Constructive methods in probabilistic metric spaces

by
Eizo Nishiura (Detroit)

0. Introduction. This paper initiates a development of the theory
of probabilistic metric spaces in which the role of the {-norm is ancillary;
indeed, the ¢-norms are considered only insofar as we wish to clarify the
relationship between this and previous work in probabilistic metric spaces.
Moreover, our principal interest here will be not in ¢-norms as defined
in [1], but with {-norms satisfying a weaker set of conditions.

In section one of this paper we make some l.sic definitions along
with a brief discussion of ¢-norms. The remaining sections will give con-
structive solutions of some problems in pseudo-metrically generated
spaces, metrization and completion of spaces.

1. Preliminaries. We shall be concerned here with a family
T = {Fpg: P, ¢ 8}

of one-dimensional probability distribution functions Fp, satisfying the
following conditions: for each pair p, qe#,
(1) Iy is left-continuous,

(2) F)J'I = quy
3) -FM(O) =0,
(4) Fpe = H if, and only if, p = ¢;

where H is the function defined by

" _Jo for <0,
(m)—ll for 2> 0.

If the family § satisties the additional condition

(8) Fpy(») = 1 and Fg(y) = 1=Fp(z+y)=1
for all p, g, » « § and @, y > 0, then the pair (8, F) is a probabilistic meiric
space in the senge of Schweizer and Sklar [1].

In his original paper [2], Menger required the members of the fam-
iy & to satisfy (instead of condition 5) the eondition:

(5m) Fprl@+y) > T(Fpal®), Furly))

8*
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for all p,q,7e8 and »,y >0, for some function

7 [0,1] %[0, 1]1=[0, 1]
satisfying:
) T y<T(e,d) for a<<e and b < d,
(tz) T{a,b)=T(b,a),
(t) T(L,1) =1,
(ty) T(a,1)>0 for a> 0;
and called a statistical metric a pair (8,F) satisfying (1)~(4) and (5m).
Schweizer and Sklar, in [1], replaced these conditions by the re-
quirements: .
(t1) T(a,d) < T(e,d) for a<<c and b <d,
() T(a,d)= T(b, a),
(ts) T(a, 1) = and T(0,0) = 0,
(T(a b), ) ( ay (bsc))
and called & Menger Space a probabilistic metric space for which there

exists a {-norm satisfying (Sm), a ¢-norm being a function with prop-
erties (tl) (te).

For any probabilistic metric space (8, %), there is a natural function
Tg: [0,1]%[0,1]-[0, 1] which has most of the properties of a f-norm.
Namely,

Ty(a, b) = mi{Fpi@t+y): Fplw) > a qu (y) = b}

It is easy to verify thab (t,)~(t;) and (5m) are satisfied.

Since (#,) is not. necessarily satistied by T, it is not necessarily
a {-norm; however, if there is a ¢t-norm T for (§,F), then T < Ty in
the sense of [1] since Ty is clearly the strongest function having prop-
erties (t;)~(t;) and (5m). It is this “quasi z-norm* with which we shall be
mainly concerned.

We shall also have oceasion to make use of the family D = {dy:
0< a< 1} of fanctions from §x 8 to [0, co) defined by

M ' dlp, @) = int{o: Fpula) > a} .

In view of the fact that each F,, is inereasing and left-continuous,
we have

() . QD @) < B Fpw) > 0 .
Furthermore, the Fpy(#) can be recovered from the dup, q); nawely,

(I11) Fug(2) = sup{a: du(p, g) < a}.
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The family D has the following properties: for each a.

(a) da(p q) =0,
(b> d(p, p) = 0.
(e) dd(p, @) = da(q, P)-
If, moreover, we assume the family § to satisfy the condition: for
each a(0 < a< 1),

(Iv) Frglw) >a and Fely)> a=Fplzt+y)>a

for all p,q,7e8 and =,y >0, then the do(p, q) have the additional
property: for each a,

(d) du(p, 1) < dalp, )+ da{g, )
for all p,q,7e8, ie. each do is o psendo-metric for 8. Conversely,
(d) also implies (IV) so that we have

- LemMA 1. D is a family of pseudo-meirics if, and only if, the family ‘15"
satisfies (IV). For 0<< a <1, do is a melric if, and only if each Fpoq is
continuous at 0.

