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Projective potencies and multiplicative extension
operators

by
Andrzej Szankowski (Warszawa)

Introduction. In the first section of this paper we introduce
a notion of the p-th projective potency T™ of a space T (unless otherwise
stated, by a space we shall mean a compact, metric spaece). Given a point
gye¥ we introduce a natural embedding jp¥: T3P+,

Let S, be a circumference. Let P, be an #n-dimensional real pro-
jective space, embedded as an “improper hyperplane” in P,.; and let
1yt Pp—Ppyy denote this embedding.

The term “projective potency® is justified by the following

THEOREM 1. 81 is homeomorphic to Iy; moreover there are homeo-
. ;1 onto
morphisms hy: S§9-——P, such that

Fuhn = hppafn  for n=1,2,..,

where §, = jur' for any fived point te 8.

For =2 we have no satisfactory topological description for the
projective potencies of S, (by S we denote the n-dimensional Euclidean
unit sphere). We know however that the homotopical type of 8% is not
 trivial. Precisely, we have

TurOREM 2. The embedding §°: Sn—8%! is not homotopically trivial
Jor n,p =1,2..., where §* = ja¥io ...ofi™ for any fiwed s of Su.

In the second section of the paper Theorem 2 is applied to the problem
of the existance of multiplicative extension operators.

Let C(Y) denote the space of all real-valued maps on a space ¥ with
the uniform convergence topology. Let ¥ C X, by a meo (multiplicative
extension operator) we mean a map (= continuous transformation)
M: (Y)->C(X) such that

M(fg) = Mf-Mg for f, g« C(Y),
(Mf)(y)=fly)  for ye T and fe O(X).
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The main result of Section 2 is the following

THEOREM 3. There is no meo from O (8y) nto O (Ipya) for n=1,2, ...,
(Knsy denotes the unit Euclidean ball).

This theorem solves Problem 2 of [1].

Tt is worth emphasising that, by Corollary 3.2 in [2], there exist
multiplicative extension operators from C.(8,) to Cy(Kniy) (here 04(X)
denotes the cone of non negative funections in O(X)).

Notation. R denotes the set of real numbers, I — the unit interval;
for @ e B o = Vi + ... +, we write
—@eR" ol <1}, Sua={oeR" ol =1}.
1. Projective potencies. A y ¢ ¥ is said to be an essential coordinate
of & point = (%, ..., 2y) € X* if card {j: #; = y} is an odd number(l).
The number of different essential coordinates of a point is called its range.

The p -th projective potency Y% is the quotient space Y7/Ey where
the equivalence relation B, is defined by the following condition:

mEfy it # and y bave the same essential coordinates (2).

By v we denote the quotient map from T? onto Y™. TLet ye ¥,
@ e ¥P. The formula

s Ylwp (@) = ypale, ),  Where (2, %) = (@g, ..., Tp, ¥) ,

defines an embedding jz¥: ¥P . y@+y
By the projective space P, we mean the quotient space Ku/~ where

v~y i wéy or = —yelS-

The formula &u(x)= (z, ]/"1—|[as{|2) defines a natural embedding
knt Kyn—8y. The embedding ru: Pp—>Pyyq is defined by the formula
r,,(m(m)) = p,H_](kn(m)) , ‘Where p, is the quotient map from K, onto P,.

Proof of Theorem 1. First we shall investigate the space I™.
"We shall prove the following .

1.1. PrOPOSITION. There are homeomorphisms qu: 1["10—“—;]@ such that

(0) q'n—l-lji’og-r:] = — _({n+1j711,’1g;1 = Ky .
Proof. Write g, =9} and By = B, Tet op= {we I o, 0 =
= o). It is clear that oy iy a simplex with the vertices e;={1,...,1,0,...,0}
i-times

() e. g if @ == (yzyws) or 3 = (222w2), then only w is an essential coordinate of .
() e. g. (yazeyzw) EY(zy~ywtt)By(mkmkwﬂp) but not ayyyy BY (wxyyy).
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. Al . - . pe . . - .
A point 2= Z ai6; € 0n Will be identified with its baricentric coordinates
n

@ = (Gy, Gy, -y Gu) Where a; >0, D a;=1(3),
i=0

To prove the proposition it is enough to construct maps f,: ,,”Tﬁ';]fn
guch that
(1) .fn @ ‘—=fn iff (lEnb s

) fule, 0) = ~ful0, @) = kns(fu-a(a))  for each aeo,_; (%)

(then we Put g = fuwn)

To simplify the argumentation we define a (discontinuous) fune-
tion R: oy->on which is a “selection function” for B,, ie. R satisfies the
following -two conditions
(3) Rg = Rb iff aBE,b
(8" aFy,Ra (or, ‘equivalentlyj R(Ra)= Ra) for each ae g, .

