

Projective potencies and multiplicative extension operators

bv

Andrzej Szankowski (Warszawa)

Introduction. In the first section of this paper we introduce a notion of the *p*-th projective potency $Y^{(p)}$ of a space Y (unless otherwise stated, by a space we shall mean a compact, metric space). Given a point $y \in Y$ we introduce a natural embedding $j_p^{Y,y} \colon Y^{(p)} \to Y^{(p+1)}$.

Let S_1 be a circumference. Let P_n be an n-dimensional real projective space, embedded as an "improper hyperplane" in P_{n+1} and let r_n : $P_n \to P_{n+1}$ denote this embedding.

The term "projective potency" is justified by the following

Theorem 1. $S_1^{[n]}$ is homeomorphic to P_n ; moreover there are homeomorphisms $h_n \colon S_1^{[n]} \xrightarrow{\text{onto}} P_n$ such that

$$r_n h_n = h_{n+1} j_n$$
 for $n = 1, 2, ...,$

where $j_n = j_n^{S_1,t}$ for any fixed point $t \in S_1$.

For $n \ge 2$ we have no satisfactory topological description for the projective potencies of S_n (by S_n we denote the n-dimensional Euclidean unit sphere). We know however that the homotopical type of $S_n^{(p)}$ is not trivial. Precisely, we have

Theorem 2. The embedding $j^p \colon S_n \to S_n^{(p)}$ is not homotopically trivial for n, p = 1, 2..., where $j^p = j_{p-1}^{S_n,s} \circ ... \circ j_1^{S_n,s}$ for any fixed s of S_n .

In the second section of the paper Theorem 2 is applied to the problem of the existence of multiplicative extension operators.

Let C(Y) denote the space of all real-valued maps on a space Y with the uniform convergence topology. Let $Y \subset X$, by a meo (multiplicative extension operator) we mean a map (= continuous transformation) $M: C(Y) \rightarrow C(X)$ such that

$$M(fg) = Mf \cdot Mg$$
 for $f, g \in C(Y)$,
 $(Mf)(y) = f(y)$ for $y \in Y$ and $f \in C(Y)$.

99

icm[©]

The main result of Section 2 is the following

THEOREM 3. There is no meo from $C(S_n)$ into $C(K_{n+1})$ for n=1,2,..., $(K_{n+1}$ denotes the unit Euclidean ball).

This theorem solves Problem 2 of [1].

It is worth emphasising that, by Corollary 3.2 in [2], there exist multiplicative extension operators from $C_+(S_n)$ to $C_+(K_{n+1})$ (here $C_+(X)$ denotes the cone of non negative functions in C(X)).

Notation. R denotes the set of real numbers, I — the unit interval; for $x \in \mathbb{R}^n$: $||x|| = \sqrt{x_1^2 + ... + x_n^2}$, we write

$$K_n = \{x \in \mathbb{R}^n \colon ||x|| \le 1\}, \quad S_{n-1} = \{x \in \mathbb{R}^n \colon ||x|| = 1\}.$$

1. Projective potencies. A $y \in Y$ is said to be an essential coordinate of a point $x = (x_1, ..., x_p) \in Y^p$ if card $\{j: x_j = y\}$ is an odd number(1). The number of different essential coordinates of a point is called its range.

The *p-th projective potency* $Y^{[p]}$ is the quotient space Y^p/E_p^Y where the equivalence relation E_p^Y is defined by the following condition:

 xE_p^Yy if x and y have the same essential coordinates (2).

By ψ_p^Y we denote the quotient map from Y^p onto $Y^{[p]}$. Let $y \in Y$, $x \in Y^p$. The formula

$$j_p^{Y,y}(\psi_p^Y(x)) = \psi_{p+1}^Y(x, y)$$
, where $(x, y) = (x_1, ..., x_p, y)$,

defines an embedding $j_p^{Y,y}: Y^{[p]} \rightarrow Y^{[p+1]}$.

By the projective space P_n we mean the quotient space K_n/\approx where

$$x \approx y$$
 if $x = y$ or $x = -y \in S_{n-1}$.

The formula $k_n(x) = (x, \sqrt{1 - ||x||^2})$ defines a natural embedding $k_n \colon K_n \to S_n$. The embedding $r_n \colon P_n \to P_{n+1}$ is defined by the formula $r_n(p_n(x)) = p_{n+1}(k_n(x))$, where p_n is the quotient map from K_n onto P_n .

Proof of Theorem 1. First we shall investigate the space $I^{[n]}$. We shall prove the following

1.1. Proposition. There are homeomorphisms $q_n: I^{[n]} \xrightarrow{\text{onto}} K_n$ such that

(0)
$$q_{n+1}j_n^{I,0}q_n^{-1} = -q_{n+1}j_n^{I,1}q_n^{-1} = k_n.$$

Proof. Write $\psi_n = \psi_n^I$ and $E_n = E_n^I$. Let $\sigma_n = \{ x \in I^n : x_1 \geqslant x_2 \geqslant ... \geqslant x_n \}$. It is clear that σ_n is a simplex with the vertices $e_i = \{1, ..., 1, 0, ..., 0\}$.

A point $x = \sum a_i e_i \in \sigma_n$ will be identified with its baricentric coordinates $a = (a_0, a_1, ..., a_n)$ where $a_i \ge 0$, $\sum_{i=1}^{n} a_i = 1$ (3).

To prove the proposition it is enough to construct maps $f_n \colon \sigma_n \xrightarrow{\text{onto}} K_n$ such that

$$(1) f_n(a) = f_n(b) iff a E_n b ,$$

(2)
$$f_n(a, 0) = -f_n(0, a) = k_{n-1}(f_{n-1}(a))$$
 for each $a \in \sigma_{n-1}$ (4) (then we put $q_n = f_n \psi_n^{-1}$).

