

 $C^*(X)$ with cardinality 2^{∞_0} and with $||f_A - f_B|| \ge 1$ for $A \ne B$ subsets of $\{x_i\}$. Now suppose that $\{g_\gamma Z_\gamma: \gamma \in \Gamma\}$ is a chain of metric compactifications of X with $\sup\{g_\gamma Z_\gamma\} = \beta X$. Then let $F_\gamma = \{f \circ g_\gamma: f \in C^*(Z_\gamma)\}$. Then F_γ is the closed regular subring of $C^*(X)$ associated with $g_\gamma Z_\gamma$. Since $\{g_\gamma Z_\gamma\}$ is a chain, so is $\{F_\gamma\}$ with $\bigcup_{\gamma \in \Gamma} F_\gamma^* = C^*(X)$. By transfinite induction define a function $h: \{a < \omega_1\} \to \{F_\gamma\}$ such that for $a < \beta < \omega_1$, $h(a) \subset h(\beta)$ and $h(a) \ne h(\beta)$. Then it can be shown that $\bigcup_{a < \omega_1} h(a) = C^*(X)$. Consider the map $F: \{A: A \subset \{g_i\}\} \to \{a: a < \omega_1\}$ defined by $F(A) = \min\{a: f_A \in h(a)\}$.

map $F: \{A: A \subset \{x_i\}\} \to \{a: \alpha < \omega_1\}$ defined by $F(A) = \min\{a: f_A \in h(\alpha)\}$. Then F is at most countable to one and onto a cofinal subset of $\{a: \alpha < \omega_1\}$. This implies that $\omega_1 = 2^{\omega_0}$.

THEOREM 2. If X is discrete and $|X| = \omega_a$, then $\omega_{a+1} = 2^{\omega_a}$ if and only if βX is the supremum of a chain of compactifications of X each of which has weight ω_a .

The proof of Theorem 2 is similar to that of Theorem 1 and so is omitted.

References

- [1] P. J. Cohen, Set theory and the continuum hypothesis, 1966.
- [2] L. Gillman and M. Jerison, Rings of continuous functions, 1960.
- [3] J. Keesling, Open and closed mappings and compactification, Fund. Math. 65 (1969), pp. 73-81.

Reçu par la Rédaction le 8. 5. 1968

Some properties of the induced map

by

K. R. Gentry. (Greensboro)

1. Introduction. We use the notation and terminology of Eilenberg and Steenrod [1] for inverse limit sequences (the index set I is the positive integers) of topological spaces and continuous functions. If (X, f) is an inverse limit sequence, then we have the bonding maps $f_n^m \colon X_m \to X_n$ ($n \le m$) and the continuous projections $f_n \colon X_m \to X_n$. By a map Ψ from the inverse limit sequence (X, f) to the inverse limit sequence (Y, g) we mean a sequence of continuous functions $\psi_n \colon X_n \to Y_n$ such that $\psi_n f_n^{n+1} = f_n^{n+1} \psi_{n+1}$ for all $n \in I$. The inverse limit of Ψ is the function ψ_∞ from X_∞ into Y_∞ such that if $x \in X_\infty$, $x = (x_1, x_2, x_3, ...)$, then $\psi_\infty(x) = (\psi_1(x_1), \psi_2(x_2), \psi_3(x_3), ...)$.

Eilenberg and Steenrod have shown that (1) ψ_{∞} is a continuous function from X_{∞} into Y_{∞} (Theorem 3.13), and (2) if each ψ_n is a 1-1 function of X_n onto Y_n , then ψ_{∞} is a 1-1 function of X_{∞} onto Y_{∞} (Theorem 3.15). In this note we investigate further the relationship between properties of the ψ_n and properties of ψ_{∞} .

2. Periodicity. A continuous function f from X into itself is said to be *periodic* provided there exists a positive integer n such that $f^n(x) = x$ for all $x \in X$. The least such integer n is called the *period* of f. Assuming X to be metric, f is said to be almost periodic provided that for any $\varepsilon > 0$ there exists a positive integer n such that $d(x, f^n(x)) < \varepsilon$ for all $x \in X$.

Let Ψ be a map of (X,f) into itself, where each X_n is metric. The following example shows that ψ_{∞} may fail to be periodic even though each ψ_n is periodic. For each $n \in I$, let (1) $X_n = \{z \in R^2 | |z| = 1\}$, (2) f_n^{n+1} : $X_{n+1} \to X_n$ be defined by $f_n^{n+1}(z) = z^2$, and (3) $\psi_n: X_n \to X_n$ be defined by $\psi_n(z) = \exp(2\pi i/2^n) \cdot z$. Then $\Psi = \{\psi_n\}$ is a map of (X,f) into itself such that each ψ_n is periodic but ψ_{∞} is not. However, noting ψ_{∞} is almost periodic does suggest the following:

THEOREM 1. If each ψ_n is periodic, then ψ_{∞} is almost periodic.

