Compactness and chromatic number

by
Walter Taylor * (Boulder, Colo.)

This paper is & continuation of [5], in which we gave an example
of an atomic-compact relational structure which is not a retract of a com-
pact topological relational structure. That example was a graph of infinite
chromatic number; in this paper we show that infinite chromatic number
is necessary for such an example. That is, we generalize the notion of
chromatic number and show (Theorem 3.2) that an atomie-compact
relational structure is a retract of a compact topological relational struc-
ture if and only if none of its chromatic numbers is an infinite cardinal.

.§ 0 contains the preliminaries. In § 1 we develop the notion of chro-
matic number, and in § 2 we relate this notion to the notion of pure
extension. The main result is in §3. § 4 contains a characterization of
retracts of compact topological relational structures in terms of ultra-
powers.

The author is indebted to J. Myecielski for advice on the presentation
of this material.

0. Preliminaries. We let A= (4, R icr denote a relational struc-
ture (with no operations and no constants). If 4 is a (compact)
topological space (not necessarily Hausdorff), and each n-ary B is cloged
in A™ then we say that 9 is a (compact) topological relational struciure.
Consult [7] for the following notions: formula with constants in U,
satisfiability of a set of formmlas with constants in %, purity, homo-
morphism, atomic compactness, and retract. We will not distinguish
Detween the designation of a predicate symbol and the relation o which
it refers. We take » and ¥ to be variables, and « to be any fixed element
of 4. We take “x = 1" as representing equality in the formal language,
whereas “x = y” will mean that # and y are the same variable.

If R is an n-ary relation on the set 4, we let B denote the closure
of R in (BA)", where BA denotes the Stone-Cech compactification_of A.
If 9 is as above, then S denotes the relational structure {BA,; Rter-
BA will be taken as equal to the set of ultrafilters on A4, which will be
* This work was supported by NSF Grant GP-5686.
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148 W. Taylor
denoted A, u, v (possibly subscripted). For information on the topology
of f4, consult e.g. [2].

By cardinal, finite or infinite, denoted s, we mean an initial ordinal
(which we take to Dbe the set of smaller ordinals). We let % denote a finite
cardinal. Also we adopt a symbol oo with the comvention that x < oo
for every s.

1. Chromatic-numbers. Let us be given n, a positive integer, and o,
an equivalence relation on the set {1,2, ..., n}.

DerNiTioN 1.1, S(g, 8) is the relational structure {8, 8, where §
is the n-ary relation defined as follows:

(%) @y oy ) ¢8I dgfsm = ay.

DEpINITION 1.2. Let B be an n-ary relation on the set 4. y(R),
the o-chromatic number of R, is the least s such that there is a homo-
morphism F: (4, R)—+G(g,s). If no such homomorphism exists, we
Pt yo(R) = oo

To see that this definition generalizes the usual definition of chromatic
number, we will suppose that R is a symmetric antireflexive binary re-
lation on 4. Now if we take p such that 102, then S(p, ) is just the
complete graph on s vertices. Thus the homomorphism ¥ in Definition
1.2 is a coloring of the graph ¢4, R> in % colors. It is easy to check that
our definition agrees with that of Erdés and Hajnal [1, Definition 2.8, in
the case of uniform set-system.

LemmA 1.3. Suppose there is a homomorphism F: {4, R ~{B, 8.
Then z(R) < xo8).

Lewnva 1.4. Suppose B = <B, T is compact topological relational
structure. Then y(T) is finite or oo.

Proof. Suppose that z,(T) is an infinite cardinal. We let © be the
set of equivalence relations 6 on B such that the set of §-equivalence
classes is finite. ©® becomes a directed set if we take 0; < 6, to mean that
#B,y=-x6,y. Bince y,(T) is infinite, it follows, Ly («), that for each 6 e 0,
we may find <@y, ..., ) ¢ T such that bzp if 4gj. Take 4 to Dbe one
member of one p-equivalence class, and let some subnet of {®)y cOn-
verge t0 x; e B. Clearly each {mjpy converges to m; for Jei. Continuing
this process, we clearly can find @1y oy @) € T = T, such that 10] = m
= &7, Thus z,(7) = co. QED

] CorOLLARY 1.5. Suppose U = <4, Ry is a retract of a compact topo-
logical relational structure. Then 2e(R) is finite or oo,

CororLLARY 1.6. If 2, (R)

=Lk <y then y(R)=5k If 3(RB)>
then y(R) = co. 0 o 22) [ %(R) 0
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Proof. Suppose first that z,(R) = % Then there iy & homomorphism
F: (A, R>->B(p, k). Since S(g, k) is finite, hence compact, we may
extend F to a homomorphism AF: (B4, R)>G(g, k). Thus z(E) <k.
The reverse inequality holds by Lemma 1.3.