3

Given & = @ € on, wWe put Ra=y = (Y1, ., ¥x, 0, ..., 0) € 0, where k is
the range of », and y; > ¥, > ...> ¥ ave all essential coordinates of .
It is obvious that R is a “selection function’.

The following description of R will be more useful

L= R oRyo .. oR, where Rya=a and for i=1,2, .., n-1,

Rea (@gy wovy Bimzy Bg—1 Gy, Gigay oy Auy 0,0) ° if @; =0 s

0= e
o if a;#0.

Given a € oy, put @ = a;+ay} a5—14 ... We sec that
(4) @ = Ra, hence if aBybh, then =15 .
Let Tn {weon: @= %}
2. LeMMA. There is a natural homeomorphism between wu(Ty) and
w/,'n_l(dnﬂl) = I
Proof. It is enough to construct a” map gu: Tﬂfﬁ‘f_ﬁ%-l such. that

onto

(8) if aByb, then (g,a) Bu(gab), ie. there is a mapy: pu(Tu)—> I such
that the following diagram commutes

on
> Op—1

T’n

' V-1

ol T) — 177

(6) if gna = gud, then Re = Rb, i.e. the above map Y is a 1-1 map
(and, by the compactness, is a homeomorphism).

() we use leiters x, y to denote Ruclidean coordinates and a, b — baricentric ones.
() if @ = (g, .., An-1), then {a, 0) = (G, ..., @tu-1, 0) and (0, a) = (0, @y, --.5 Gn-1)-
7*

-
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We see that for a e oy, we have

(fias ) = ~{£(0, @) = (fia),
I1fela, O) = Ifa(0, @) =1,
sgn (fg(u, 0))2 = —R’gn (fg(O, a/))2 =1.
Sinee for a € g, we have
@0=1-(0,0)=4a,
guP(a,0) = (gn—1Pa, 0),
P (0, a) = (0, gn-1Pa),

an easy induection implies that

(fﬂ(a‘y 0))1' = _(fﬂ(o) a’))i = (fa—1a)
Ifala, Off = [Ifu(0, @) =1,
© sgn(fala, 0))n = —sgn (fa(0, @) =1 .

Three last equations imply (2). This completes the proof of 1.1.

Our Theorem 1 is an easy consequence of 1.1. Indeed, lot §;, = I/R,
where 2R,y if & =y or = 0,y = 1; it is clear that S = I"™YR, where
#Bay if @ =y or there is a zeI”™ ™ such that &= ji%(2), y = it ().

By (0), this completes the proof of Theorem 1. @

In the sequel we shall use the following notion of a (cellular) poly-
hedron: by a polykedron we mean a compact metric space P with its
finite disjoint triangulation . The elements of B are called cells. Fach
cell I satisties the following conditions.

A. There is & number k= dim" and a map pr: I*>P (a charac-
teristic map for I') such that g, maps IntI* onto I' homeomorphically.
B. The set I'=I'—Iis a union of cells of lower dimensions.

I a cell 4CI" and dimd = dimI'—1, then 4 is called a face of I

We shall use Z, as the coefficient group for homology groups of P.
The nth homology group of P will be denoted by Hy(P).

Let 4 be an (n+1)- dimensional cell and let I" be a face of 4. A point
Yy eI'will be called normal for A if for each @ € pz%(y) (we have @ e I™*)
.there is & neighbourhood U, of z in 1™ such that the restriction g4|Usx
I8 & homeomorphism. We make use of the following well known (cf. for

ix;,?ta,nee [4], pp. 56, 57 and 14, 19) fact concerning the houndary oper-
ation @: ;

for i=1,..,n-1,

1.3. PROPOSITION. If for each face I' of 4 there is a point ypr e

- I, which
i normal for A, then

éd =TI+ ... +T%.

icm®
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where iyt =1, ..., % are all faces of A such that cardgl (yp) is an odd
namber. ‘

1.4. THEOREM. The space ST is a polyhedron for p,m=1,2,..;
the induced homomorphism 71 Hy(Sn) >Hu(8T), where i* = jpes o ...
for an arbitrary point S e 8y, is not trivial.

