinals will yield a generalization of our proof
to all projective sets. The assumption that measurable cardinals exist
is known not to imply even that all 43 sets are determinate. (This follows
from [1], [4] and work of Silver.)

§ 1. Definitions. (For more information on the analytical hierarchy
see {7], [8]; on infinite games see [5]; on large cardinals see [10], [11].)

Lét w be the set of all natural numbers. If f: w->4, the function f is
defined by setting f(n) equal to the sequence (f(0),f(1),...,f(n—1)>
of the firgt n values of f. Let Seq be the set of all finite sequences of natural
nunmbers. Let n —%, be some enumeration of Seq with the property that %,
hag length < n. The Kleene-Brouwer ordering of Seq is defined by

f(m) is a proper extension of g(n),
f(m) < (n)«>]or at the least p for which f(p) = g(p),
f(p)<g(p).

(*) Harvey Friedman (unpublished) has shown that the determinateness of Borel sets
cannot be proved in Zermelo set theory. Whether it can be proved in Zermelo-Fraenkel
set theory remains open.
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