To simplify the argumentation we define a (discontinuous) function $R\colon \sigma_n\to\sigma_n$ which is a "selection function" for E_n , i.e. R satisfies the following two conditions

$$(3) Ra = Rb iff aE_nb ,$$

(3')
$$aE_nRa$$
 (or, equivalently, $R(Ra) = Ra$) for each $a \in \sigma_n$.

Given $x = a \in \sigma_n$, we put $Ra = y = (y_1, ..., y_k, 0, ..., 0) \in \sigma_n$ where k is the range of x, and $y_1 > y_2 > ... > y_k$ are all essential coordinates of x. It is obvious that R is a "selection function".

The following description of R will be more useful

$$R = R_1 \circ R_2 \circ \dots \circ R_n \text{ where } R_n a = a \text{ and for } i = 1, 2, \dots, n-1,$$

$$R_i a = \begin{cases} (a_0, \dots, a_{i-2}, a_{i-1} + a_{i+1}, a_{i+2}, \dots, a_n, 0, 0) & \text{if } a_i = 0, \\ a & \text{if } a_i \neq 0. \end{cases}$$

Given $a \in \sigma_n$, put $\bar{a} = a_1 + a_3 + a_5 + \dots$ We see that

(4)
$$\bar{a} = \overline{Ra}$$
, hence if aE_nb , then $\bar{a} = \overline{b}$.

Let $T_n = \{a \in \sigma_n : \bar{a} = \frac{1}{2}\}.$

1.2. LEMMA. There is a natural homeomorphism between $\psi_n(T_n)$ and $\psi_{n-1}(\sigma_{n-1}) = I^{(n-1)}$.

Proof. It is enough to construct a map $g_n: T_n \xrightarrow{\text{onto}} \sigma_{n-1}$ such that

(5) if aE_nb , then $(g_na)E_n(g_nb)$, i.e. there is a map $\gamma: \psi_n(T_n) \xrightarrow{\text{onto}} I^{(n-1)}$ such that the following diagram commutes

$$T_n \xrightarrow{\varphi_n} \sigma_{n-1}$$

$$\downarrow^{\psi_n} \downarrow \qquad \downarrow^{\psi_{n-1}}$$

$$\rho_n(T_n) \xrightarrow{\gamma} I^{[n-1]}$$

(6) if $g_n a = g_n b$, then Ra = Rb, i.e. the above map γ is a 1-1 map (and, by the compactness, is a homeomorphism).

⁽¹⁾ e. g. if x = (yzywz) or x = (zzzwz), then only w is an essential coordinate of x.

⁽²⁾ e. g. (yzzzyzw) $E_7^Y(zyzywtt)$ $E_7^Y(mkmkwpp)$ but not xyyyy $E_5^Y(xxyyy)$.

⁽³⁾ we use letters x, y to denote Euclidean coordinates and a, b — baricentric ones.

⁽⁴⁾ if $a = (a_0, ..., a_{n-1})$, then $(a, 0) = (a_0, ..., a_{n-1}, 0)$ and $(0, a) = (0, a_0, ..., a_{n-1})$.

103

We see that for $a \in \sigma_1$ we have

$$(f_2(a, 0))_1 = -(f_2(0, a))_1 = (f_1a)_1,$$

 $||f_2(a, 0)|| = ||f_2(0, a)|| = 1,$
 $\operatorname{sgn}(f_2(a, 0))_2 = -\operatorname{sgn}(f_2(0, a))_2 = 1.$

Since for $a \in \sigma_n$ we have

$$(\overline{a,0}) = 1 - (\overline{0,a}) = \overline{a},$$

 $g_n P(a,0) = (g_{n-1} Pa, 0),$
 $g_n P(0,a) = (0, g_{n-1} Pa),$

an easy induction implies that

$$egin{align} ig(f_n(a\,,\,0)ig)_i &= -ig(f_n(0\,,\,a)ig)_i = (f_{n-1}\,a)_i & ext{for } i=1\,,\,...\,,\,n-1\,, \ & \|f_n(a\,,\,0)\| = \|f_n(0\,,\,a)\| = 1\,, \ & ext{sgn}\,ig(f_n(a\,,\,0)ig)_n = -\operatorname{sgn}ig(f_n(0\,,\,a)ig)_n = 1\,. \end{split}$$

Three last equations imply (2). This completes the proof of 1.1.

Our Theorem 1 is an easy consequence of 1.1. Indeed, let $S_1 = I/R_1$ where xR_1y if x = y or x = 0, y = 1; it is clear that $S_1^{[n]} = I^{[n]}/R_n$ where xR_ny if x = y or there is a $z \in I^{[n-1]}$ such that $x = j_{n-1}^{I,0}(z)$, $y = j_{n-1}^{I,1}(z)$.

By (0), this completes the proof of Theorem 1.

In the sequel we shall use the following notion of a (cellular) polyhedron: by a *polyhedron* we mean a compact metric space P with its finite disjoint triangulation $\mathfrak C$. The elements of $\mathfrak C$ are called *cells*. Each cell P satisfies the following conditions.

A. There is a number $k = \dim \Gamma$ and a map φ_{Γ} : $I^k \to P$ (a characteristic map for Γ) such that φ_{Γ} maps $\operatorname{Int} I^k$ onto Γ homeomorphically.

B. The set $\dot{\Gamma} = \overline{\Gamma} - \Gamma$ is a union of cells of lower dimensions.

If a cell $\Delta \subset \Gamma$ and dim $\Delta = \dim \Gamma - 1$, then Δ is called a *face* of Γ . We shall use Z_2 as the coefficient group for homology groups of Γ . The *n*th homology group of Γ will be denoted by $H_n(\Gamma)$.

