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g[W]C T and diam W < diamB(g, ) <y, ¢ i8 & y-map. Then Lemma 1
assures us that the function f, defined for each X e 2* by f(H) = g(I)
is a continuous y-map of 9%, Finally, f misses 4 because no image under f
contains WA\a'd’, which is a non-empty subset of A.

Cage 2. Some point ¢ of 4 is not a local separating point of X,
Let y>0 be given so that B(g,»/2) # X. Let N=WubW be the
closed neighborhood of ¢ of Lemma 5, where N C B(q, y/2). Choose any
closed neighborhood M of ¢ such that M CW. Then M v bW is a closed
subset of . Choose any p ¢ bW. Define g2 M w bW->2"" ag follows:

_"[{m} if webW,
GO=\0n i wed.

Then, because bW and M are closed and disjoint, ¢, is continuous.
Because bW is a Peano continuum, 2% iy an AR. Then we have a con-
tinuous extension g, of gy to all of N, go: N—2"". Noto that g ¢ g(e) for
every < N, because ¢ ¢ bW. Now define g: X~~2% as follows:

IR if weX\N,
g(m)ﬂ{gz(m) it meN.

subset of bW, and gu(») = gy(#) = {#} on dbW. Also, ¢ is continuous on
X and o({x}, (@) < y for all ¢ X. Hence the conditions of Lemma 2
are satisfied by g, and the function f: 2% -+2% defined by f(B) = U{g(w)]
# e B} is a continuous y-map. Finally, f misses A because g ¢ g(a) for
each » ¢ X.
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Compactification and the continuum hypothesis
by
James Keesling (Florida)

Introduetion. The purpose of this note is to show the equivalence
of the continuum hypothesis with a statement about the metrizable
compactifications of a non-compact separable metric space. Also we give
a necessary and sufficient condition that 2°¢ = wey; for any ordinal a.

Notation. We use the notation of [2] and [3]. In [3] there is a de-
seription of the well-known correspondence between the compactifications
of o completely regular space X and the closed subrings of ¢*(X) which
contain the constants and generate the topology of X. In this paper we
call a subring of C*(X) regular if it contains the constants and generates
the topology of X.

We denote a cardinal by « and consider the cardinals as a subclass
of the ordinals in the usual way. If « is an ordinal, then o, is the a-th
infinite cardinal.

Main results. The results of this paper are Theorem 1 and Theo-
rem 2.

TEEOREM 1. The continuum hypothesis holds if and only if for some
(resp. all) non-compact separable metric space X, the Stone-Cech compactifica-
tion, pX, of X is the supremum of a chain of metric compactifications of X.

Proof. Suppose that the continuum hypothesis holds, i.e., 2% = .
Then |C*(X)| = 2 and C*(X) can be subscripted C*(X)= {go: a << @}
by the countable ordinals. Let F e a closed regular separable subring of
C*(X). Then erfF corresponds to & metric compactification of X. Now
let y < w; and let I, be the smallest closed regular subring of C*(X) con-
taining F and {g: a < y}. Then F, is separable and {er,fF,: y < @} is
a chain of metric compactifications of X. 8ince | JF, = C*(X) we must

y<oL
have sup{es, fF,} = pX.

Now let us show the converse. Let {2:} be a countable closed discrete
subset of X which is non-compact separable metric. Let A C {;} and
associate with 4 the function f. where fu| {#;} = x4, the characteristic
function of 4 on {w;}. Then {fs: AC {w}} is a closed discrete subset of
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C*(X) with cardinality 2% and with |[fa—fsll 51 for 4 5B subsets
of {#}. Now suppose that {g,Z,: y € I} is a chain of metric compactifica-
tions of X with sup{g,Z,} = pX. Thenlet Iy = {f o g,: fe C*(Z,)}. Then T,
is the closed regular subring of C*(X) associated with g, 7Z,. Since {g, Z}
is a chain, so is {#,} with [ %F; = (" X). By transfinite induection. define

a function h: {a< o} —{F,} such that for o< f< wy, hla) Ch(f) and
h(a) % h(B). Then it can be shown that | J k(a) = C*(X). Consider the

a<swy
map F: {4: A C{u}]—~{e: a< o} defined by I'(A) = min{a: f4 <h(a)}.
Then F is at most countable to one and onto a cofinal subset of {a: « < o}
This implies that o, = 2™

only if BX is the supremum of @ chain of compactifications of X cach of
which has weight w,.

The proof of Theorem 2 is similar to that of Theorem 1 and so is
omitted.
References
[11 P. J. Cohen, Set theory and the continuum hypothesis, 1966.

[2] L. Gillman and M. Jexrison, Rings of continuous funclions, 1960.

[3]1 J. Keesling, Open and closed mappings and compactifioation, Tund. Math.
65 (1969), pp. 73-81.

Regu par lo Rédaction le 8. 5. 1968

Some properties of the induced map
by

K. R. Gentry. (Greensboro)

1. Introduction. We use the notation and terminology of Eilen-
Derg and Steenrod [1] for inverse limit sequences (the index set I is the
positive integers) of topological spaces and continnous functions. If (X, f)
is an inverse limit sequence, then we have the bonding maps fr: Xn—>Xn
(n < m) and the comtinuous projections fn: Xo—Xn. By 2 map ¥ from
the inverse limit sequence (X,f) to the inverse limit sequence (Y, q)
we mean a sequence of continuous functions y: X, Y, such that oo fatt
= {2 ypyq for all w ¢ I. The inverse limit of ¥'is the function ye from Xe

into Y. such that if @ e Xw, &= (1, By, sy ...), then pe(s) = (s (1),

Po®2) 5 Pa(Ts) ) .

Eilenberg and Steenrod have shown that (1) pe is & continuous fune-
tion from X into Yo (Theorem 3.13), and (2) if each p, is a 1-1 function
of X, onto Y, then pe is & 1-1 function of X onto Yo (Theorem 3.15).
Tn this note we investigate further the relationship between properties
of the w, and properties of ye.

2. Periodicity. A continuous funetion f from X into itself is
said to be periodic provided there exists a positive integer # such that
f"@) = @ for all @ ¢ X. The least such integer » is called the period of f.
Assuming X to be metrie, f is said to be almost periodic provided that for
any ¢> 0 there exists a positive integer 7 such that d(m, f“(ac)) < ¢ for
all e X.

Tet ¥ be a map of (X,f) into iself, where each X, is metric.
The following example shows that we may fail to be periodic even
though each wy, is periodic. For each m eI, leb (1) Xu= {z e R|s| = 1},
(@) f2*% Xpy1—Xa be defined by fa''(s) = 2%, and (3) yu: Xu—>Xn be
defined by ya(z) = exp (2ni[2")-2. Then ¥'= {yn} is a map of (X, f) into
itself such that each u, is periodic but ye is not. However, noting yo is
almost periodic does suggest the following:

TaEOREM 1. If each ya is periodic, then pe is almost periodic.
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