Proof. Let the metric for X_n be denoted by d_n and choose the metric d for X_{∞} such that if $x, y \in X_{\infty}, x = (x_1, x_2, x_3, ...), y = (y_1, y_2, y_3, ...)$, then

$$d(x, y) = \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n [1 + d_n(x_n, y_n)]}.$$

Let $\varepsilon > 0$ be given. There exists a positive integer m such that

$$\sum_{n=m+1}^{\infty} \frac{1}{2^n} < \varepsilon.$$

Since for any $x_n, y_n \in X_n$,

$$\frac{d_n(x_n, y_n)}{2^n [1 + d_n(x_n, y_n)]} < \frac{1}{2^n}$$

we have that for any $x, y \in X_{\infty}$,

$$\sum_{n=m+1}^{\infty} \frac{d_n(x_n, y_n)}{2^n [1 + d_n(x_n, y_n)]} < \varepsilon.$$

Let k_n denote the period of ψ_n and let $k = k_1 k_2 ... k_m$. If $x \in X_{\infty}$, then

 $d(\varphi_{\infty}^{k}(x), x)$

$$= \sum_{n=1}^m \frac{d_n(\psi_n^k(x_n), \ x_n)}{2^n[1 + d_n(\psi_n^k(x_n), \ x_n)]} + \sum_{n=m+1}^\infty \frac{d_n(\psi_n^k(x_n), \ x_n)}{2^n[1 + d_n(\psi_n^k(x_n), \ x_n)]} < 0 + \varepsilon = \varepsilon \ .$$

That the first sum is zero follows from the way k was chosen.

It is not known to me whether each ψ_n being almost periodic implies ψ_{∞} is almost periodic. However, assuming the X_n are compact, we do get that the property of being almost periodic is preserved.

Theorem 2. If each X_n is compact and each ψ_n is almost periodic, then ψ_∞ is almost periodic.

Proof. Let $\varepsilon>0$ be given. There exists a positive integer m such that for any $x,y\in X_\infty,$

$$\sum_{n=m+1}^{\infty} \frac{d_n(x_n, y_n)}{2^n [1 + d_n(x_n, y_n)]} < \frac{\varepsilon}{2}.$$

Since each X_n is compact, the bonding maps are uniformly continuous. Using this fact, we get the following positive real numbers: a δ_{m-1} such that if $d_m(x_m, y_m) < \delta_{m-1}$, then $d_{m-1}(f_{m-1}^m(x_m), f_{m-1}^m(y_m)) < \varepsilon/2m$;

a δ_{m-2} such that if $d_m(x_m, y_m) < \delta_{m-2}$, then $d_{m-2}(f_{m-2}^m(x_m), f_{m-2}^m(y_m))$ $< \varepsilon/2m$, ... a δ_1 such that if $d_m(x_m, y_m) < \delta_1$, then $d_1(f_1^m(x_m), f_1^m(y_m))$ $< \varepsilon/2m$. Now since ψ_m is almost periodic there exists a positive integer k such that $d_m(x_m, \psi_m^k(x_m)) < \min(\varepsilon/2m, \delta_1, \delta_2, ..., \delta_{m-1})$ for all $x_m \in X_m$.

Let $x \in X_{\infty}$. We will show that $d(x, \psi_n^k(x)) < \varepsilon$. By the way k was chosen so that $d_m(x_m, \psi_m^k(x_m)) < \varepsilon/2m$. Also $d_{m-1}(x_{m-1}, \psi_{m-1}^k(x_{m-1})) = d_{m-1}(f_{m-1}^m(x_m), \psi_{m-1}^mf_{m-1}^m(x_m)) = d_{m-1}(f_{m-1}^m(x_m), f_{m-1}^m\psi_m^k(x_m)) < \varepsilon/2m$. The last equality follows from the fact that $\psi_j^n f_j^{j+1} = f_j^{j+1} \psi_{j+1}^n$ for all positive integers j and n, and the last inequality follows since $d_m(x_m, \psi_m^k(x_m)) < \delta_{m-1}$. Similarly it can be shown that $d_n(x_n, \psi_n^k(x_n)) < \varepsilon/2m$ for all $n, 1 \le n \le m-2$. So

$$d(x, \psi_{\infty}^{k}(x)) = \sum_{n=1}^{m} \frac{d_{n}(x_{n}, \psi_{n}^{k}(x_{n}))}{2^{n}[1 + d_{n}(x_{n}, \psi_{n}^{k}(x_{n}))]} + \sum_{n=m+1}^{\infty} \frac{d_{n}(x_{n}, \psi_{n}^{k}(x_{n}))}{2^{n}[1 + d_{n}(x_{n}, \psi_{n}^{k}(x_{n}))]}$$

$$< m\left(\frac{\varepsilon}{2m}\right) + \frac{\varepsilon}{2} = \varepsilon.$$