Let Δ be an (n+1)-dimensional cell and let Γ be a face of Δ . A point $y \in \Gamma$ will be called normal for Δ if for each $x \in \varphi_{\Delta}^{-1}(y)$ (we have $x \in I^{n+1}$) there is a neighbourhood U_x of x in I^{n+1} such that the restriction $\varphi_{\Delta}|U_x$ is a homeomorphism. We make use of the following well known (cf. for instance [4], pp. 56, 57 and 14, 19) fact concerning the boundary operation ∂ :

1.3. PROPOSITION. If for each face Γ of Δ there is a point $y_{\Gamma} \in \Gamma$, which is normal for Δ , then

$$\partial \Delta = \Gamma_1 + \dots + \Gamma_k$$

where $arGamma_i,\,i=1,...,k$ are all faces of arDelta such that $\operatorname{card} arphi_{arDelta}^{-1}(y_{arGamma_i})$ is an odd

1.4. THEOREM. The space $S_n^{(p)}$ is a polyhedron for p, n=1,2,...; the induced homomorphism $j^p\colon H_n(S_n)\to H_n(S_n^{(p)})$, where $j^p=j_{p-1}^{S_n,s}\circ...\circ j_1^{S_n,s}$ for an arbitrary point $S\in S_n$, is not trivial.

Proof. Let $t \in I^{pn}$. We write

$$t = (t^1, ..., t^p) = (t_1^1, ..., t_n^1, t_1^2, ..., t_n^2, ..., t_1^p, ..., t_n^p),$$

where $t^j = (t_1^j, ..., t_n^j) \in I^n$. Put

number.

$$\pi_l(i,j) = \pi_l(j), \, \chi_l(i,j) = egin{cases} \mathrm{sgn}(1 - t_i^{\pi_l(i)}) & ext{if } j = 0 \ \mathrm{sgn}(t_i^{\pi_l(j)} - t_i^{\pi_l(j+1)}) & ext{if } 1 \leqslant j$$

where $\pi_1, ..., \pi_n$ are permutations of numbers 1, ..., p such that

$$t_i^{\pi_i(1)} \geqslant t_i^{\pi_i(2)} \geqslant \dots \geqslant t_i^{\pi_i(p)},$$

(**) if
$$t_i^{\pi_i(j)} = t_i^{\pi_i(k)}$$
 and $j < k$, then $\pi_i(j) < \pi_i(k)$.

The pair of functions (π_t, χ_t) is uniquely determined by t; we shall call it a characteristic pair of t. The set of all characteristic pairs will be denoted by \mathcal{K} . Every pair $(\pi, \chi) \in \mathcal{K}$ will be identified with the set $\{t \in I^{pn}: (\pi_t, \chi_t) = (\pi, \chi)\}$; thus \mathcal{K} is a disjoint covering of I^{pn} . The covering \mathcal{K} may be obtained by "cutting" the cube I^{pn} by all hyperplanes

$$t_i^j = t_i^k$$
 for $1 \le i \le n, 1 \le j < k \le p$.

The set (π, χ) is convex and open in the hyperplane

(8)
$$t_i^{\pi(i,j)} = \begin{cases} 1, & \text{if } j = 1 \text{ and } \chi(i,0) = 0, \\ t_i^{\pi(i,j+1)} & \text{if } 1 \leqslant j$$

Observe that (8) is a system of $(p+1)n-\sum \chi(i,j)$ independent equations. Thus we have

(9)
$$\dim(\pi,\chi) = \sum \chi(i,j) - n.$$

The set (π, χ) consists of all points, satisfying (8) and the following condition

if
$$j < l$$
, then $0 \leqslant t_{l}^{\pi(i,j)} \leqslant t_{l}^{\pi(i,l)} \leqslant 1$.

Hence the set (π, χ) is the union of all sets (π', χ') such that

(10) if $\chi'(i,j) = 1$, then $\chi(i,j) = 1$ and numbers $\pi'(i,1), ..., \pi'(i,j-1)$ form a permutation of numbers $\pi(i,1), ..., \pi(i,j-1)$.

Let φ be a natural map from I^n onto S_n such that $\varphi(\partial I^n) = s$ and φ maps homeomorphically Int I^n onto $S_n - \{s\}$. Then the formula

$$f(t^1, \dots, t^p) = \psi_p^{S_n}(\varphi t^1, \dots, \varphi t^p)$$

defines a map $f: I^{pn} \xrightarrow{\text{onto}} S_n^{[p]}$

For $u=(u_1,\ldots,u_n)$ ϵ I^n and $v=(v_1,\ldots,v_n)$ ϵ I^n we shall write u< v if there is a number q such that $u_1=v_1,\ldots,u_q=v_q$ and $u_{q+1}< v_{q+1}$. Furthermore, let Z be the set of all points t ϵ I^{pn} such that

(11) there is an r such that

$$\begin{array}{lll} 1^{\circ} \ t^{1} > t^{2} > ... > t^{r} = t^{r+1} = ... = t^{p} = (0 \,, \, ... \,, \, 0) \;, \\ 2^{\circ} \ t_{i}^{r} \neq 0 \ \text{nor} \ 1 \ \text{for} \ 1 \leqslant i < r, \ 1 \leqslant j \leqslant n. \end{array}$$

We see that

(12) the restriction $f_{|Z|}$ is a one to one map.

Let us notice, that (11) may be expressed by some conditions concerning only χ_t and π_t . Thus, if $t \in \mathbb{Z}$, then $(\pi_t, \chi_t) \subset \mathbb{Z}$.

Let $\mathcal M$ be the family of all characteristic pairs contained in Z. Let $\mathcal C = \{f((\pi,\chi))\colon (\pi,\chi)\in M\}$. We will show that

(13) the family \mathcal{E} satisfies conditions A and B; the restriction $f_{|(\pi,x)|}$ is a characteristic map for a cell $f((\pi,\chi)) \in \mathcal{E}$.