If 4(R) = 8, then 7o B) = %o, by Lemma 1.3. Thus by Lemma 1.4,
Ze(ﬁ) = oco. QED ‘ :

2. Chromatic number and purity. In order to state and prove our
main theorem, we need the following notion of derived relations in
a relational structure.

DEFINITION 2.1. Let €= <4, Riter be a relational structure. \"'Ve
let DA (the derived relational structure) be the relational sjcvructure with -
carrier 4 and containing all relations derived from rele'mtlm'ls of A by
permutation of variables, Cartesian products and substitution of con-
stants of 4. That is, the set W of relations of DU is the smallest sefs of
relations, containing the relations of %, and subject to the following:

Let R be an n-ary relation « W, and let = be a permutation of

D1) _ ]
( {l,..,n}. Then W contains the relation § defined by:

iff /\.16_.,(1), vy w,:(n)}» el

L&y uey Wn> €8

Let R be an n-ary relation ¢ W, and let § be an m-ary relation € .
Then W contains the (n-+m)-ary relation T' defined by:

U .
{yy veey Ty Yy, it <, and gy ey Ymy €8

(D3) Let R be an (n-+1)-ary relation e W, and let @ € A. Then T con-
tains the n-ary relation § defined by:

vy Yo €T vy € R

gy oy a2 €8 HE (o, oy, e, @) e R

Teava 2.2. If U is a compact topological relational structure, then, DU
is @ compact topological relational structure under the same topology.

LevMA 2.3. Let R and 8 be as in (D1). Then

Cftay ooes > €8 iff

TEMMA 2.4. Let R, 8 and T be as in (D2). Then

Lfiy voey flny Vig ey Yy € T Aff (piry voey piud € R ond
LEnMA 2.5. Let R and 8 be as in (D3). Then

iy weny iy €8 iff L@y pry ooy uny e R.

Proof. Let I and V be compact Hausdorff spaces,'with p: U XV;U
the first co-ordinate projection, and w an isolated point of ¥. One has

to prove that p[B~ (U X {w))l=p[B ~ (Ux {wh]. It is easy to check

{linfryy -y Hatny? € B

s e s Vmy €05+
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the inclusion D. The reverse inclusion follows, since any net converging
to an element of U x {w} must eventually be in U x {w}, because U x {w}
is open. QED .

Leanra 2.6. An embedding F: A—-B is a pure embedding iff there is
a homomorphism G: B - such that G «F s an elementary embedding.

Proof. Bssentially the same as ([7], Lemma 2.2).

Lemma 2.7, If U is pure in A, then DI is pure in fDI.

Proof. By Lemma 2.6, there is a homomorphism @: A —C such
-that @ oJ is an elementary embedding, where J is the natural inclusion
of A into AU But by Lemmas 2.3-3, the relations of DA are defined by
the same positive formulae as are their clogures in (BA)". Thus we may
apply the Theorem of Marczewski [3] to see that & is a homomorphism
for these derived relations. Thus DU ig pure in DA QED

Ly 2.8. Suppose A is pure in pA, and let R be an n-ary relation
of DA. Then y,(R) is finite or oo,

Proof. If y,(R) is an infinite cardinal, then by Cor. 1.6, Yo B) = oo.
Thus there exists (g, «vy Mn) € B, such that i0j implies s = p;. Since DA
is pure in DA by Lemma 2.7, we have .<a,, ..., a> € R, such that 4gj
implies a; = a;. Thus Zo(R) = oo, which is a contradiction. QED

Lesia 2.9. Suppose A is a retract of a compact topological relationa]
structure, and R is an n-ary relation of DA. Then y,(R) is finite or oo,

Proof. Similar to the above proof, using Cor. 1.5, Lemmas 2.9-5
and 2.7, and [3]. ’

In the rest of this Daper, when we say ,every chromatic number®
of a structure %, we mean all xe(B), for every relation R of 9, and for
every appropriate . The following theorem is the cornerstone of this paper.

