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C*(X) with cardinality 2% and with |[fa—fsll 51 for 4 5B subsets
of {#}. Now suppose that {g,Z,: y € I} is a chain of metric compactifica-
tions of X with sup{g,Z,} = pX. Thenlet Iy = {f o g,: fe C*(Z,)}. Then T,
is the closed regular subring of C*(X) associated with g, 7Z,. Since {g, Z}
is a chain, so is {#,} with [ %F; = (" X). By transfinite induection. define

a function h: {a< o} —{F,} such that for o< f< wy, hla) Ch(f) and
h(a) % h(B). Then it can be shown that | J k(a) = C*(X). Consider the

a<swy
map F: {4: A C{u}]—~{e: a< o} defined by I'(A) = min{a: f4 <h(a)}.
Then F is at most countable to one and onto a cofinal subset of {a: « < o}
This implies that o, = 2™

only if BX is the supremum of @ chain of compactifications of X cach of
which has weight w,.

The proof of Theorem 2 is similar to that of Theorem 1 and so is
omitted.
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Some properties of the induced map
by

K. R. Gentry. (Greensboro)

1. Introduction. We use the notation and terminology of Eilen-
Derg and Steenrod [1] for inverse limit sequences (the index set I is the
positive integers) of topological spaces and continnous functions. If (X, f)
is an inverse limit sequence, then we have the bonding maps fr: Xn—>Xn
(n < m) and the comtinuous projections fn: Xo—Xn. By 2 map ¥ from
the inverse limit sequence (X,f) to the inverse limit sequence (Y, q)
we mean a sequence of continuous functions y: X, Y, such that oo fatt
= {2 ypyq for all w ¢ I. The inverse limit of ¥'is the function ye from Xe

into Y. such that if @ e Xw, &= (1, By, sy ...), then pe(s) = (s (1),

Po®2) 5 Pa(Ts) ) .

Eilenberg and Steenrod have shown that (1) pe is & continuous fune-
tion from X into Yo (Theorem 3.13), and (2) if each p, is a 1-1 function
of X, onto Y, then pe is & 1-1 function of X onto Yo (Theorem 3.15).
Tn this note we investigate further the relationship between properties
of the w, and properties of ye.

2. Periodicity. A continuous funetion f from X into itself is
said to be periodic provided there exists a positive integer # such that
f"@) = @ for all @ ¢ X. The least such integer » is called the period of f.
Assuming X to be metrie, f is said to be almost periodic provided that for
any ¢> 0 there exists a positive integer 7 such that d(m, f“(ac)) < ¢ for
all e X.

Tet ¥ be a map of (X,f) into iself, where each X, is metric.
The following example shows that we may fail to be periodic even
though each wy, is periodic. For each m eI, leb (1) Xu= {z e R|s| = 1},
(@) f2*% Xpy1—Xa be defined by fa''(s) = 2%, and (3) yu: Xu—>Xn be
defined by ya(z) = exp (2ni[2")-2. Then ¥'= {yn} is a map of (X, f) into
itself such that each u, is periodic but ye is not. However, noting yo is
almost periodic does suggest the following:

TaEOREM 1. If each ya is periodic, then pe is almost periodic.
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Proof. Let the metric for X, be denoted by dy and c¢hoose the metrie ¢
for X, such thab if #,y € Xooy &= (@1, %2y %5y )y Y= Y1, Y2, Ys) -..), then

(2=}
\ dn(2
o) = D) et
= 2[4 dn(n, Ya))
Let ¢ > 0 be given. There exists a positive integer m such that

o
31

2 5;;< &.