Let $t=(t^1,\ldots,t^p)\in I^{pn}$ and let π be an arbitrary permutation of numbers $1,\ldots,p.$ We define

$$a_n(t) = ((at)^1, ..., (at)^p), \quad b(t) = ((bt)^1, ..., (bt)^p), \quad c(t) = ((ct)^1, ..., (ct)^p)$$
 where

$$(at)^j=t^{\pi(j)},$$

$$\left(bt
ight)^{j} = egin{cases} t^{j} & ext{if } t^{j}_{i}
eq 0 ext{ nor 1 for } i
eq 1, ..., n, \ (0, ..., 0) ext{ otherwise ,} \end{cases}$$

$$(ct)^{j} = \begin{cases} t^{j} & \text{if } t^{j} \text{ is an essential element of } (t^{1}, \dots, t^{p}) \text{ and } t^{i} \neq t^{j} \text{ for } i < j, \\ (0, \dots, 0) & \text{otherwise} \end{cases}$$

1.5. Lemma. If $\bar{t} = a_{\pi}(t)$ or b(t) or c(t), then $f((\pi_t, \chi_t)) = f((\pi_{\bar{t}}, \chi_{\bar{t}}))$ and $\dim(\pi_t, \chi_{\bar{t}}) \leq \dim(\pi_t, \chi_t)$.

Proof. Put respectively $a(u) = a_{\pi}(u)$ or b(u) or c(u). Obviously in all three cases $a((\pi_i, \chi_i)) \subset (\pi_{\alpha(i)}, \chi_{\alpha(i)})$.

We will show that the opposite inclusion also holds. Let $u \in (\pi_{a(t)}, \chi_{a(t)})$. In the case $a = a_{\pi}$ put $w^{j} = u^{\pi^{-1}(j)}$. Next observe that in the cases a = b and a = c the system

$$egin{aligned} w_i^j &= u_i^j & ext{if } ar{t}^j &= t^j \;, \\ w_i^j &= t_i^j & ext{if } t_i^j &= 0 \;, \; 1 \;, \\ w_i^j &= w_i^k & ext{if } t_i^j &= t_i^k \;, \\ w_i^j &< w_i^k & ext{if } t_i^j &< t_i^k \end{aligned}$$

is consistent, thus it has a solution w (and $w \in (\pi_t, \chi_t)$). It is clear that a(w) = u, hence a maps (π_t, χ_t) onto (π_t, χ_t) .

Since a(u+v)=a(u)+a(v), we infer that a does not enlarge the dimension. Therefore $\dim(\pi_t,\chi_t) \leq \dim(\pi_t,\chi_t)$.

We have fa(u) = f(u), because in all cases the sequences $\varphi(t^1), ..., \varphi(t^p)$ and $\varphi(\bar{t}^1), ..., \varphi(\bar{t}^p)$ have the same essential elements. Hence $f((\pi_t, \chi_t)) = f((\pi_t, \chi_t))$.

Let $t \in (\pi, \chi)$. Choosing appropriately a permutation π , we get $t = a_{\pi} cb(t) \in Z$. Put $(\pi', \chi') = (\pi_t, \chi_t)$. Then $(\pi', \chi') \in \mathcal{M}$ and, by 1.5, we have

(14) for each (π, χ) in K there is a $(\pi', \chi') \in \mathcal{M}$ such that

$$f((\pi, \chi)) = f((\pi', \chi'))$$
 and $\dim(\pi', \chi') \leq \dim(\pi, \chi)$.

If $(\pi', \chi') \in \mathcal{M}$, then, by (12), $\dim(\pi', \chi') = \dim f((\pi', \chi'))$. Therefore, by (14), we get

(15)
$$\dim f((\pi, \chi)) \leq \dim(\pi, \chi)$$
 for each $(\pi, \chi) \in \mathcal{K}$.

Also by (12) and (14) we have

(16) if (π, χ) and $(\pi', \chi') \in \mathbb{K}$, then either $f((\pi, \chi)) = f((\pi', \chi'))$ or $f((\pi, \chi)) \cap f((\pi', \chi')) = \emptyset$.

Now let $\Gamma = (\pi, \chi) \in \mathcal{M}$, $\Gamma = \bigcup \Delta_i$ with $\Delta_i \in \mathcal{K}$. Since $\overline{\Gamma}$ is compact, we have

$$\overline{f(\Gamma)} = f(\overline{\Gamma}) = f(\Gamma \cup \bigcup \Delta_i) = f(\Gamma) \cup \bigcup f(\Delta_i)$$
.

By (15) and (12)

$$\dim f(\Delta_i) \leq \dim \Delta_i < \dim \Gamma = \dim f(\Gamma)$$
.

Hence, by (16), the sets $f(\Gamma)$ and $f(\Delta_i)$ are disjoint. Thus

$$(17) (f(\Gamma)) = \bigcup f(\Delta_i) = f(\bigcup \Delta_i) = f(\dot{\Gamma}).$$

Hence f maps Γ on $f(\Gamma)$ homeomorphically, and $\mathfrak C$ satisfies the condition A. Also, by (14) and (17), condition B is satisfied. This completes the proof of (13).