Proof. Let teI’". We write

758

-8,
o _71

= (e, ) = (1, s ay By ey by ey By ey )
where ¢ = (1, ..., 1)) e I". Put

sgn(1—F®) it j=0,
mli, §) = m(f)s weldy §) = { sgn ((FP -9y 1<j<p,
sgn(iF?) i j=1yp,

where @, ..., 7 arve permutations of numbers 1,..,p such that

(*) t«;_ff(l) > t-;_li(ﬂ) > .. > ﬁi(p) , -
(%) it 9= 7" and j<k, then m(j) < mlk) .

The pair of functions (m, y) is uniquely determined by t; we shal% call
it a characteristic pair of t. The set of all characteristic pairs will be
denoted by X. Bvery pair (m,y) X will be identified with the set
{eI™ (m, u) = (%, z)}; thus X is a digjoint covering of I™. The
covering ¥ may be obtained by “cutting” the cube IP* by all hyperplanes

B=1 fori<i<n,l<j<k<p.

The set (z, y) is convex and open in the hyperplane

1, itj=1 and x(i,0)=0,

®8) 700 = @D i 1 <j<p and 4(i,5) =0,

0 if j=9p andy(i,p)=20.
Observe that (8) is a system of (p +1)n—2 %(%,j) independent equations.
Thus we have
(9)
The set (w, ) consists of all points, satistying (8) and the following
condition

dim(, 7) = 3, 2li,§)—n .

if j <1, then 0 <t/ <#% <1.
Hence the set (o, x) is the union of all sets (@', x') such that

10y if y'(i,4) =1, then x(¢,j)=1 and numbers Jr'.(‘i,.l), vy @, j—1)
form a permutation of numbers m(¢,1); .., aliy j—1).
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Let ¢ be a natural map from I" onto S, such that ¢(AI") = s and ¢
maps homeomorphically IntI” onto S,—{s}. Then the formula

F@s ey ) = 9"t ey gt

onto
defines & map f: IP"—= 81,

FOr % = (Uygy oo, ) € I" and v = (vy, ..., 0) € I we shall write u < »
if there is a number ¢ such that w; = vy, ..., %= v, and vgy; <v44;.
Furthermore, let Z be the set of all points # e I such that

$) b

(11) there is an r such that
PEsE =T = =P =(0,..,0),
2 H£0nor 1for l<i<r 1<j<n.

We see that

(12) the restriction fiz is & one to one map. 4

Let us notice, that (11) may be expressed by some conditions con-
cerning only y; and s, Thus, it ¢ e Z, then (m, y) C Z.

Let A6 be the family of all characteristic pairs contained in Z. Tet
B ={f((, 1) (=, 1) e HM}. We will show that

(13) the family © satisfies conditions 4 and B; the restriction T
Is a characteristic map for a cell f((z, z)) « G.

Let ¢=(t, ...,1") e I"™ and let = be an arbitrary permutation of
numbers 1, ..., p. We define .

a(t) = ((at)', ..., (at)7), b(t) = ((80)}, ..., (B8)7), ety = ((et)', .., (et)”)

where

( at)7 7(7)

(bt)jz{t’ it f#£0mor1foritl,..,n,
(0, ..., 0) otherwise,

P ose s - TR
ety — [t if ¢ is an essential element of (', ..., ¢") and ¢* 5 1 for i < j,

(0, ..., 0) otherwise .
L5, LemMA. If T= a,(t) or b(t) or o(1), then Ty 20)) = f{(ma, 22))
and dim (77, x1) < dim (o, z2).

