

On bimeasurable images of universally measurable sets

by

R. B. Darst (Lafayette, Ind.)

Denote by \mathfrak{B}_B the set of Borel subsets of a Borel subset B of the set R of real numbers, and denote by \mathfrak{B} the set of Borel subsets of R.

A (real-valued) Borel measurable function f defined on an element G of $\mathcal B$ is said to be *bimeasurable* [3] if $f(B) \in \mathcal B$ for each $B \in \mathcal B_G$.

Notice that if f is a bimeasurable function on a Borel set G and H is a Borel subset of G, then the restriction f|H of f to H is a bimeasurable function on H.

R. Purves has established [3] the following characterization of bimeasurable functions.

Let $G \in \mathcal{B}$ and let f be a Borel measurable function defined on G. A necessary and sufficient condition that f be bimeasurable is that there are at most countably many values v in the range of f such that $f^{-1}(v) = \{x \in G; f(x) = v\}$ is uncountable.

A subset E of R is said to be a universally measurable set if $\mu^*(E) = \mu_*(E)$ for each non-atomic probability measure μ on \mathcal{B} , and E is said to be universal null set if $\mu^*(E) = 0$ for each such μ .

It is well known that a necessary and sufficient condition in order that a subset E of R be a universal null set is that each homeomorphism φ of R carries E onto a set $\varphi(E)$ of Lebesgue measure zero. However, the author has shown [1] that, subject to the continuum hypothesis, there exists a universal null subset E of the interval I=[0,1] and a continuous function h of bounded variation on I such that the image h(E) of E is not a universal null set.

The purpose of this note is to show that a bimeasurable function f on R carries a universally measurable set onto a universally measurable set and, hence, carries a universal null set onto a universal null set. To this end, it will be convenient to have the following lemmas.

LEMMA 1. If G is an element of \mathfrak{B} , E is a universally measurable subset of G, and g is a one to one Borel measurable function on G, then g(E) is a universally measurable set.

Proof. Let λ be a non-atomic probability measure on \mathcal{B} . Let μ be defined on the elements H of \mathcal{B}_G by $\mu(H) = \lambda(f(H))$. Since E is a uni-

versally measurable set, for each $\varepsilon > 0$, there exist Borel subsets U and V of G such that $U \subset E \subset V$ and $\mu(V) - \mu(U) < \varepsilon$. Then f(U) and f(V) are Borel sets satisfying $f(U) \subset f(E) \subset f(V)$ and $\lambda(f(V)) - \lambda(f(U)) < \varepsilon$. Hence f(E) is a universally measurable set.

Lemma 2, the analogous result for universal null sets, follows from the proof of Lemma 1.

LEMMA 2. If G is an element of \mathfrak{B} , E is a universal null subset of G. and g is g one to one Borel measurable function on G, then g(E) is a universal null set.

In the course of establishing Theorem 1, it will be convenient to denote by J the set of irrational numbers.

Theorem 1. If E is a universally measurable subset of R and f is a bimeasurable function on R, then f(E) is a universally measurable set.

Proof. Let $B=R-(S_1\cup S_2\cup S_3)$ where S_1 is the set of rational numbers, $S_2=\{f^{-1}(x);\ x\in S_1\}$, and $S_3=\{x;\ f^{-1}(f(x))\}$ is uncountable}. Then B is a Borel subset of J, f(B) is a Borel subset of J, and the restriction g=f|B of f to B is semi-regular: for each x in B, $g^{-1}(x)$ is a countable set. Hence it follows from page 243 of [2] that there is a sequence $\{B_i\}$ of pairwise disjoint Borel subsets of B such that $\bigcup B_i=B$ and the restrictions $g_i=g|B_i$ are one to one Borel measurable functions. Lemma 1 tells us that each $g_i(E\cap B_i)$ is a universally measurable set. Thus, since f(R-B) is a countable set,

$$f(E) = f(E \cap B) \cup f(E - B) = \{ \bigcup g_i(E \cap B_i) \} \cup f(E - B)$$

is a universally measurable set.

Applying Lemma 2 instead of Lemma 1 yields Theorem 2.

THEOREM 2. If E is a universal null subset of R and f is a continuous bimeasurable function on R, then f(E) is a universal null set.

Banach's characterization of CBV functions implies that the CBV function h constructed in [1] satisfies $m(\{x; h^{-1}(x) \text{ is uncountable}\}) = 0$, where m denotes the Lebesgue measure. An examination of the construction for h shows that there is a perfect set P such that $h^{-1}(x)$ is uncountable if $x \in P$.

References

- [1] R. B. Darst, A CBV image of a universal null set need not be a universal null set, to appear in Fund. Math.
 - [2] N. Lusin, Leçons sur les ensembles analytiques et leurs applications, Paris 1930.
 - [3] R. Purves, Bimeasurable functions, Fund. Math. 58 (1966), pp. 149-157.

Reçu par la Rédaction le 14, 10, 1968

On discontinuous additive functions

by

Marcin E. Kuczma (Warszawa)

One of the classical problems of analysis is this:

Let T be a set on the real line R or, more generally, in the n-dimensional Euclidean space R^n , and let f be a real-valued function which is defined in R^n and additive, i.e. satisfies Cauchy's functional equation:

$$f(x+y) = f(x) + f(y)$$

for $x, y \in \mathbb{R}^n$. Suppose that f is upper-bounded on T. What conditions upon the set T imply the continuity of f?

The same problem may be stated for functions which are defined in some convex domain $\Delta \subset \mathbb{R}^n$ and satisfy Jensen's inequality (2) instead of (1):

$$f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2}$$

for $x, y \in \Delta$. Such functions will be referred to as *Q-convex*. This expression is justified by the observation that they satisfy also the inequality

(3)
$$f((1-a)x+ay) \leq (1-a)f(x)+af(y)$$

for $x, y \in A$, α rational, $0 \le \alpha \le 1$; and the latter is an immediate consequence of the generalized Jensen formula

$$f\left(\frac{x_1+\ldots+x_q}{q}\right) \leqslant \frac{1}{q}\left(f(x_1)+\ldots+f(x_q)\right)$$

for $x_1, \ldots, x_q \in A$, $q = 1, 2, 3, \ldots$, which may be found in any textbook on convex functions, e.g. [2]. In order to obtain (3) for a = p/q, $p = 0, 1, \ldots, q$, it suffices to set in (4) $x_1 = \ldots = x_{q-p} = x$, $x_{q-p+1} = \ldots = x_q = y$.

R. Ger and M. Kuczma introduce in [1] the following set classes: A set $T \subset \mathbb{R}^n$ belongs to the class \mathcal{A} iff every Q-convex function $f \colon \Delta \to \mathbb{R}, \ T \subset \Delta \subset \mathbb{R}^n$, upper-bounded on T, is continuous in Δ .

A set $T \subset \mathbb{R}^n$ belongs to the class \mathcal{B} iff every additive function $f \colon \mathbb{R}^n \to \mathbb{R}$, upper-bounded on T, is continuous.