Now let $\tau = S_n - \{s\}$, $\Gamma = j^p(\tau)$, i.e., $\Gamma = f((\Sigma, \Omega))$ where

$$\Sigma(i,j) = j, \quad \Omega(i,j) = \begin{cases} 1 & \text{for } j = 0, 1, \\ 0 & \text{for } j > 1. \end{cases}$$

Let $(\pi, \chi) \in M$, $\Delta = f((\pi, \chi))$ and dim $\Delta = n+1$. By (11):

$$\chi(i, 0) = 1$$
 for $i = 1, ..., n$

and there is a k (equal to q-1 or p) such that $\chi(i,k)=1$ for $i=1,\ldots,n$. Since $\dim(\pi,\chi)=n+1$, by (10) and (11), there is exactly one pair (l,r) with 0 < r < k such that $\chi(l,r)=1$. Let $t \in (\pi,\chi)$, thus $1 > t_i^1 = \ldots = t_i^k > t_i^{k+1} = \ldots = t_i^p = 0$ for $i \neq l$ and

$$1 > t_l^1 = \dots = t_l^r > t_l^{r+1} = \dots = t_l^k > t_l^{k+1} = \dots = t_l^p = 0$$

(it is easy to see that, by (*), (**), and (11), $\pi(i,j) = j$ for i = 1, ..., n). If r > 2, then $t^1 = t^2$; if r = 1 and k > 2, then $t^2 = t^3$. Hence, by (11), we have r = 1, k = 2 and thus (π, χ) is determined by the number l and γ is of the form

$$\chi = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & \dots & 0 \\ 1 & 0 & 1 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & 0 & 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 1 & 0 & 1 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & 0 & 1 & 0 & 0 & \dots & 0 \end{bmatrix} t \text{throw}.$$

Let $\mathcal{Z} = f(\pi', \chi')$ be a face of Δ . Then $\dim(\pi', \chi') = n$ and, by (17), (π', χ') is a face of (π, χ) .

Hence, by (9) and (10), there is exactly one pair (i,j) such that $\chi(i,j)=1$ and $\chi'(i,j)=0$. If $i\neq l$, then for every $t\in(\pi',\chi')$ we have $t_i^k=0$ or 1 for 1,2,...,p. Hence $\varphi(t^l)=...=\varphi(t^p)=s$ and thus $\Xi=f((\pi',\chi'))=\{\psi_j^{p_n}(s)\}$. Therefore $\dim\Xi=0< n$ and Ξ is not a face of Δ . Similarly if i=l,j=1, then for $t\in(\pi',\chi')$ we have $t^1=t^2>t^3=...=t^p=(0,...,0)$, hence also $\Xi=\{\psi_j^{p_n}(s)\}$.

Finally, let $i=l,\,j=0$ or 2, i.e. $(\pi',\chi')=(\pi_1,\,\chi_1)$ or $(\pi',\,\chi')=(\pi_2,\,\chi_2)$ where

$$(\pi_1, \chi_1)$$

 $=\{t \in I^{pn} \colon 1=t^1_l>t^2_l>0, \ 1>t^1_i=t^2_i>0 \ \text{for} \ i\neq l, \ t^j=0 \ \text{for} \ j\geqslant 3\}$ and

$$(\pi_2, \chi_2)$$

$$= \{t \in I^{pn}: \ 1 > t_i^1 > t_i^2 = 0, \ 1 > t_i^1 = t_i^2 > 0 \ \text{for} \ i \neq l, \ t^j = 0 \ \text{for} \ j \geqslant 3\}.$$

We see that

$$arphi_{ extit{d}}(t) = egin{cases} f(t^2,\,0\,,\,0\,,\,...\,,\,0) & ext{for } t\,\epsilon\,(\pi_1\,,\,\chi_1)\,, \ f(t^1,\,0\,,\,0\,,\,...\,,\,0) & ext{for } t\,\epsilon\,(\pi_2\,,\,\chi_2) \end{cases}$$

and obviously the restriction of φ_{J} either to (π_{1}, χ_{1}) or to (π_{2}, χ_{2}) is a homeomorphism onto Γ . Hence every point $y \in \Gamma$ is regular for Δ and $\operatorname{card} \varphi_{J}^{-1}(y) = 2$. Therefore, by 1.3, the coefficient of Γ in $\partial \Delta$ is equal to 0. Thus Γ , being obviously a cycle, is not a boundary of a chain. This implies that j_{*}^{p} : $H_{n}(S_{n}) \to H_{n}(S_{n}^{(p)})$ is not a trivial homomorphism.

Theorem 2 is an immediate corollary of Theorem 1.4.

2. Multiplicative extension operators. A map $m: C(Y) \to R$ is said to be a *multiplicative functional* if $m(f \cdot g) = m(f) \cdot m(g)$ for every $f, g \in C(Y)$. If m is a multiplicative functional, then the restriction

$$|m|=m_{|C+(Y)}$$

is a multiplicative functional on $C_+(Y)$. We shall write Sm = S|m| (cf. 2.1 in [2]). It is easy to see that

(18) if
$$f(y) = g(y)$$
 for every $y \in Sm$, then $m(f) = m(g)$.

We have the following (cf. Theorem 2.2 in [2])

2.1. THEOREM. Let $M \colon C(X) \to C(X)$ be a function such that for every x in X the functional M_x defined by

$$M_x(f) = Mf(x)$$
 for $f \in C(Y)$,

is multiplicative and non constant. Then M is a multiplicative operator (i.e. a continuous function from C(Y) to C(X) such that $M(fg) = Mf \cdot Mg$ for $f, g \in C(Y)$).

Proof. The multiplicavity of M is obvious. We will show that M is continuous. Let $f_n \Rightarrow f$. We have to show that $M(f_n) \Rightarrow Mf$ or equivalently, that $M_{x_n}(f_n) \rightarrow M_x(f)$ whenever $x_n \rightarrow x$.