Proof. Pub respectively a(u) = a, A(1) or b(u) or ¢(u). Obviously in
all three cases a((m, 70)) C (reaqe, Zath)-

icm®
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‘We will show that the opposite inclusion also holds. Let w e {7aw, Zam)-
In the case & = @&, put w? = w0, Next observe that in the cases a= b
and a = ¢ the system
/u:r’,; =l if P =4 s
wi=t it d=0,1,
wh= wf if )= s
Cwl< wh <
is consistent, thus it has & solution w (and w e (7, ). It is clear that
a(w) = u, hence a maps (7w, ) onto (7, x3).

Since a(u-+2) = a(u)+a(v), we infer that a does not enlarﬂe the
dimension. Therefore dim (nz, yz) < dim (7, x).

We have fa(u)= f(u), because in all cases the sequences (i'),...,
@(?) and (F), ..., ¢ (i) have the same essential elements. Henee f({w, 1))
= f((m, 1) = .

Let te(m, x). Choosing appropriately a permutation =, we get
T=a.b(t)eZ. Put («, %)= (m,1). Then (o', %')e M and, by 1.5,
we have
(14) = for each (=, y) in X there is a (', ') e A6 such that

f((n, x)) = f((n’, ;(’) and  dim(x, ') < dim(=x, g) .
It (', 7)€ M, then, by (12), dim(a, z") = dimf((a’, ). Therefore,

by (14), we get

(15) dimf((z, x)) < dim(s, ) for each (w,z)e k.

Also by (12) and (14) we have
(16) it (m,7) and (a',7) eX, then either f((=, z)) = f((=’, x')) or

f((”: X)) "f((”’: Z’)) =

Now let I'= (m, %) € ds, I'= s with 4; e K. Since I is compact,

we have
T = f(0) = f(I'w Ud) = H(T) v Uf(40) -
By (15) and (12)
Aim f(As) < dim 4; < dim I = dimf(I"

Hence, by (16), the sets f(I") and f(;) are disjomt. Thus

(1 (f) = Ufd) =f(Ud) =T

Hence f maps I" on f(I') homeomorphically, and B fsa,tlsﬁes the con-
dition A. Also, by (14) and (17), condition B is satisfied. This completes
the proof of (13).
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Now let v = Su— {5}, I'= %), Le., I'=f((Z, Q)) where
1 forj=0,1,

i A 00 i) =
i g) =17, (4 ) {0 for j> 1.

Let (7, ¢) e M, 4 =f((=, x) and dim4 = 2+1. By (11):
7(1,0)=1 fori=1,..,7n
and there is a &k (equal to ¢—1 or p) such that y(é, k) = Lfor i =1, ..., n.
Since dim (7, y) = 7+1, by (10) and (11), there is exactly one pair (I, r)
with 0 <7<k such that y(I,#) =1. Let te(m, ), thus 1> =..
=t = =@ =0 for i #1 and
1= =0> = =t>t"=..=0=0

(it is eagy to see that, by (*), (**), and (11), =(é,§) =§ for i =1, ..., n).

If r > 2, then # = *; if r = 1 and % > 2, then #* = #>. Hence, by (11),
we have r=1, k=2 and thus (s, ) is determined by the number I
and y is of the form
"1 0 1 0 0..07]
1 01

(=1
==}

1 1 1 0 0..0 glthrow.

1 0 1 0 0..0]
Let &= f(«', 1) be a face of 4. Then dim(a’, y') = n and, by (17),
(='y z') is a face of (=, y).

) Eence, by (9) and (10), there is exactly one pair (¢, §) such that
2(6,9) =1 and x'(i,j) = 0. If i 3£ I, then for every ie(n’, ') we have
i=0 or 1 for Tl, 2,..,p. Hence p(t")=..=¢(")=s and thus

= f((?z ,_x’)) = {yp"(s)}. Therefore dimEZ =0 <n and 5 is not a face
f 4. Similarly if ¢ =1, j = 1, then for ¢ ¢ (#, z') we have 1 = 12 > 3= ...
=1"=(0, ..., 0), hence also & = {y5"(s)}.