Nl

Since for any @, yn € X,

An(@ny Yn)

1
21+ dnlmn, yn)] 2"
we have that for any #, y ¢ X,
% d
Z . n(ny Yn) <.
a2 T4 dn (@ny Yn)]

a Let kn denote the period of y, and let k=l ky...km. If @ € X,
en

'”}7 dn("l):i(a"n)a wn) EOW d (y)ln(.’ﬂ ), @ )
_ . . + n\ P Lp )y T
7:.2&1) 2 [1+dn("/’f]1(mn)7 mn)] n*%l—l 2%[1__'_ dn("/)k(wn); mn)J

Th.at the first sum is zero follows from the way k was chosen,
‘ It is not known to me whether each ¥ being almost periodic implies pe
is almost periodic. However, assuming the X, are compact, we do gel
that the property of being almost periodic iy preserved. ’ i

TEmOREM 2. If each X, is compac :
0 . pact and each y, is almost iodic
then v 48 almost periodic. " o periodi

< O04e=c¢.

. > g o €
PI'OOf Let & 0 be 1ven. There existy o positi
‘ pos tive in ‘4(.‘1,.,(" er m such

2 An(ny Yn) 8
21+ d <3
n=mepd L+ dn(@n, yn)]

Since each X, is compact, the bondi
_ ¢ : pact, onding maps are uniformly con-
tn;uous. Using fﬁlns fact, we get the following positive real nufnbers:
% O~y Such that i dm(@m, ym) < m_y, then dm_l(fﬁﬂ(wm),f,’,':__l(ym)) < ¢f2m;
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& Op_s such that if dn(®m,¥m) < Om-s, then dn-o(fm—2(@n), fr-2ym)
<ef2m, ..o & such that i dn(@m,Ym)< 6y, then d&(fI@m), " (ym)
< ¢/2m. Now since yr is almost periodic there exists a positive integer
% such that dm(@m, Prtm)) < Min(e2m, 81, s, ey Omes) for all @ € X

Let 2z ¢ Xo. We will show that d(w, 1,07;(50))< e. By the way &k was
chosen s0 that dum (@m, pi(@n) < &f2m. AlSO  doms(@m, Yros(Bm-1)) =
s (F2mt (B) y P f s () = s (Fris(m) s Fis¥l@)) < £/2m. The
last equality follows from the fact that y}fi** = f1" "y} for all positive
integers j and », and the last inequality follows since dm (5 zp,’f,(a:m)) < Om—1-
Similarly it can be shown that ds (mn,zpﬁ(m,.)) < gf2mfor alln,1 < n << m—2.
So

: + YOOW (Zn(mu;wﬁ(mn))
< 9Lt dufon, va(e))] 2y 2L dalns via(oa))]

3. Interior and closed maps. A function f: XY is said to
be interior (closed) if it is continuous and the image of every open (closed)
subset of X is open (closed) in ¥. Let ¥ be a map of (X, f) into (¥, ¢).
The following example shows that each y, being interior does not imply
that e is interior. For each n e I, let (1) Xy be the positive integers with
discrete topology, (2) 2t Xn41—X, be the identity map, (3) ¥x be 27
distinet points {y(n, 1), ¥(n,2), ..., ¥(n, 2™} with discrete topology,

(9 R Tun—r T,
be defined by

w1 oyl 1<i<2,

gn Ly (n+1,5)] lyn,j—2") 2"+1<j< ont1

(3) Ynt Xn—>Yn

be defined by wa(l)=y(n,1), pa(2)=y(n,2), .., va(2") =y (1, 2"),
@) =y, 1), el +2) =y (1, 2), s ya(2"+2) =y (1, 2), ...
ey Pa(2® 2" 41) = y(n, 1), ... Bach vy, is interior and onfo but ye is not
interior. For ({1}X Xyx XyX ..) n X = (1,1,1,...) is open in X bub
wo[(1,1,1,...)] is not open in Y. To see wo[(1,1,1,...)] is not open
in Y. we note that Y. is homeomorphic to the Cantor set.

Under certain restrictive but useful conditions we do get that the
property of being interior is preserved.
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TrEoREM 3. Suppose that (1) each pn is intorior and (2) for each n e I,

i

Yu(®n) =Yn, Y Ynt1) = Yn

implies ( 2 g) o Prpa(Ynas) #D. Then Yo is interior.