Proof. It only remains to prove the last assertion, for Whlch we
need only note that du(p, g) = 0 if, and only if, Fpe(2) > a for all »> 0.

Tn subsequent parts of this paper, we shall make use of conditions
similar to (IV). In order to emphasize the geometric and uniform character
of these conditions, we make the following definitions for later use:

Ulz, a) = {(p, ©): Fpolw) > a},
Uy, a) = {g: Fpe(®) > a};
and pub
W= {U@,a): >0,0<a<l},
Uy = {Up(w, a): peS z>0,0<a<<1}.

Then condition (IV) becomes
(4) U(w,a) U@, a)C Tx+y, a)
for all #,y > 0 and 0 <a<<1.

2. Pseudo-metrically generated spaces. A probabilistic metric space is
said to be pseudometrically generated if there is & probability space (D, B, 4)
satistying:

(1) D is a collection of pseudo-metrics for 8;

(2) for every real number 4 and every Dair p, g e 8, the set {deD:
d(p, g)< o} is B-Measurable;

(3) Fpglw) = p{d e D: d(p, ¢) < ).

The space is metrically generated if the psendo-mefrics are metries.
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In [3], Stevens showed that if (§,§) is a Menger space under the
t-norm T = min and if each Fy(p # ¢) is continuous, then (8,%) is
metrically generated.

The continuity of the Ty, is not necessary for (8, %) to be metrically
generated, i.e. '

TaeoREM 1. If (S,§) is & Menger space under thé t-norm T = min
then (8,F) is pseudo-metrically generated. If, furthermore, the Fyy(p # q)
are continuous at 0, then (8,) is metrically generaled.

Proof. This follows easily from Lemma 1 and the following

Leywa 2. If (8, §) s a probabilistic melric space, Tx > min if, and
only if, (A) holds.

Proof. If Fpy(a) > a and Fg(y) > b, then from (A) it follows that
Fy{z+y) > min(a,b) and hence Tg(a,d)> min(a,d). On the other
hand, if Fpy(z) >a and Fuly) > a, then, for some b> a, Fy(z)> b
and Fy(y) > b, so that Fy(o+y) = Ted, b) =b> a.

Since Lemmas 1 and 2 imply that the family D = {d,: 0 < a <1},
where d, is defined by (I), is a family of pseudo-metries if T = min, the
theorem follows if we put

il do(p,y @) < wh = Pla: dolp, q) < @},
where P is Lebesgue measure on (0, 1).

3. Metrization. Thorpe, in [4], has shown that (8, Wg) is a gener-
alized topological space in the sense of Appert and Fan; and he showed
that if (8, §) is a probabilistic metrie space and 7 is a function satisfying
(t) and (5m) for which ’

vy’ sup{T(a,a): 0<<a<l}=1,
then the generalized topological space (8§, 9bg) is metrizable.
‘We have the following

TH:EOREM 2: L(.;t (8,%) be a probabilistic metric space. In order that
a function T satisfying (t,), (5m), and (V) ewist, it is necessary and swfficient
that: for each a, there is an o such that

(B) Uw, a')- Uly, ') C U(a+y, a)
for all z,y > 0.

P;’oof. Given a <1, choose a’ < 1 so that T(a', &') > a, and sup-

ose Fy(x !

P} ol :»:;l(:f?):az? and  Fe(y)>a'. Then Fulo+y)> T(Fpu(@), Fuly)
On the other hand, for ¢ < 1, choose o' < 1 according to (B). Then,

i 1>b>a, we have, for Fo (#) > b and F,(y) > b that
Thus T'5(b, b) > a. ’ i i) 3} thal Tl k) > .
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The following theorem is also clear.

TapoREM 3. If (8, ) is a probabilistic metric space, the family Vs is
a basis for a separated uniformity for 8 if, and only if, for each pair (z, a),
there is o pair (%', @') such that

(C) U ,a) Ul',a)CU(z,a).

Since the uniformity generated by W has a countable basis, this

yields the

COROLLARY. (8, Wg) s metrizable if, and only if, (C) holds.

Now, (C) is formally weaker than (B) so that Thorpe’s theorem is
a consequence of Theorems 2 and 3. We exhibit an example of a proba-
pilistic metric space satisfying (C) but not (B).

