icm[©]

 $g[\overline{W}] \subset \overline{W}$ and diam $\overline{W} < \operatorname{diam} B(q, \alpha) < \gamma, g$ is a γ -map. Then Lemma 1 assures us that the function f, defined for each $E \in 2^X$ by f(E) = g(E) is a continuous γ -map of 2^X . Finally, f misses A because no image under f contains $W \setminus a'b'$, which is a non-empty subset of A.

Case 2. Some point q of A is not a local separating point of X. Let $\gamma > 0$ be given so that $B(q, \gamma/2) \neq X$. Let $N = W \cup bW$ be the closed neighborhood of q of Lemma 5, where $N \subset B(q, \gamma/2)$. Choose any closed neighborhood M of q such that $M \subset W$. Then $M \cup bW$ is a closed subset of N. Choose any $p \in bW$. Define $g_1 \colon M \cup bW \to 2^{bW}$ as follows:

$$g_1(x) = \begin{cases} \{x\} & \text{if} \quad x \in bW, \\ \{p\} & \text{if} \quad x \in M. \end{cases}$$

Then, because bW and M are closed and disjoint, g_1 is continuous. Because bW is a Peano continuum, 2^{bW} is an AR. Then we have a continuous extension g_2 of g_1 to all of N, g_2 : $N \rightarrow 2^{bW}$. Note that $q \notin g_2(x)$ for every $x \in N$, because $q \notin bW$. Now define $g: X \rightarrow 2^X$ as follows:

$$g(x) = egin{cases} \{x\} & ext{if} & x \ \epsilon \ \overline{X \diagdown N} \ , \ g_2(x) & ext{if} & x \ \epsilon \ N \ . \end{cases}$$

Now g is well-defined because the boundary $N \cap \overline{X \setminus N}$ of N is a subset of bW, and $g_2(x) = g_1(x) = \{x\}$ on bW. Also, g is continuous on X and $\varrho(\{x\}, g(x)) < \gamma$ for all $x \in X$. Hence the conditions of Lemma 2 are satisfied by g, and the function $f \colon 2^X \to 2^X$ defined by $f(E) = U\{g(x) \mid x \in E\}$ is a continuous γ -map. Finally, f misses A because $g \notin g(x)$ for each $x \in X$.

References

- [1] R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), p. 1101.
- [2] K. Borsuk and J. W. Jaworowski, On labil and stabil points, Fund. Math. 39 (1952), p. 159.
- [3] N. R. Gray, Unstable points in the hyperspace of connected subsets, Pacific Journ. Math. 23, No. 3 (1967), p. 515.
- [4] O. Keller, Die Homoimorphie der kompakten konvexen Mengen im Hilbertschen Raum, Math. Ann. 105 (1931), p. 748.
- [5] G. T. Whyburn, Analytic topology, Amer. Math. Soc., Colloquium Publications 28.
 - [6] R. L. Wilder, Topology of manifolds, ibidem 32.
- [7] M. Wojdysławski, Rétractes absolus et hyperspaces des continus, Fund. Math. 32 (1939), p. 184.

WESTERN WASHINGTON STATE COLLEGE

Reçu par la Rédaction le 16. 4. 1968

Compactification and the continuum hypothesis

b;

James Keesling (Florida)

Introduction. The purpose of this note is to show the equivalence of the continuum hypothesis with a statement about the metrizable compactifications of a non-compact separable metric space. Also we give a necessary and sufficient condition that $2^{\omega_a} = \omega_{a+1}$ for any ordinal a.

Notation. We use the notation of [2] and [3]. In [3] there is a description of the well-known correspondence between the compactifications of a completely regular space X and the closed subrings of $C^*(X)$ which contain the constants and generate the topology of X. In this paper we call a subring of $C^*(X)$ regular if it contains the constants and generates the topology of X.

We denote a cardinal by ω and consider the cardinals as a subclass of the ordinals in the usual way. If α is an ordinal, then ω_{α} is the α -th infinite cardinal.

Main results. The results of this paper are Theorem 1 and Theorem 2.

THEOREM 1. The continuum hypothesis holds if and only if for some (resp. all) non-compact separable metric space X, the Stone-Čech compactification, βX , of X is the supremum of a chain of metric compactifications of X.

Proof. Suppose that the continuum hypothesis holds, i.e., $2^{\omega_0} = \omega_1$. Then $|C^*(X)| = 2^{\omega_0}$ and $C^*(X)$ can be subscripted $C^*(X) = \{g_a: a < \omega_1\}$ by the countable ordinals. Let F be a closed regular separable subring of $C^*(X)$. Then $e_F \beta F$ corresponds to a metric compactification of X. Now let $\gamma < \omega_1$ and let F_{γ} be the smallest closed regular subring of $C^*(X)$ containing F and $\{g_a: a \leq \gamma\}$. Then F_{γ} is separable and $\{e_{F_{\gamma}}\beta F_{\gamma}: \gamma < \omega_1\}$ is a chain of metric compactifications of X. Since $\bigcup_{\gamma < \omega_1} F_{\gamma} = C^*(X)$ we must have $\sup\{e_{F_{\gamma}}\beta F_{\gamma}\} = \beta X$.

