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On bimeasurable images of universally measurable sets
by
R. B. Darst (Lafayette, Ind.)

Denote by Bp the set of Borel subsets of a Borel subset B of the
sett B of real numbers, and denote by $ the set of Borel subsets of R.

A (real-valued) Borel measurable function f defined on an element &
of B is said to be bimeasurable [3] if f(B) ¢ B for each B ¢ Bg.

Notice that if f is a bimeasurable funetion on a Borel set G and H
ig a Borel subset of @, then the restriction flH of f to H is a bimeasurable
function on H.

R. Purves has established [3] the following characterization of
bimeasurable functions.

Let G € $ and let f be a Borel measurable function defined on G. A neces-
sary and sufficient condition that f be bimeasurable is that there aré at most
countably many values v in the range of f such that f(v) = {z € &; f(w) = v}
is uncountable.

A gubset B of R is said to be a universally measurable set if u*(H)
= u,(E) for each non-atomic probability measure 4 on $, and F is said
to be wuniversal null set if u*(E)= 0 for each such u.

It is well known that a necessary and sufficient condition in order
that a subset H of R be a universal null set is that each homeomorphism ¢
of R carries E onto a set ¢(Z) of Lebesgue measure zero. However, the
author has shown [1] that, subject to the continuum hypothesis, there
exists a universal null subset B of the interval I = [0, 1] and a continuous
function % of bounded variation on I such that the image h(E) of F is
not a universal null set.

The purpose of this note is to show that a bimeasurable function f
on R carries a universally measurable set onto a universally measurable
set and, hence, carries a universal null set onto a universal null set. To
this end, it will be convenient to have the following lemmas.

LevMmA 1. If G is an element of B, B s a universally measurable:
subset of @, and g is a one to one Borel measurable function on G then g(E)
i8 o universally measurable set.

Proof. Let 1 be a non-atomic probability measure on 3. Let u be
defined on the elements H of B¢ by u(H) = A(f(H)). Since ¥ is a uni-
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versally measurable set, for each e > 0, there exigt Borel subsets U and ¥
of @ such that UCECV and u(V)—u(U) < e Then f(U) and f(V) are
Borel sets satistying F(U) C f(B) Cf(V) and A(f(V))—A(f(U)) < e. Henee
f(B) is a universally measurable set.

Lemma 2, the analogous result for universal null sets, follows fron
the proof of Lemma 1.

LeMMA 2. If G is an element of B, B is a universal null subset of @.
and g 48 g one to one Borel measurable function on G, then g () is a universal
null set.

In the course of establishing Theorem 1, it will be convenient to
denote by J the set of irrational numbers.

TuEorEM 1. If E is a universally measurable subset of B and f is
a bimeasurable function on R, then f(E) is a universally measurable set.

Proof. Let B=R—(8; v 8, 8;) where §; is the set of rational
numbers, 8, = {f(«); #e8;}, and 8= {w; f_l(f(oa)) is uncountable}.
Then B is a Borel subset of J, f(B) is a Borel subset of J, and the restriction
g = f|B of f to B is semi-regular: for each % in R, g~(») is a countable set.
Hence it follows from page 243 of [2] that there is a sequence {B;} of
pairwise disjoint Borel subsets of B guch that | B; = B and the restrictions
g1 = g|B: are one to one Borel measurable functions. Lemma 1 tells us
that each g:(E ~ B;) is a universally measurable set. Thus, since f(R — B)
i3 a countable set,

f(B) = f(E ~ B) © f(E—B) = {{J g«(E ~ By)} v f(E—B)
is a universally measurable set.

Applying Lemma 2 instead of Lemma 1 yields Theorem 2.

THEOREM 2. If E is a universal null subset of R and f is @ continuous
bimeasurable function on R, then f(B) is o universal null set.

Banach’s characterization of CBV functions implies that the CBV
function kb constructed in [1] satisfies m({w; 2" (x)is uncountable}) = 0,
where m denotes the Lebesgue measure. An examination of the. con-

struction for % shows that there is a perfect set P such that h™'(x) is un-
countable if = e P.
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On discontinuous additive functions
by

Marcin E. Kuczma (Warszawa)

One of the classical problems of analysis is this:

Let T be = set on the real line R or, more generally, in the #-dimen-
sional Buclidean space R, and let f be a real-valued function which is
defined in R"™ and additive, i.e. satisties Cauchy’s functional equation:

(1) fle+y) = flo)+f(y)

for z,y e B". Suppose that f is upper-bounded on T. What conditions
upon the seti 7' imply the continuity of f?

The same problem may be stated for functions which are defined
in some convex domain 4 C R" and satisfy Jensen’s inequality (2) in-
stead of (1):
‘ (oty) _ J@) )

) 1F;J< g
for z, y € 4. Such functions will be referred to as @ -conver. This expression
is justified by the observation that they satisfy also the inequality

(3) fll—a)e+ ay) < (1—a)f(®)+af (y)

for ®,y e 4, o rational, 0 < a <<1; and the latter is an immediate con-
sequence of the generalized Jensen formula

f(w1+...+wq

(4) )<$ﬂm+m+ﬂm)

q
tor @y, .., @ped, ¢ =1,2,3,.., which may be found in any textbook
on convex functions, e.g. [2]. In oré(@y to obtain (3) for o= plq,
p=0,1,..,q it suffices to set in (4) ’vl = . = Dgp = Ly Tg—pi1 = ---
=Ly =Y.

R. Ger and M. Kuczma introduce in [1] the following set classes:

A set TC R"™ belongs to the class # iff every @-convex function
f: A>R, T'C AC R", upper-bounded on T, is continuous in 4.

A get TCR™ belongs to the class B iff every additive function
f: R"—R, upper-bounded on T, is confinuous.


GUEST