THEOREM 2.10. U is pure in B iff every chromatic number of DA s
finite or oo,

Proof. The necessity of the condition was shown in Lemma 2.8,
To see sufficiency, let us assume that every chromatic number of DI
is finite or co. We Wwill let X be a finite set of atomic formulae of DI
with constants in %, which is satisfiable in DA, We replace any ocenr-
rence of a constant a in a relational formuls by a new variable », and
adjoin the formula “z — ¢; Thus we may assume that no constant ap-
pears in a relational formula in 5, We prove that snch a X is satisfiable
in DA. The proof is by induction on the number of formulae in X

Case I. X containg no relational formulae, hut only
this case there is essentially nothing to prove. (

Case II. X containg %z — ¥’ (where 2 and ¥ need not be distinet).
Form X' from .}I by disearding “z = ¢, and replacing every oceurrence
of y by 2. By induection, 2 ig satisfiable in DA, and thus so is T

e

equalities. In
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Case IIT. X contains at least two relational formulae, “1’? (®1) +es ;1177,)”
and “S(yyy -y Ym). Let T Dbe supplied» by (D2). Form“ " from X by
discarding these two formulae and adjoining the formula “T v&m‘l, ,vwf,{, gll,
ey Um)?. Since X'is satisfiable in DI, 'then by Lemma 2.3, ;’vl.s fn‘ol’sf{al 1e
in ADY. By induction, X’ is satisfiable in DA. Thus by (D2), X'is satisfiable
in DA. _

Cagse IV. X contains “z = o¢” and exactly one relatlfmal f,(:rnmlfb.
e form X7 from X in the following way. First we discard “x = g .}[‘hen
Dby (D1) we replace the given relational formula with a formulla. R é}.ﬁl ,t] é
@, Yy - Ym)'’, Where no g; is @. Then we r-eplajce this formula mh 1_
formula “S(yy, -5 Ym)’’, given by one apphcat:lop of .(D3) for each ap
pearance of 2. By Lemmas 2.3 and 2.5, 2 is satisfiable in ‘B(‘Dgf anil_‘lffe.n;f,
by induction, X' is satisfiable in DY. Thus by (D1) and (D3), &'is satistiable
in DA , . )

Case V. X consists of exactly one relational forpu.ﬂa, SR (®yy wery Tn)”-
We define the equivalence relation ¢ by taking 4¢j to mean laé-,i fj.
Since X is satisfiable in DA, z,(R) = co. Thus bvaOl'. 1~.6f,' ;‘g)gl( ) /i; ;t
Thus, by hypothesis, y(E)= oo. This means that' Xis sQafns ia efmf @9{.

Thus we have shown that DI is pure in ADIA. Since A is & reduct o s
it is clear that ¥ is pure in AUA. QED

3. The main result. The following easy ‘rlhejorem is a m(l)dxtfma,tmi
of a proposition of Mycielski [4, . 4]1. tJIhe main change IS-: Eugvzvgn
longer require the Hausdorff axiom. This modified theorem is e oven
for algebras if we require that the graph of each m-ary op
closed in A™™. ' o

TarorEM 3.1. Bvery retract of a compact topological relational structure

" is atomic-compact.

In [5] it was shown that the converse to Theorem 3.1 is fﬂlseéoililz
we can “state the following theorem relating eompactness and at

compactness. .
TrEOREM 3.2. The following are equivalent:
() A is a retract of fA. . o
(il) A ds a retract of a compact Hausdorff topological relationa
structure. . ‘
(ili) A is a retract of a compact topological relational structure. ‘
(iv) M is atomic-compact, and -every chromatic number of DA is
finite or oo.

Proof. Obviously (i)= (ii)= (ii). By L
(iii)= (iv). Finally, (iv)= (i) by Theorem. 2.10 and

emma 2.9 and Theorem 3.1,
[7, Theorem 2.3]. QED
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The two conditions of (iv) above are independent. [5] gives an
example of an atomic-compact structure with at least one chromatie
number an infinite cardinal. On the other hand, Warfield has shown [6]
that every Abelian group is pure in its Bohr compactification, Thus
if A is the Abelian group of integers under addition, every chromatic
number of DA is finite or oo, but A is not atomic-compact [4, p. 2.