Finally, let ¢ =1, j = 0 or 2, i.e. (', ¥') = (7, x1) OF (7', ¥') = (T, %2)
where

-
-

[=]

(714 1)

={el™ 1=0>4>0,1>#=1>0for i %1 =0 for j >3}
and
(723 72)

={el™ 1>4>H=0,1>6=1%>01for i1l t.=0 for j = 3}.
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e see that
f@?0,0,...,0) for te(m,z),

7alt) = {f(ti, 0,0,..,0) forte(m, )

and obviously the restriction of ¢ either to (my, y) or to (m, i) is
a homeomorphism onto I. Hence every point y e I" is regular for 4 and
cardp;'(y) = 2. Therefore, by 1.3, the coefficient of I' in &4 is equal to 0.
Thus I', being obviously a cycle, is not a boundary of a chain. This implies
that §2: Ha(Ss) >Ha(8%) is not a trivial homomorphism. |

Theorem 2 is an immediate corollary of Theorem 1.4.

2. Multiplicative extension operators. A map m:C(¥)—R is said to
be a multiplicative functional it m(f-g) = m(f) -m(g) for every f, g e C(¥).
If m is a multiplicative functional, then the restriction

]m[ = Moy

is a multiplicative funetional on (O (¥). We shall write Sm = Sm|
(ef. 2.1 in [2]). It is easy to see that

(18) if f(y) = g(y) for every y e Sm, then m(f) = m(g).

We have the following (¢f. Theorem 2.2 in [2])

9.1. TurorEM. Let M: C(Y)—C(X) be a function such that for every »
in X the functional M, defined by

Ma(f) = Mf(x)  for feC(Y),

1s maultiplicative and non constant. Then M is a multiplicative operator
(i.6. a continuous funetion from C(Y) to O(X) such that M(fg) = Mf-Mg
for f, g« C(X)).

Proof. The multiplicavity of M is obvious. We will show that M is
continuous. Let fy=f. We have to show that M (f,)=Mf or equivalently,
that My, (fa) >M(f) whenever @, —x.

Since |fa|=2|f], by theorem 2.2 in [2], we have | My, ( fu)] — M )]

"The case Mu(f) =0 is trivial, let us assume that Ms(f) %0 and thus

f(y) # 0 for y €« SM,. Since §M; is compact, there is an open set UD SM,
such that |f(y)| > 0 for y ¢ U. Hence

(19) 17‘;’::;1 on U.

It follows from ,fhe formula (3) in [2] that dist(SMy,, SMz)—-0.
Thus we may assume without loss of generality that

(20) SM., CU for m=1,2,.. and SM;CU.
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Let us define a map M": C(U)—C({a} v | J{m}) by
(A'g) () = Mg)  for zefo} v U {ma}, ge C(D).
Here §e C(Y) is an arbitrary extension of g (the definition makes

sens, by (18) and (20)). By (19), we may assume that jﬁ> 0 and thus

!

M’Zf = JI’;%. By 2.2 in [2], M’ is continuous and thus, by (19), we

have JII’%? =M'1=1 (we have M'1 =1 Dbecause M, is not constant

for any @). Thus, by the multiplicativity of M’, we have M'f,=M'f on
{z} v U . Hence My, (fa)>My(f) and, by (18), Mu,(fa) ~Mu(f). =

Let Y be a space. By 2(Y) we shall denote the family of all closed
at most countable subsets of ¥ with the dist metrie, i.e.

dist(4, B) = supd(x, B)+-supd(y, 4) for 4, BeJ(Y).
xed . yeB

%,(¥) will denote the subspace of J&(Y) consisting of all at most
p-point. subsets of Y.
Suppose that M: 0(¥)-C(X) is a meo. By 3 in [2], it is easy to
see that the formula
Sx(®) = SM,

defines a map S X—3(¥).

If there exists a number p such that 8(X) C Jep(Y), then I is called
p-fold. We shall prove the following

2.2. TEEOREM. Let Y be a simplicial polyhedron and let M: C (_Y )=
—+C(X) be & meo. Then there exists a p-fold meo from O(YX) into (X) for
some integer p.

The proof of Theorem 2.2 will require some notation and lemmas.
Let ¥ C X be arbitrary spaces, let M: C(Y)—C(X) be a meo and let p be
4 map from Sy(X)x Y into ¥. We shall denote o2(y) = p(Sala), ).