Since $|f_n| \Rightarrow |f|$, by theorem 2.2 in [2], we have $|M_{x_n}(f_n)| \Rightarrow |M_x(f)|$. The case $M_x(f) = 0$ is trivial, let us assume that $M_x(f) \neq 0$ and thus $f(y) \neq 0$ for $y \in SM_x$. Since SM_x is compact, there is an open set $U \supset SM_x$ such that |f(y)| > 0 for $y \in \overline{U}$. Hence

(19)
$$\frac{f_n}{f} \rightrightarrows 1 \quad \text{on } \overline{U}.$$

It follows from the formula (3) in [2] that $\operatorname{dist}(SM_{x_n}, SM_x) \to 0$. Thus we may assume without loss of generality that

(20)
$$SM_{x_n} \subset U$$
 for $n = 1, 2, ...$ and $SM_x \subset U$.

109

Let us define a map $M': C(\overline{U}) \to C(\{x\} \cup \bigcup \{x_n\})$ by

$$(M'g)(z) = M_z(\overline{g}) \quad \text{for } z \in \{x\} \cup \bigcup \{x_n\}, \ g \in C(\overline{U}).$$

Here $\bar{g} \in C(Y)$ is an arbitrary extension of g (the definition makes sens, by (18) and (20)). By (19), we may assume that $\frac{J_n}{f} > 0$ and thus $M'\frac{f_n}{f} = |M'|\frac{f_n}{f}$. By 2.2 in [2], M' is continuous and thus, by (19), we have $M'\frac{f_n}{f} \rightrightarrows M'1 = 1$ (we have M'1 = 1 because M'_x is not constant for any x). Thus, by the multiplicativity of M', we have $M'f_n \Rightarrow M'f$ on $\{x\} \cup \bigcup x_n$. Hence $M'_{x_n}(f_n) \to M'_x(f)$ and, by (18), $M_{x_n}(f_n) \to M_x(f)$.

Let Y be a space. By $\mathcal{K}(Y)$ we shall denote the family of all closed at most countable subsets of Y with the dist metric, i.e.

$$\operatorname{dist}(A\,,B) = \sup_{x\,\epsilon\,A} d(x,\,B) + \sup_{y\,\epsilon\,B} d(y\,,\,A) \quad \text{ for } A\,,\,B\,\epsilon\,\,\mathfrak{X}(Y)\;.$$

 $\mathcal{H}_n(Y)$ will denote the subspace of $\mathcal{K}(Y)$ consisting of all at most p-point subsets of Y.

Suppose that $M: C(Y) \to C(X)$ is a meo. By 3 in [2], it is easy to see that the formula

$$S_M(x) = SM_x$$

defines a map $S_M: X \to \mathcal{K}(Y)$.

If there exists a number p such that $S_M(X) \subset \mathcal{R}_p(Y)$, then M is called p-fold. We shall prove the following

2.2. Theorem. Let Y be a simplicial polyhedron and let $M: C(Y) \rightarrow$ $\rightarrow C(X)$ be a meo. Then there exists a p-fold meo from C(Y) into C(X) for some integer p.

The proof of Theorem 2.2 will require some notation and lemmas. Let $Y \subset X$ be arbitrary spaces, let $M: C(Y) \to C(X)$ be a meo and let φ be a map from $S_M(X) \times Y$ into Y. We shall denote $\varphi_x(y) = \varphi(S_M(x), y)$.

2.3. Lemma. If $\varphi_u(y) = y$ for $y \in Y$, then the formula

$$N_x(f) = M_x(f \circ \varphi_x)$$

defines a meo N: $C(Y) \rightarrow C(X)$. If additionally card $\varphi_x(S_M(x)) \leqslant p$ for every $x \in X$, then N is p-fold.

Proof: The second part of the lemma is obvious. We shall prove the first one. We see that $N_y(f) = f(y)$ for $y \in Y$, and thus, by Theorem 2.1, it is sufficient to show that if $f \in C(X)$, then $Nf \in C(X)$.

Let $x_n \to x$. Let us notice that

$$(21) f \circ \varphi_{x_n} \rightrightarrows f \circ \varphi_x \, ,$$

Indeed, let $y_n \to y$ in Y. We have $(f \circ \varphi_{x_n})(y_n) = f[\varphi(S_M(x_n), y_n)]$. Since f, φ and S_M are continuous, $(f \circ \varphi_{x_n})(y_n) \to f[\varphi(S_M(x), y)] = (f \circ \varphi_x)(y)$. This implies (20).

It follows from (21) and the continuity of M that if $n \to \infty$, then $N_{x_n}(f) = M_{x_n}(f \circ \varphi_{x_n}) \rightarrow M_x(f \circ \varphi_x) = N_x(f).$

By a *cubic polyhedron* we shall mean any union of faces of the n-cube I^n .

2.4. Lemma. Every simplicial polyhedron is homeomorphic to a cubic polyhedron.

Proof. Every polyhedron is a subpolyhedron of a simplex with its natural triangulation. Thus it is sufficient to prove that for every n there is a homeomorphism h of an n-dimensional simplex σ onto I^n such that for every wall τ of σ , $h(\tau)$ is a union of faces of I^n .

We may assume that $\sigma = \{(t_1, \ldots, t_n) \in I^n : \sum_{i=1}^n t_i \leq 1\}$. Let $t = (t_1, \ldots, t_n) \in \sigma$, put

$$h(t) = \left(\sum_{i=1}^{n} t_i\right) \cdot (\max_{1 \le i \le n} t_i)^{-1}$$
 if $t \ne 0$ and $h(0) = 0$.

It is a routine matter to check that h is the desired homeomorphism.

2.5. Lemma. If \mathcal{A} is a compact subspace of $\mathcal{K}(I)$, then there exists $a=a_A>0$ such that for each $A\in A$, the complement I-A contains an interval with length greater than a.

Proof. Put for $A \in \mathcal{K}(I)$:

$$g(A) = \sup\{b \colon \text{there is an interval } L \subset I - A \text{ such that } |L| \geqslant b\}$$

(here |L| denotes the length of an interval L).