Suppose A is a relational structure which is really an algebra, that is,

each relation of U is the graph of an operation. If 9 ig avtomic-compaet,

and every chromatic number of DY is finite or oo, then A is a retract
of a compact topological relational structure. If each operation is unary,
then ¥ is actunally a retract of a compact topological algebra, since Y
is an algebra. Otherwise, it is an open problem whether 9 is a rvetract
of a compact topological algebra.

COROLLARY 3.3, Suppose A is atomic-compact and every finile reduet
of W is a retract of @ compact topological relational structure. Then A is
@ retract of a compact topological relational structure.

4. Ultrapower characterization of retracts

of compact topological relational
structures. The following theorem ig

due to Weglorz [7, Theoremm 2.3].

TEEOREM 4.1. A relational structure A is atomic-compact iff Wis a re-
tract of every wultrapower of 91,

Assuming that 9 is actually a retract of AU, we will give a novel
proof of the necessity of the condition. If 9y is any ultrapower of 9,
then an element of W/n is a class of funections f: T -4, any two of which
agree almost everywhere. Given such a function f: 1 -4, we denote
by f(u) the ultrafilter on A, {ECA: f7[K)eu) I U is a vetrach of U
under the retraction mapping T, then (f(u)) is an element of A. It is
simple to check tha# Ff(u) does not depend on the choice of fin the class
representing an element of 9, Ju. It i also easy to check that in thig way
we have constructed a retraction of the ultrapower A'/u onto 9A. This
construetion is an improvement on Theorem 4.1 in the following way.
It is obvious that if flp) = g(u), then the class of f and the class of g are
mapped to the same element of 4 under this retraction. Thus we have
the following definition and theorem.

DErFINITION 4.2. A consistent retraction of an ultrapower A7/u onto

U is a retraction F from Ay onto %, such that fi(u) = fy(u) implies
F(#) = F(x,), where @y is the class of Jili=1,2).

THEOREM 4.3. A relational

structure A is a retract of a compact topo-
logical relational structure iff Wis a consistent retract of every wltrapower of A.

Proof. We have already found consistent retractions of ultrapowers
of retracts of compact topological relational structures. To prove the
converse, we will need the following definition and lemma,
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DEFINITION 4.4 An ultrafilter 2 on the set I will be called wuniversal
for the set A4, iff given any ultrafilter u on 4, there is a map f: T —>.4 such
that f(1) = u. . o
iAfEMI\[A 4.5 Let A be any set. Then there is a set I and-an ultrafilter 1
n I such that 2 is universal for A. -
' Proof. Take I to be the set 4%, Then let 4 be an ultrafilter on I
. Take et !
extending the filter of subsets of the form P,'[K], where u ¢4, P, is
t-ile uth co-ordinate projection of I onto A4, and K e u. o
Returning to the proof of Theorem 4.3, let 4 be an ultrafilter on

=] .
ich i iver: p ‘ A", and let ¥ be a consistent
some I which is universal for the set nL=J1 s

retraction of YA onto . Tt is clear that we have ai g?nsilstentlyOI(.lf}fl§x:$
mapping, ¢, from AU to A. We need only show that C. 1:5 a ’omom }\) 61?
Suppose R is an n-ary relation of 9% and we are %nen'fw;{, \(, M'y]{ .
Let & be the filter on A™ generated l)yfﬁ E}Pd all plioduc :_H L rmd t h;i
where each K e us. Since {uy, ..., pa> € R, J;L is a proper fi :§1e ,r S(rﬂ s
we may extend F to an wltrafilter » on 4" Smce' 2 is lmfvl t 1 hnogé
is a map f: I—+A" such that f(1) = ». Since R ey, .1’r. follows t 1af. @f "
;Sverywhere, {fald)y oy Fal2)> € R, where fi(i) is ‘Fhe j:ﬁhf c§n1go?1(;§1tj SF {5)},
and where 4 ¢ I. Thus since F is a h01110n1Q1~1)h1}§m, 1t: 0 om? f a b 1‘,
fbll(FW )» € R, where each x; is the class in %' [u with representative f;.
.1.3.1;t smnce eaeil [i(A) = py, it follows that {C'(m), ..., O'(p)" ¢ B, and thus
that ¢ is a homomorphism. Q ED
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