TxAwPLE. Let M (1, a) be a continuous, real-valued function defined
for all 0 < a<1,t>0 with the following properties: For each >0,
M(t, a) '+ oo as /1. For each a, M{0,a)=0and M(1,a)=1, M(,a)

is linear for 0 < t < 1 and strictly decreasing for ¢ > 1 with }im M(t, a)=1%
00

Tet § be the reals and put du(p, q) = M(p—4¢l|, a), then for each
pair (p, ¢), do(p, @) s @ continnous, inerg&sing funetion of a (0 < a <.1)
so that the family § defined by (XIT) is a family of probability distrib-
ution functions satisfying conditions (1)-(4). (§,%) is » probabilistie
metric space, for:

1. § also satisfies (5). Fpg®) =1 it, and only if, M(lp—qi, () <w
for all 0 < a< 1, by (III). But this is true precisely when p = g, 80 (5)
holds. ‘

2. § does not satisfy (B). Given any pair 0 < a, o’ <1, we find p, g,
rel and @,y > 0 so that (B) is violated. Pick p, * so that lp—rl=1
and # o that 1 << 26 < M (1, a). Choose ¢ 80 that both M(lp—gl, o) <=
and M(lg—7l, a’) < ®. Then we have Fp(20) < a with Fpg(2) > o and
Fo() > o',

3. §% satisfies (C). It is sufficient to note that, for each 0 < e <1,
we have M(u,a) < 2M (1, a)[ M (s, a)+M (1, a)] whenever u < s-+1. For
suppose 0 <a <1 and #>0 given, then if M(p—gql,a)< a4 M (1, a)
and M(lg—r|, @) < x4 (1, a), ‘we have M(|p—r|,a)<<®.

It is easy to show that Tg(a,b) =0, for 0 <a, b <1, and 1‘:7(“7 1)
=a, for 0 <a<1, using the fact that Fpl®) =1 for some @ if, and
only if, p = ¢. In other words, Ty is the smallest ¢-norm T,.

4. Completion. We TDegin this section with some (}efinit.ions.. Let
(8, ) be a probabilistic metric space. A sequence (pa) in 8 is said to
be Cauchy if, for each pair (v, a), there is a positive integer N such thab
(Pm, pn) € U, @) for all m,n> N.
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1We say that the probabilistic metric spaces (8, &) and (8', F '} are
isometric if there is a mapping ¢: §-—8’, one-one and onto, such tha
Fpg = Fuppg for every pair p, ge 8. The mapping ¢ is called an isom.-
ery.

! The space (8, F) is complete if every Cauchy sequence converges.
The space (8%, ) is said to be a completion of (8, F) if (8%, F*) is com-
plete and (8§, F) is isometric to a dense subspace of (8*, 7*). The Menger
space (8%, §*, I%) is a completion of (8, 5, T) if (8%, F*) is a completion
of (8,F) and T* = T.

It is known (see [5]) that if (8, &, T') is a Menger space with T a con-
tinuous f-norm, then there is a completion unigue to within isometry,

. For spaces (8, F) in general, we can prove the following

TerorEM 4. The space (8, F) has a completion if

(i) for each triple (»,y; a), there ewists an a' such that
Ulw, o'} Uly, &) C U(z+y; a);

(ii) whenever (p, q) e U(x, a), there is a pair (¢, ') such that
Uple', a') x Uye’, &') C Uz, a) .

The fivst condition is a wniformity condition intermediate to conditions
(B) and (C), and the second says the U(x,a) are open in the product
topology.
Proof of theorem. Consider the set of all Cauchy sequences in S.
‘We define an equivalence relation among such sequences by (pa) ~(gn) if,
for each pair (#, a), there is a positive integer N such that (pu, gx) € U(w, a)
for n > N. The relation is clearly reflexive and symmetric. Transitivity
follows easily from (i).
Let 8*= {n, ¢,y ..} be the collection of all equivalence classes of
Cauchy sequences in §, and for each pair (2, a) define

o

U(w,a) = ’
{lz, p): for each (pn) e and (g.) e g, AN € (P, ga) € U, a)

for m, n> N}.
For each pair =, ¢ € 8, define F, vy

Fyz) = sup{a: (z, @) e U(x, a),

then the #., are inereasing functions, 0 <f",,4, <1, satisfying conditions
(2)-(4) of Section 0. Condition (3) is also satisfied. For suppose 17’;‘,,(50) =1
and Fo(y) = 1. Let a <1 be fixed and choose &' according to (i). If
(Pn) €7, (ga) e and (13) €y, choose N so large that (pm, qn) e Uz, a)
and (gu, ) € Uly, o) for m,n,1> N. Then (Dm, 7)) e Ulw+y, a) for
my 1> N, e (m,9)e U{w+y, a) for every a << 1.