Now let us show the converse. Let $\{x_i\}$ be a countable closed discrete subset of X which is non-compact separable metric. Let $A \subset \{x_i\}$ and associate with A the function f_A where $f_A \mid \{x_i\} = \chi_A$, the characteristic function of A on $\{x_i\}$. Then $\{f_A: A \subset \{x_i\}\}$ is a closed discrete subset of

 $C^*(X)$ with cardinality 2^{∞_0} and with $||f_A - f_B|| \ge 1$ for $A \ne B$ subsets of $\{x_i\}$. Now suppose that $\{g_\gamma Z_\gamma: \gamma \in \Gamma\}$ is a chain of metric compactifications of X with $\sup\{g_\gamma Z_\gamma\} = \beta X$. Then let $F_\gamma = \{f \circ g_\gamma: f \in C^*(Z_\gamma)\}$. Then F_γ is the closed regular subring of $C^*(X)$ associated with $g_\gamma Z_\gamma$. Since $\{g_\gamma Z_\gamma\}$ is a chain, so is $\{F_\gamma\}$ with $\bigcup_{\gamma \in \Gamma} F_\gamma^* = C^*(X)$. By transfinite induction define a function $h: \{a < \omega_1\} \to \{F_\gamma\}$ such that for $a < \beta < \omega_1$, $h(a) \subset h(\beta)$ and $h(a) \ne h(\beta)$. Then it can be shown that $\bigcup_{a < \omega_1} h(a) = C^*(X)$. Consider the map $F: \{A: A \subset \{g_i\}\} \to \{a: a < \omega_1\}$ defined by $F(A) = \min\{a: f_A \in h(a)\}$.

map $F: \{A: A \subset \{x_i\}\} \to \{a: \alpha < \omega_1\}$ defined by $F(A) = \min\{a: f_A \in h(\alpha)\}$. Then F is at most countable to one and onto a cofinal subset of $\{a: \alpha < \omega_1\}$. This implies that $\omega_1 = 2^{\omega_0}$.

THEOREM 2. If X is discrete and $|X| = \omega_a$, then $\omega_{a+1} = 2^{\omega_a}$ if and only if βX is the supremum of a chain of compactifications of X each of which has weight ω_a .

The proof of Theorem 2 is similar to that of Theorem 1 and so is omitted.

References

- [1] P. J. Cohen, Set theory and the continuum hypothesis, 1966.
- [2] L. Gillman and M. Jerison, Rings of continuous functions, 1960.
- [3] J. Keesling, Open and closed mappings and compactification, Fund. Math. 65 (1969), pp. 73-81.

Reçu par la Rédaction le 8. 5. 1968

Some properties of the induced map

by

K. R. Gentry. (Greensboro)

1. Introduction. We use the notation and terminology of Eilenberg and Steenrod [1] for inverse limit sequences (the index set I is the positive integers) of topological spaces and continuous functions. If (X, f) is an inverse limit sequence, then we have the bonding maps $f_n^m \colon X_m \to X_n$ ($n \le m$) and the continuous projections $f_n \colon X_m \to X_n$. By a map Ψ from the inverse limit sequence (X, f) to the inverse limit sequence (Y, g) we mean a sequence of continuous functions $\psi_n \colon X_n \to Y_n$ such that $\psi_n f_n^{n+1} = f_n^{n+1} \psi_{n+1}$ for all $n \in I$. The inverse limit of Ψ is the function ψ_∞ from X_∞ into Y_∞ such that if $x \in X_\infty$, $x = (x_1, x_2, x_3, ...)$, then $\psi_\infty(x) = (\psi_1(x_1), \psi_2(x_2), \psi_3(x_3), ...)$.

Eilenberg and Steenrod have shown that (1) ψ_{∞} is a continuous function from X_{∞} into Y_{∞} (Theorem 3.13), and (2) if each ψ_n is a 1-1 function of X_n onto Y_n , then ψ_{∞} is a 1-1 function of X_{∞} onto Y_{∞} (Theorem 3.15). In this note we investigate further the relationship between properties of the ψ_n and properties of ψ_{∞} .

2. Periodicity. A continuous function f from X into itself is said to be *periodic* provided there exists a positive integer n such that $f^n(x) = x$ for all $x \in X$. The least such integer n is called the *period* of f. Assuming X to be metric, f is said to be almost periodic provided that for any $\varepsilon > 0$ there exists a positive integer n such that $d(x, f^n(x)) < \varepsilon$ for all $x \in X$.

Let Ψ be a map of (X,f) into itself, where each X_n is metric. The following example shows that ψ_{∞} may fail to be periodic even though each ψ_n is periodic. For each $n \in I$, let (1) $X_n = \{z \in R^2 | |z| = 1\}$, (2) f_n^{n+1} : $X_{n+1} \to X_n$ be defined by $f_n^{n+1}(z) = z^2$, and (3) $\psi_n: X_n \to X_n$ be defined by $\psi_n(z) = \exp(2\pi i/2^n) \cdot z$. Then $\Psi = \{\psi_n\}$ is a map of (X,f) into itself such that each ψ_n is periodic but ψ_{∞} is not. However, noting ψ_{∞} is almost periodic does suggest the following:

THEOREM 1. If each ψ_n is periodic, then ψ_{∞} is almost periodic.