2.3. LestvaA. If g(y) = y for y € X, then the Sformula

Nolf) = Mulfog) -
defines @ meo N: O(Y)~C(X). If additionally card Po(Su()) < p for
every e X, then N is p fold

Proof: The second part of the lemma is obvious. We shall prove the
first one. We see that N,(f) = fy) for y €Y, and thus, by Theorem 2.1,
it is sufficient to show that if fe C(X), then Nfe O(X).

Let @, —w2. Let ns notice that

f"‘]’znz'fc’%.
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Indeed, let yn—y in Y. We have (foqs,)(yn) = flp(Salan), ya)].
Since f, ¢ and Sy are continuous, (£ o gz,) (¥s) ~f[g (S21(), )] = (f < ) (¥).
This implies (20).

It follows from (21) and the continuity of M that if #->co, then
Nyl ) = Maolf 0 02a) > Mol f o @) = Nal(f). B

By a cubic polyhedron we shall mean any union of faces of the n -cube I",

2.4. LEMMA. Every simplicial polyhedron is homeomorphie to a cubic
polyhedron.

Proof. Every polyhedron is a subpolyhedron of a simplex with its
natural triangulation. Thus it is sufficient to prove that for every n there
is a homeomorphism % of an #-dimensional gsimplex ¢ onto I" such that
for every wall = of o, h(z) is a union of faces of I".

n
We may asstume that o = {(t;, ..., ta) e " Dt <1} Lett = (1, ..., t) e 0,
i=1
pub
It :(S‘h) max 1)~ it =0 and h(0)=10.

1<in
It is a routine matter to check that & is the desired homeomorphism. @

2.5. LmMmyA. If & ds a compact subspace of J(I), then there exists
a= az> 0 such that for each A eA, the complement I—A contains an
interval with length greater than a.

Proof. Put for A e J&(I):

g(4) = sup{b: there is an intexrval LCI—4 such that |L] = b}

(here |L| denotes the length of an interval L). 7

It is easy to see that g is a positive contintous function on J&(I)
because I ¢ Je(I). Since + is compact, there is a positive number a such
that g(4d) > o for Aest. B

Proof of Theorem 2.2. By 2.4, we may assume that ¥ is a cubie
polyhedron in I". We define for @ = (%, ..., &) € I": mi(#) = @; and for
A eR(I™: mi(d) = {m(w): wed}) Since z; are continuous, the seb
A= |Jmi(8x(w)) is a compact subspace of X(I). Denote b= a./2.

1

For A e+ we shall define a function fq: I—~1T.
Let A%, A% ... be different components of the set conv.d—A, ordered
in such a way that:

|[4Y = |4 = ... and A = convd—4.
21
Let 4= I—convA. We define
_ Jt for 10
gw“lo for 1<<0.
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Pub )
saty = [ 2 (B8 g4t Y aoat-0]

&\ AY

(t»hié formula defines a function, because g(|471—b) = 0 for almost all 4
and there is such i that [4%] > ax > b).
We shall prove that the function f: € x I +I, defined by

f(.z.:[, t) = fA(t) for A e s
is continuous.
Observe that [4°|<b for ¢>b" TLet Ayed and tel, let
dist(dy, 4) >0 and i, —>t. Let A% = (b%, ¢°). Denote for 1 < i< b

) bt ) . i, 8
b,',:sup{veAn: v < jo}‘; c},:inf{reAH: b-‘i)—c <1,-}

and B = A%; Bl = (b, cb).
It is easy to see that

(22) lim bf=b%, lim ¢i=¢" for O<i<b™ s

n=co n=00

(22)  for each 0<_.'iv<b“1 and #=1,2.. there is an index j such
that B;, = 4;; for almost all n, all sets 4}, with |4} > b appear
among B, for i< b7

Thus, by (22'), we have for t el
_[ N0, 0B ;
Fan =] 3 BBy pl—n)|-[ 3

A 1B &

y<|B:;(~b)]_1

for almost all u. )
By (22),EgiB;| = |4"| and, since ty, 1, lim |(0, tu) ~ Bi = (0,8)~ A},

Thus ml,fffwfd”“’”) = fa(t), hence f is cont;:{;TJT;s.
Observe that f has the following properties:
(23)  f(4,0)=0, f(4,1)=1 for every 4 .t
(24)  fl},u)=wn for t,uel,
(23)  cardf (d)<dp " for every 4 e .
Now for Be8y(X) and ¥ = (yy, -.., ¥a) e I* put:
¥ = ¢/(B, Y) = faum(ys) and ¢(B,y) = (¢*, ..., pn) .