It is easy to see that g is a positive continuous function on $\mathcal{K}(I)$ because $I \notin \mathcal{R}(I)$. Since A is compact, there is a positive number a such that $g(A) \geqslant a$ for $A \in \mathcal{A}$.

Proof of Theorem 2.2. By 2.4, we may assume that Y is a cubic polyhedron in I^n . We define for $x = (x_1, ..., x_n) \in I^n$: $\pi_i(x) = x_i$ and for $A \in \mathcal{X}(I^n)$: $\pi_i(A) = \{\pi_i(x): x \in A\}$. Since π_i are continuous, the set $\mathcal{A} = \bigcup \pi_i(S_M(x))$ is a compact subspace of $\mathcal{K}(I)$. Denote $b = a_{\mathcal{A}}/2$.

For $A \in \mathcal{A}$ we shall define a function $f_A: I \to I$.

Let A^1, A^2, \dots be different components of the set conv A-A, ordered in such a way that:

$$|A^1| \geqslant |A^2| \geqslant \dots$$
 and $\bigcup_{i \geqslant 1} A^i = \operatorname{conv} A - A$.

Let $A^0 = I - \operatorname{conv} A$. We define

$$g(t) = \begin{cases} t & \text{for } t \geqslant 0 \\ 0 & \text{for } t \leqslant 0 \end{cases}.$$

Put

$$f_A(t) = \left[\sum \left(\frac{|0, t \cap A^i|}{|A^i|} g(|A^i| - b) \right) \right] \cdot \left[\sum g(|A^i| - b) \right]^{-1}$$

(this formula defines a function, because $g(|A^i|-b)=0$ for almost all i and there is such i that $|A^i| \ge a_A > b$.

We shall prove that the function $f: A \times I \rightarrow I$, defined by

$$f(A,t) = f_A(t)$$
 for $A \in \mathcal{A}$

is continuous.

Observe that $|A^i| < b$ for $i > b^{-1}$. Let $A_n \in A$ and $t \in I$, let $\operatorname{dist}(A_n,A) \to 0$ and $t_m \to t$. Let $A^i = (b^i,c^i)$. Denote for $1 \le i \le b^{-1}$.

$$b_n^i = \sup \left\{ v \in A_n : v < \frac{b^i + c^i}{2} \right\}; \quad c_n^i = \inf \left\{ \tau \in A_n : \frac{b^i + c^i}{2} < \tau \right\}$$

and $B_n^0 = A_n^0$; $B_n^i = (b_n^i, c_n^i)$.

It is easy to see that

(22)
$$\lim_{n\to\infty}b_n^i=b^i,\quad \lim_{n\to\infty}c_n^i=c^i\quad \text{ for }\quad 0\leqslant i\leqslant b^{-1},$$

for each $0 \le i \le b^{-1}$ and n = 1, 2... there is an index j such that $B_n^i = A_n^i$; for almost all n, all sets A_n^i with $|A_n^i| > b$ appear among B_n^i for $i \leq b^{-1}$.

Thus, by (22'), we have for $t \in I$

$$f_{\mathcal{A}_n}(t) = \left[\sum_{i \leqslant b^{-1}} \frac{|(0\,,\,t) \cap B_n^i|}{|B_n^i|} \, g(|B_n^i| - b) \right] \cdot \left[\sum_{i \leqslant b^{-1}} \, g(|B_n^i| - b) \right]^{-1}$$

By (22), $\lim_{n\to\infty} |B_n^i| = |A^i|$ and, since $t_m \to t$, $\lim_{n\to\infty} |(0,t_m) \cap B_n^i| = |(0,t) \cap A^i|$.

Thus $\lim f_{A_n}(t_m) = f_A(t)$, hence f is continuous.

Observe that f has the following properties:

(23)
$$f(A, 0) = 0, f(A, 1) = 1$$
 for every $A \in \mathcal{A}$,

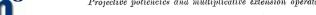
(24)
$$f(\lbrace t \rbrace, u) = u$$
 for $t, u \in I$,

(25)
$$\operatorname{card} f_A(A) \leq b^{-1}$$
 for every $A \in \mathcal{A}$.

Now for $B \in S_M(X)$ and $y = (y_1, ..., y_n) \in I^n$ put:

$$\varphi^i = \varphi^i(B, y) = f_{\pi_i(B)}(y_i)$$
 and $\varphi(B, y) = (\varphi^1, \dots, \varphi^n)$.

By (23), if $y \in \sigma$ where σ is a face of I^n , then $\varphi(B, y) \in \sigma$ for every $B \in S_M(X)$. Thus φ is a map from $S_M(X) \times Y$ into Y.



By (24), $\varphi(\{y\}, y) = y$ for $y \in Y$.

Finally, by (25), $\operatorname{card} \varphi_B(B) \leqslant p = \operatorname{entier} (b^{-1})^n$. This, by Lemma 2.3. completes the proof of Theorem 2.2.

2.6. Proposition. If there exists a p-fold med $M: C(Y) \rightarrow C(X)$, then there exists a map $r: X \to Y^{[2p+1]}$ such that

$$r(y) = j^{2p+1}(y)$$
 for $y \in Y$

where $j^{2y+1} = j_{2p}^{Y,y_0} \circ j_{2p-1}^{Y,y_0} \circ \dots \circ j_1^{Y,y_0}$ and y_0 is any fixed point of Y.