Proof. Tet Us be an open subset of Xe. We can assume there exists
a positive integer  and open subset Uy of Xy such that Ue = fr (Un).
Tt follows thabpwfy ( Un) = g n( Un)- Forleby = (41, Y2, Y, ---) € Yoofn N Tn).
Then 4 = Yool@yy oy Bay ) Where Tn € Un. Thus we(ws) € pa(Un) and so

1 . -1

Y = Yool@1y By By ) € G ¥u(Un). NOwW let g = (1, Y2, Yas ) € Gu yu(Un)
Then ¥y € Yu( Us) and 80 there is an @y € Un such that yu(ta) = ya. Consider
2= (fl(@n), f1(@n), ooy fo (@), Ty Bnts Bty oo Where 2py e ( Y ) A
n 1/"1—1_—}-1(?/77&1): Znt2 € (faﬂmyif)—l(zn+1) i "/);41-2(?/7’%2)7 ey & Gﬁ;l(Uﬂ) and o 1/)°°(z)
e Yool (Un). Since po(e) = y We have that y € Yoo (Uh).

yn being interior and ga being continuous implies g;lwn( U,) is opewn.
Thus pee{ Ueo) 15 0pen since we have shown e Uso) = g 9 Un).

Applying a theorem of Himmelberg we are able to get conditions
which imply that closed is preserved.

TrEoREM 4. Suppose (1) each Xn is Hausdorff, (2) cach u s onlo
and closed and (3) v " (Yn) s compact for all yn € Yn, 1€ I. Then e 98 closed.

Proof. By Theorem 1 of [2], 0: [ [ Xn—][ ¥y defined by 0(wy, @y, #y,...)
= (pu(m,), Po() , () ...) is closed. Since each X, is Hausdortt X i3
a closed subset of [] X,. Thus ye which is ¢ restricted to Xo iy a closed
map of X into Yo

4. Monetone, light and compact maps. A continuous function
f: X~ is said to be monotone provided that, for each point y € Y, the
inverse image f'(y) is connected.

LevmMA 1. The inverse Limit of compact connected spaces is connected.

TemorEM 5. Let ¥ be o map of (X, f) into (¥, g). Suppose cach Xy
is compact Hausdorff and each yy is monotone. Then ye 8 monotone.

Proof. Leby = (31, Uay Yoy ) € Yoor For each n e I, yr (yn) is & com-
pact, connected subset of X,. This follows since the y, are monotone.
IE AP 55 f7 vegtricted 50 niy(Ya4a), then kAT is a continwous function
from ppta(¥ass) 060 Y (ya). Let O be the inverge limit of the inverse
sequence (yn'(ya), hn' ). Since each vy (ys) i3 compact and conmected
lemma 1 implies that Oy is connected. The proot of the theorem then
follows since Coo = 9o ().

A continuous function f: X—¥ is said to be light provided that,
for each y ¢ ¥, the inverse image f *(y) is totally disconnected.

LemMa 2. The inverse limit of totally disconnected spaces is totally
disconnected.
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TrEOREM 6. Lot ¥ be a map of (X, f) inte (X, g). If each yn is light,
then vy 48 light.

Proofe Let 4= (Ui, Yo, UYsy ) € Yoo. Since the y, are light, each
v (y) is totally disconnected. If ' is fo ™" restricted to Yna(Yna1), Bt is
continuous function from w;ll(ynﬂ) into yy (ya). Let D be the inverse
limit of the inverse sequence (yn’(yx), 7a*'). By Lemma 2, De is totally
disconnected. The proof of the theorem follows since De = Yoo (Y)-

A continuous function f: X—Y is said to be compact if the inverse
image of every compact set is compact.

TrgoREM 7. Lot ¥ be a map of (X, ) into (¥, g). If Yo is Hausdorff
and each v, s compact, then ye 1§ compact.

Proof. Let ¢ be a compact subset of Yo, Then p'(0) C [y (9:(0) X
92 (3a(0) X ...] » Xeo. Bach gn(0) is compact and, since the wu, are
compact, each yy*(9(C)) is compact. So [y1 (6:(0)) X 95 (ga( €)) X o] N Koo
is compact. ¢ being compact and a subset of a Hausdorff space implies C
is closed. Thus yx'(C) is a closed subset of & compact set and hence compact.
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