3. Interior and closed maps. A function $f\colon X\to Y$ is said to be interior (closed) if it is continuous and the image of every open (closed) subset of X is open (closed) in Y. Let Y be a map of (X,f) into (Y,g). The following example shows that each ψ_n being interior does not imply that ψ_∞ is interior. For each $n\in I$, let (1) X_n be the positive integers with discrete topology, (2) $f_n^{n+1}\colon X_{n+1}\to X_n$ be the identity map, (3) Y_n be 2^n distinct points $\{y(n,1),y(n,2),...,y(n,2^n)\}$ with discrete topology,

$$(4) g_n^{n+1} \colon Y_{n+1} \to Y_n$$

be defined by

$$g_n^{n+1}[y(n+1,j)] = \begin{cases} y(n,j) & 1 \le j \le 2^n, \\ y(n,j-2^n) & 2^n+1 \le j \le 2^{n+1} \end{cases}$$

and

$$(5) \psi_n \colon X_n \to Y_n$$

be defined by $\psi_n(1) = y(n,1), \ \psi_n(2) = y(n,2), ..., \psi_n(2^n) = y(n,2^n), \psi_n(2^n+1) = y(n,1), \ \psi_n(2^n+2) = y(n,2), ..., \psi_n(2^n+2^n) = y(n,2^n), ... \dots, \psi_n(2^n+2^n+1) = y(n,1), ...$ Each ψ_n is interior and onto but ψ_∞ is not interior. For $(\{1\} \times X_2 \times X_3 \times ...) \cap X_\infty = (1,1,1,...)$ is open in X_∞ but $\psi_\infty[(1,1,1,...)]$ is not open in Y_∞ . To see $\psi_\infty[(1,1,1,...)]$ is not open in Y_∞ we note that Y_∞ is homeomorphic to the Cantor set.

Under certain restrictive but useful conditions we do get that the property of being interior is preserved.

Theorem 3. Suppose that (1) each ψ_n is interior and (2) for each $n \in I$,

$$\psi_n^*(x_n) = y_n , \quad g_n^{n+1}(y_{n+1}) = y_n$$

implies $(f_n^{n+1})^{-1}(x_n) \cap \psi_{n+1}^{-1}(y_{n+1}) \neq \emptyset$. Then ψ_{∞} is interior.

Proof. Let U_{∞} be an open subset of X_{∞} . We can assume there exists a positive integer n and open subset U_n of X_n such that $U_{\infty} = f_n^{-1}(U_n)$. It follows that $\psi_{\infty}f_n^{-1}(U_n) = g_n^{-1}\psi_n(U_n)$. For let $y = (y_1, y_2, y_3, \ldots) \in \psi_{\infty}f_n^{-1}(U_n)$. Then $y = \psi_{\infty}(x_1, x_2, x_3, \ldots)$ where $x_n \in U_n$. Thus $\psi_n(x_n) \in \psi_n(U_n)$ and so $y = \psi_{\infty}(x_1, x_2, x_3, \ldots) \in g_n^{-1}\psi_n(U_n)$. Now let $y = (y_1, y_2, y_3, \ldots) \in g_n^{-1}\psi_n(U_n)$. Then $y_n \in \psi_n(U_n)$ and so there is an $x_n \in U_n$ such that $\psi_n(x_n) = y_n$. Consider $z = [f_1^n(x_n), f_2^n(x_n), \ldots, f_{n-1}^n(x_n), x_n, z_{n+1}, z_{n+2}, \ldots)$ where $z_{n+1} \in (f_n^{n+1})^{-1}(x_n) \cap \psi_{n+1}^{-1}(y_{n+1}), z_{n+2} \in (f_{n+1}^{n+2})^{-1}(z_{n+1}) \cap \psi_{n+2}^{-1}(y_{n+2}), \ldots; z \in f_n^{-1}(U_n)$ and so $\psi_{\infty}(z) \in \psi_{\infty}f_n^{-1}(U_n)$. Since $\psi_{\infty}(z) = y$ we have that $y \in \psi_{\infty}f_n^{-1}(U_n)$.