YIS - u')‘
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However, the ﬁw are not necessarily leff-continuous, nor is it neces-

sarily true that lim 17,,,,,(91;) = 1. We therefore define a new family 7~
e X000

from the old F= {F“w: 7, ¢ € 8*} as follows. Let F, be f’;q, changed at
the discontinuity points to be left-continuous. If ;21; Frp(w) < 1.

_lF,',q,(m), r<1,

Fonler) = ]G‘w(’”) y #>1,

where Gy = G- is inereasing, left-continuous, Gn(1) 217’;,,;(1).,‘ Gaglwy <1
and lim G.,(¢) = 1. Otherwise, ¥, = Fr,. Then (8%, ) iy a proba-
>

iligti tric space.
blhs}ﬂ;?m]f,efor ple 8, let § denote the _clmss of a»l‘l sequences in _S, con-
verging in (8, &) to p, and denote by S the collection of these equivalence
dasseTsl‘le mapping p—~P is an isometry. This will follow if we prove that
(p,q) e Uz, a) if, and only if, (F,7) ¢ U(w, a). Suppose (lp, glz) 3 ‘I{(laf(;i;zl)(;
Let (pn) € P and (¢a) € . Then py—+p zmpd gn—q. Choose ,(x ,’a ) a(;.co ,3
to (i), then there existy N for which (pm,D)e Uz, a) sz {an, @
eUa', a') for m,n> N. Thus, (pm,px) ¢ Uz, a) 'for myn > N .
On the other hand, suppose {7, §) e Q(w, a). Sinee (pn=p) ep ang
(gn = g) €7, we have (p,q)«Ule, a).NFlna11§f, Fpglw) = sup{a: (p,q)
¢ Uz, a)} = sup {a: ®,7) ¢ Uz, a)} = Fyi ().
Let U*w, a) = {(w, ¢): Fiy(v) > a} and pub

W= {U¥@,a): > 0,0<a<1}, U={U(a:2>0,0<a<1}.

Since Uy, a)C U*#, a)C U(w,a) for 0<y<z<l,it followsi tha? ‘IL
and U* are equivalent bases for a uniform structure (property (i) is

‘inherited by 4, from 9); and hence to show thab (8*, %) is complete

and that § is dense in (8%, *), we need only show these to be true for
8%, 5).
s g)is dense in (8%, 7). For suppose = ¢ §* and let (pu) € 7. Let (v, a)
be given and choose &’ according to (i) for the triple (m/2,’ a;/2;~ a). Tﬁfre
is N such thab (pm, ps) € U(@/2, a’) for m, n > N. Leb (pa) € pr+1s e’%
there is M such that (pn, Py+1) € U(@/2, o) for a > gI. Thl%f (Pms Pr
€ U(, a) for m,n > max (M, N). In other words, (7, Pyia) € Uz, ).
(8*,F) is complete. To see this, we first state two lemmas.
LemyaA 3. If property (i) holds,

U(w/3,a)-U@3,a) Uw3,a)C Uz, a) for some o'.
Leya 4. If (pa) em, then o> in (8%, F).

Proof. Let (@, a) be given. Pick o according to LemmaNS. éli;li(i;l
there exists a N such that (pm,Pn) e U(x/3,a’) for m,n>N.
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that (Pu, ) e U(w, a) for n> N. For let (gw)ePn and (p}) ez Then
there is a M such that (g, ps) e U(%/3, a’) for m> M and a K such
that (px, pr) € U(2)3, a’) for k> K. Then (¢n,pi) e U(z,a) for M, k
> max (M, N, K). ;

To conclude the proof of the theorem, let (;.) be Cauchy in (8%, .%)
and (x,a) be given. Let @0 and a, /1. For each pair (., a,) there
is & Py € 8 such that (Pu, ms) € U (@0, an). Choose &’ according to Lemma 3,
then there exist a N such that (wp 'y ) e U®/3,a’) for m,n> N and a I
such that (fa, ) € U(@n, @) C U(wf3, @) for n> M. Thus (fm, fa)
eUlw,a) for m,n>max(M,N) yields (pm,pn) e U(w,a) for m,n
> max (M, N). Since (ps) is Cauchy, (ps)eneS*. Therefore f,-x in
(8%, %) and @y —»n. Q.E.D.