By (23), if y o where o is a face of I” then ¢(B,y) e for every
B € 83(X). Thus ¢ is & map from $(X) Y into Y.
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By (24), o({y},y) =y for ye X,

Finally, by (25), cardes(B) < p = entier (571" This, by Lemma 2.3,
completes the proof of Theorem 2.2. @ .

9.6. PROPOSITION. If there ewists a p-fold wmeo A: C(Y) -+C(X),
then there exists a map r: X Y™ such that

() forye¥

ry) ="
where 2 = GEA o jRI o Lo §TV and yy is any fived point of T

Proof. For x e X, M, is a multiplicative functional on C(Y). Hence,
by a theorem of Turowicz [3] on the vepresentation of multiplicative
functionals, there is a sequence {fu(y)}yesar., Where fz(y)=1 or 2 such
that

M) = A1) [ ] senf@f for feo(y).
yeSMy

Let SMz= {¥1, ..., Y}, we define #(2) by

. ¥ PR w
(&) = Yopsa(Z1y 22y oor sy Frpia)
where

i-1 I
gi=y; for 2 Baly,) < i< Zﬁx(yv) s
y=1 ?=1

3
2i=1y, for 2 Balyy) <i<2p41.
y=1

Let @m —@. Denote SMy, = Am and SMy= A. Let 4 = {y*, ..., Y}
Pick open sets K; C Y for i < # so that y? e K; and Ein K;= 0 fori+#j.
Since dist(4m,4)—>0, we may assume without loss of generality that
AmC | J K; for m=1,2 ... Denote

i<n

A'ii,m. =K;~ 8y and aim= 2 lgzm(!/) .
yedim
Since Y aim < 2p for every m, we may divide the sequence {dwm}
i<n

into a finite number of subsequences so that 4z and Ap belong to the
same subsequence if gy = a;m for each 4 < %. )

Without loss of generality one may assume (replacing if necessary
the sequence {4n} by a suitable subsequence) that {4y} coincides with
one of these subsequences, i.e. there are a; for ¢ <<n such that a;m = as
for m =1, 2, ... Let in the sequence {YF™, oy Yoy every y € Aqm appear
Bzn(y) times. We put

a1 . — z perd 2, .
o, = (zl,m.; 82,015 +or g f-211+1,m) b a == (‘11 L FIRS) ”lﬂ—rl)
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lim g =y" fori=1,..,m j=1,..,u.
m=c0

: 2p-+1 ¥ ¥ 3 [2p+1]
Hence am~—>a in Y, thus yipia(an) ->pepsi(a) in ¥ .

Now we show that 1/)21;_(.1(@) = 7(#). Let fi € U(Y) be such that Reeu par la Rédaction le 16. 8. 1968
-1 ij=i '
A = for i=1,...,n.
Jks { 1 i T —

We have:
(MF) (@) = (1) for m=1,2... and (Mfi)(w) = (—1)W)
Since lm (AIfi)(2n) = (Mfi)(x), we have

Mm=00

a5 = tsm = Puly?) (mod 2) for almost all m .

Hence
Yapa(a) = yapia(D)
where
b= (4, 2% ..., RP0t1)
with )
j=1 i
=y dor Yty < i< 3 )
»=1 =1
and -

i3

al = Yo for 4> Zﬁx(y’)
r=1

Le., pipia(a) = 7(x).

Obviously ¢£,+1(a,n) = 1(®m), thus r(wy) ->r(2). This proves the con-
tinuity of ».

The second part of the theorem is trivial. @

Theorem 3 is an easy consequence of 2.2, 2.6 and Theorem 2, Indeed,
suppose to the contrary that there is a meo M: ((S,)->C(K"*Y). Then,
by 2.2, there is a p-fold meo M': €(8,)->C(K"*™). This, by 2.6, implies
the existence of a map r: K" 8P+ queh that

r(y) = 2t y) for ye§,.

This ex definitione means that j2+1 ig a homotopically trivial map,
a contradiction with Theorem 2.
Fundamenta Mathematicae, T. LXVIL 8
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