 ψ_n being interior and g_n being continuous implies $g_n^{-1}\psi_n(U_n)$ is open. Thus $\psi_\infty(U_\infty)$ is open since we have shown $\psi_\infty(U_\infty) = g_n^{-1}\psi_n(U_n)$.

Applying a theorem of Himmelberg we are able to get conditions which imply that closed is preserved.

THEOREM 4. Suppose (1) each X_n is Hausdorff, (2) each ψ_n is onto and closed and (3) $\psi_n^{-1}(y_n)$ is compact for all $y_n \in Y_n$, $n \in I$. Then ψ_∞ is closed.

Proof. By Theorem 1 of [2], $\theta: \prod X_n \to \prod Y_n$ defined by $\theta(x_1, x_2, x_3, ...)$ = $(\psi_1(x_1), \psi_2(x_2), \psi_3(x_3), ...)$ is closed. Since each X_n is Hausdorff X_∞ is a closed subset of $\prod X_n$. Thus ψ_∞ which is θ restricted to X_∞ is a closed map of X_∞ into Y_∞ .

4. Monotone, light and compact maps. A continuous function $f: X \rightarrow Y$ is said to be *monotone* provided that, for each point $y \in Y$, the inverse image $f^{-1}(y)$ is connected.

LEMMA 1. The inverse limit of compact connected spaces is connected. Theorem 5. Let Ψ be a map of (X,f) into (Y,g). Suppose each X_n is compact Hausdorff and each ψ_n is monotone. Then ψ_∞ is monotone.

Proof. Let $y=(y_1,y_2,y_3,...) \in Y_{\infty}$. For each $n \in I$, $\psi_n^{-1}(y_n)$ is a compact, connected subset of X_n . This follows since the ψ_n are monotone. If h_n^{n+1} is f_n^{n+1} restricted to $\psi_{n+1}^{-1}(y_{n+1})$, then h_n^{n+1} is a continuous function from $\psi_{n+1}^{-1}(y_{n+1})$ into $\psi_n^{-1}(y_n)$. Let C_{∞} be the inverse limit of the inverse sequence $(\psi_n^{-1}(y_n), h_n^{n+1})$. Since each $\psi_n^{-1}(y_n)$ is compact and connected lemma 1 implies that C_{∞} is connected. The proof of the theorem then follows since $C_{\infty} = \psi_{\infty}^{-1}(y)$.

A continuous function $f: X \to Y$ is said to be *light* provided that, for each $y \in Y$, the inverse image $f^{-1}(y)$ is totally disconnected.

Lemma 2. The inverse limit of totally disconnected spaces is totally disconnected.

THEOREM 6. Let Y be a map of (X, f) into (Y, g). If each ψ_n is light, then ψ_∞^- is light.

Proof Let $y=(y_1,y_2,y_3,...)$ ϵ Y_{∞} . Since the ψ_n are light, each $\psi_n^{-1}(y_n)$ is totally disconnected. If h_n^{n+1} is f_n^{n+1} restricted to $\psi_{n+1}^{-1}(y_{n+1})$, h_n^{n+1} is continuous function from $\psi_{n+1}^{-1}(y_{n+1})$ into $\psi_n^{-1}(y_n)$. Let D_{∞} be the inverse limit of the inverse sequence $(\psi_n^{-1}(y_n), h_n^{n+1})$. By Lemma 2, D_{∞} is totally disconnected. The proof of the theorem follows since $D_{\infty} = \psi_{\infty}^{-1}(y)$.

A continuous function $f: X \rightarrow Y$ is said to be *compact* if the inverse image of every compact set is compact.

THEOREM 7. Let Ψ be a map of (X, f) into (Y, g). If Y_{∞} is Hausdorff and each ψ_n is compact, then ψ_{∞} is compact.

Proof. Let C be a compact subset of Y_{∞} . Then $\psi_{\infty}^{-1}(C) \subset [\psi_1^{-1}(g_1(C)) \times \psi_2^{-1}(g_2(C)) \times ...] \cap X_{\infty}$. Each $g_n(C)$ is compact and, since the ψ_n are compact, each $\psi_n^{-1}(g_n(C))$ is compact. So $[\psi_1^{-1}(g_1(C)) \times \psi_2^{-1}(g_2(C)) \times ...] \cap X_{\infty}$ is compact. C being compact and a subset of a Hausdorff space implies C is closed. Thus $\psi_{\infty}^{-1}(C)$ is a closed subset of a compact set and hence compact.

References

[1] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952.

[2] C. J. Himmelberg, Products of closed maps, The American Mathematical Monthly 74 (1967), pp. 39-41.

Reçu par la Rédaction le 16. 5. 1968