TaROREM 5. If (8, 7, T) is a Menger space with a continuous 1-norm,
T, then (8, F) satisfies the hypotheses of Theorem 4.

Proof. If T is continnous, then sup{Z'{e, @): 0 <o <1} =1, and
hence by Theorem 2 (i) is satisfied.

Since I' is uniformly continuous, given &> 0 there is 8 < 1 such
that (e, b) > a—e, for b > 8, uniformly in a. Using (5m) and (tf) we
can show

Fyyla) > T[Fm(w“&”'): T(sz’(m%lpqq’; (""’))] .

Let Fpy(r) > a be given. There is a #' such that Fpp(@—20") > a by left-
continuity. Choose & 5o that Fyle—2a')—e> a and, for this &, as
above. Pick an o so that T(a’,a’) > 8, then we have for Fpp(@') > o
and Fy(a') > o,

Fyole) = T(Fpy(n—2a'), T(a’, 0')) > Pl —20')—e> a .

LenMA 5. For the family 5 defined in the proof of Theorem 4,

Fopw) = inf liminf B, (o).
. {pp)ea mm~»c0
(an)ep

Remark. In the proof of Sherwood's completion theorem [5], it
is shown that if T is continuous, then lim F,,,. exists, and is independent
Nn->00 °

of the choice of (p,) e w and (¢s) € @; and hence F*

for the completion is
determined by defining #*%, =

lim F,.,,. The space §* is the same in
00
Sherwood’s result and Theorem 4. Hence,

n under the hypothesis 7 is
continuous, we have F,(x) = lim F ()
MN—>0

by the above lemma, so that

the F7, of Theorem 4 and F%, of Sherwood’s theorem are identieal, and
the two completions are the same.

THEOREM 6. In general, the completion of a space (

: 8, ) is not unique
unless it was complete originally.

icm°®
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f F) is n ; *, %) is a completion
roof. Suppose (8, F) is not complete and (87, D
of (SP 137 ). Then S"‘-—S’;é @. Let 4 Dbe the class of all left-continuous
probai)ility distribution functions F for which F(0) = 0. We make the
following definitions:

LF) ={p,q) eS8 x8*—8x8: Py =T},
Ly(F) = {g e 8*(p, q) e L{T)},
dy(F) = inf{w: F(2) = 1} < oo.

Pick F e 4 for which L(F) # @, and then ¥ :s,il s1:=ch that 1’11’ —-f F bFu,t
L(F') = &(F). We now define J b'y rep}‘aemg Fig=T by -F?Q_Vvé
for each pair (p,q) ¢L(F) and leaving F,,_q uncharrl_ged otll}elmse..‘ .
claim that the pair (§*, ') is a completion of (8, F), not isometric to
R i i ) F first see that
To verify that (8, F’) is a completion 0% (8, J'?, we firs 1s.~ :
the injection (8, & y—(8*, F') is an isometry smc-.e‘nt?lther S. n(il F W?}i
chfinged by the above. (8%, &) is still a 1)1‘01)21:1)111%1:‘10 m‘e}bme hpgetii (; :
condition (5) still holds by virtue of dy(F) = d,(F"). Thirdly, ‘(. ,a) a;
dense in (9%, F') for if p « 8* and L,,(F)f— , the:n for an{ I]:m- (b:aeﬁ .
there is a ¢ € 8 for which ¢ € Uj(s, @) = Up(@, a) since no l:ﬁz t}vz) oon
changed. On the other hand, if Ly(F) @, choose (%, a)ﬁso ‘ ,b a_ ((r ;) \b)
and F'(%) < . Then for any y <« and b > arwe. have p(y,. % = if.,,,(g, o
and thus Up(y, d) ~ 8 # @. Finally, (8*, ") is complete; for ] & ‘
are chosen as above, then U*(y, b) = U'(y, ) for 0 *< glg b g;n(.l 1>b=a
Hence the Cauchy sequences in (8% F*) and (8%, 5') comgde. )