Proof. For $x \in X$, M_x is a multiplicative functional on C(Y). Hence, by a theorem of Turowicz [3] on the representation of multiplicative functionals, there is a sequence $\{\beta_x(y)\}_{y \in SM_x}$, where $\beta_x(y) = 1$ or 2 such that

$$M_x(f) = M_x(|f|) \cdot \prod_{y \in SM_x} \operatorname{sgn} f(y)^{\beta_x(y)} \quad \text{ for } f \in C(Y) .$$

Let $SM_x = \{y_1, ..., y_k\}$, we define r(x) by

$$r(x) = \psi_{2p+1}^{Y}(z_1, z_2, ..., z_{2p+1})$$

where

$$z_i = y_j \quad \text{ for } \sum_{r=1}^{j-1} \beta_x(y_r) < i \leqslant \sum_{r=1}^{j} \beta_x(y_r) ,$$

$$z_i = y_0 \quad \text{ for } \sum_{r=1}^k \beta_x(y_r) < i \leqslant 2p+1.$$

Let $x_m \to x$. Denote $SM_{x_m} = A_m$ and $SM_x = A$. Let $A = \{y^1, ..., y^n\}$. Pick open sets $K_i \subset Y$ for $i \leqslant n$ so that $y^i \in K_i$ and $\overline{K}_i \cap \overline{K}_j = \emptyset$ for $i \neq j$. Since $\operatorname{dist}(A_m, A) \to 0$, we may assume without loss of generality that $A_m \subset \bigcup K_i$ for $m = 1, 2 \dots$ Denote

$$A_{i,m} = K_i \cap S_m \text{ and } a_{i,m} = \sum_{y \in A_{i,m}} \beta_{x_m}(y)$$
.

Since $\sum_{i=1}^{n} a_{i,m} \leq 2p$ for every m, we may divide the sequence $\{A_m\}$ into a finite number of subsequences so that A_k and A_m belong to the same subsequence if $a_{i,k} = a_{i,m}$ for each $i \leq n$.

Without loss of generality one may assume (replacing if necessary the sequence $\{A_m\}$ by a suitable subsequence) that $\{A_m\}$ coincides with one of these subsequences, i.e. there are a_i for $i \leq n$ such that $a_{i,m} = a_i$ for $m=1\,,\,2\,,\,...$ Let in the sequence $\{y_1^{i,m},\,...,\,y_{a_i}^{i,m}\}$ every $y\,\epsilon\,A_{i,m}$ appear $\beta_{x_m}(y)$ times. We put

$$a_m = (z_{1,m}, z_{2,m}, ..., z_{2p+1,m});$$
 $a = (z_1, z_2, ..., z_{2p+1})$

where

$$z_{i,m}=y_i^{j,m}$$
 and $z_i=y^j$ if $i=a_1+a_2+\ldots+a_{j-1}+l$, with $1\leqslant l\leqslant a_j$

$$z_{i,m} = z_i = y_0 \text{ if } i > \sum_{r=1}^n \alpha_r.$$

Since dist $(A_m, A) \rightarrow 0$, we have

$$\lim_{m = \infty} y_j^{i,m} = y^i$$
 for $i = 1, ..., n, j = 1, ..., a_i$.

Hence $a_m \rightarrow a$ in Y^{2p+1} , thus $\psi^{Y}_{2p+1}(a_m) \rightarrow \psi^{Y}_{2p+1}(a)$ in $Y^{[2p+1]}$.

Now we show that $\psi_{2n+1}^{\mathbf{r}}(a) = r(x)$. Let $f_i \in C(Y)$ be such that

$$f_i|K_j = \left\{egin{array}{ll} -1 & ext{if } j=i \ 1 & ext{if } j
eq i \end{array}
ight. ext{ for } i=1,...,n \ .$$

We have:

$$(Mf_i)(x_m) = (-1)^{e_{i,m}}$$
 for $m = 1, 2...$ and $(Mf_i)(x) = (-1)^{\beta_{x(y^i)}}$.

Since $\lim_{x \to \infty} (Mf_i)(x_m) = (Mf_i)(x)$, we have

$$a_i = a_{i,m} = \beta_x(y^i) \pmod{2}$$
 for almost all m .

Hence

$$\psi_{2p+1}^{Y}(a) = \psi_{2p+1}^{Y}(b)$$

where

$$b = (z^1, z^2, \dots, z^{2p+1})$$

with

$$z^i = y^j$$
 for $\sum_{\nu=1}^{j-1} \beta_x(y^{\nu}) < i \leqslant \sum_{\nu=1}^{j} \beta_x(y^{\nu})$

and

$$x^{i} = y_{0} \text{ for } i > \sum_{r=1}^{n} \beta_{x}(y^{r})$$

i.e., $\psi^{\mathcal{F}}_{2p+1}(a) = r(x)$. Obviously $\psi^{\mathcal{F}}_{2p+1}(a_m) = r(x_m)$, thus $r(x_m) \to r(x)$. This proves the continuity of r.

The second part of the theorem is trivial.

Theorem 3 is an easy consequence of 2.2, 2.6 and Theorem 2. Indeed, suppose to the contrary that there is a med $M: C(S_n) \to C(K^{n+1})$. Then, by 2.2, there is a p-fold meo M': $C(S_n) \to C(K^{n+1})$. This, by 2.6, implies the existence of a map $r: K^{n+1} \to S_n^{(2p+1)}$ such that

$$r(y) = j^{2p+1}(y)$$
 for $y \in S_n$.

This ex definitione means that j^{2p+1} is a homotopically trivial map, a contradiction with Theorem 2.

References

- [1] A. Pelezyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions. Dissertationes Mathematicae (Rozprawy matematyczne) 58 (1968).
- [2] A. Szankowski, Multiplicative extension operators and locally connected continua, Fund. Math. 65 (1969) pp. 207-217.
- [3] A. Turowicz, Sur les fonctionnelles continues et multiplicatives. Ann. Soc. Polon. Math. 20 (1947), pp. 135-156.
- [4] В. Г. Болтянский, Об основных понятиях алгебраической топологии, in the book: Вторая летняя математическая школа, 2. Наукова думка, Кнев 1965.

Recu par la Rédaction le 16, 8, 1968