- Now, suppose there is an isometry g: (8%, %) (8%, ). 2;: §;§ty
assume @(8) = 8. If (p, q) « L(F), then p ¢ 8 orl qg¢8. Agsun}jaF Whic};
Consider the pair (p(p), @(9). We hsj\.ve ‘F o) = F.m#-t :) e
implies p(p), ¢(g) € S. But ¢ maps S onto itself s.m.nd-hence is no hid;

Ve conclude with an example of a proba.blhstl.c‘ metric space‘w p
has no continuous ¢-norm but satisfies the conditions of Theorem 4.

ExavpLi. Let fo, 0<a < 1, De a family of non-negative, strietly
convex functions on [0, 1], satisfying fu(0) = 0, fall) =1, fa < f» for
a < b, and lm f.(t) = . .

Define, ;(-)11 P, qe(0,1), dlp, @) = follp—q); then Fp, according to
formula (ITI). . -

1. (8, F) is a probabilistic metric spage. To prove thxs,‘fwe I(xleiil 0] ig
verify (5). But this follows from the f_act that Fm(a;.) > aif, &2 Y y if,
p—g| < fi'() and hence Fyy(w)=1 if, and only if, lpfql < . ,

2. (8, F) satisfies condition (i). For if (#,y; @) are given, choose a
50 that f'(2) o (y) < fa (@+9)-


GUEST


o
124 E. Nighiura

3. (8, F) satisfies condition (ii). Su ot
’ s . ppose |p—q| < ).
¢ = a and &' g0 that 0 < 2f;1(m')<f;1(m)—-|p—g], = J @) Chooss
1. Finally, T (a,0)=0 for 0<a,b< 1. Suppose a, b, ¢ given
A —1 — — :
Choos‘e @ 50 that f; (2w)_1< Jo'@)+f5'(¢) and then p, g, # such that
gl <fa'(®); lg—r| <fi(2) and |p—r| > £ (22).
‘ 1“]16 author wishes to express his thanks to Professor T. Nishiura
for his help and encouragement during the preparation of this paper
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Sequents in many valued logic I1*

by

G. Rousseau (Leicester)

The notions of validity in classical and intnitionistic logic may be
defined semantically by the methods of Tarski [5] and Kripke [2]
respectively. If we veplace the two truth-values occurring in these def-
initions by & system of M truth-values, we obtain what may be referred
to as classical M-valued logiec and intuitionistic M -valued logic re-
spectively. Gentzen [1] gives sequent caleuli LK and LJ for classical
and intuitionistic logic. The present work is concerned with the many
valued analogues of these caleuli. We shall limit our attention here to
propositional logie; some remarks about predicate logic will be made
at the end of the paper. We show that for each choice of M -valued truth-
functions there exist corresponding sequent caleuli LK and Ly for
classical M -valued logic and intuitionistic M -valued logie respectively.
The relation between these caleuli is similar to that between LK and LdJ.
We note that the caleulus LK differs from the sequent calculus con-
structed in [3] (§1) in that the notion of sequent is more restricted.

We take M = {0,1, .., M—1} (M =2) as the set of truth-values
and congider a fixed system of M -valued truth-functions fy: M™ M
(k=1,...,u). We also choose a set U of atomie statements and con-
nectives Fj of degree rx (k=1,.., %), thus determining the set & of
statements. We denote statements by the letters a, 8, %, ... and finite
sets of statements by I, 4, ...

A sequent is an expression of the form
(1) IO\l o gl g1 s
where for each « € & the set {m: a e 'y} is the complement of an interval
of M. Thus if eIy then either a eIy for all m’<m oI a e I’y for
all m' > m. Sequents will be denoted by the letters IT, X, .., 2. We
observe that the notion of sequent as here defined coincides with that
used in [3] only in the case M = 2. '

* This paper is a sequel to [3]. We note that p. 32 line 18 of [3] should read:
a, Iy = (JaD p)D I™yp). Tt is simpler however to make the correction in the
way suggested in [4].
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