

Some wild spheres and group actions

hv

R. C. Lacher* (Tallahassee, Fla.)

We present here methods for constructing uncountably many topologically distinct q-spheres in S^{p+q} , provided $p \geqslant 3$ and $q \geqslant 1$. The methods allow us to construct actions of various groups on S^{p+q} having any one of the wild spheres as fixed-point set, so that we obtain uncountably many actions of certain groups on certain spheres. For G a finite group, we show that there are uncountably many topologically distinct actions of G on S^{p+q} each having a q-sphere for its fixed-point set, provided $p\geqslant 3$, $q\geqslant 1$, and S^{p-1} admits a fixed-point-free G-action. Since such p always exists for a particular finite group G, we obtain that, for some n depending on G, there exist uncountably many topologically distinct G-actions on S^n . Essentially the same result holds for circle actions: there are uncountably many topologically distinct circle actions on S^{p+q} , each rotating freely about a q-sphere of fixed-points, provided $p\geqslant 4$, $q\geqslant 1$, and p is even.

Other examples in the same spirit as ours may be found in [2], [9], [10], [14], and [16]; other references are found in the bibliographies of these articles.

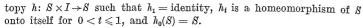
NOTATION. \mathbf{R}^n is used to denote the euclidean n-space, \mathbf{S}^n the one-point compactification of \mathbf{R}^n . The symbol " \approx " means "is homeomorphic to".

1. Wild spheres. In most of our constructions we will need to consider decompositions of the following type.

DEFINITION. Let X be a compact set in \mathbb{R}^p , and let Y be a closed set in \mathbb{R}^q . Then $\Gamma(X, Y)$ is defined to be that decomposition of \mathbb{R}^{p+q} = $\mathbb{R}^p \times \mathbb{R}^q$ whose non-degenerate elements are the sets of the form $X \times y, y \in Y$.

Recall that a decomposition Γ of a space S is *shrinkable by* a *pseudo-isotopy* if there is a pseudo-isotopy h_l $(0 \le l \le 1)$ of S such that $h_1 = \text{identity}$ and $\{h_0^{-1}(s) \mid s \in S\} = \Gamma$. A pseudo-isotopy of S is a homo-

^{*} Partially supported by National Science Foundation grant GP-7952 X.



THEOREM 1.1. Let the following be given:

- (a) A compact set X in \mathbb{R}^p such that the decomposition $\Gamma(X,\mathbb{R}^1)$ is shrinkable by a pseudo-isotopy, and
 - (b) A closed subset Y of \mathbb{R}^q for some $q \ge 1$.

Then the following hold:

- (1) The decomposition $\Gamma = \Gamma(X, Y)$ is shrinkable by a pseudo-isotopy; in particular, $\mathbf{R}^{p+q}|\Gamma \approx \mathbf{R}^{p+q}$.
 - (2) $X \times 0$ is cellular in \mathbb{R}^{p+1} .
- (3) If $f: \mathbb{R}^q \to \mathbb{R}^{p+q} | \Gamma$ is defined by $f(y) = \varphi(x_0, y), y \in \mathbb{R}^q$, where φ is the quotient map and $x_0 \in X$, then f is an embedding of \mathbb{R}^q onto a closed subset of \mathbb{R}^{p+q} .
 - (4) f is locally flat at each point of $\mathbf{R}^q Y$.
- (5) If $\mathbb{R}^p X$ is not simply connected and $p \ge 3$ then f is locally wild at each point of $Y^\circ = \mathbb{R}^q (\mathbb{R}^q Y)$.
- (6) If X is not cellular in \mathbb{R}^p and $p \neq 4$ then f is locally wild at each point of Y°.

(For the definition of "locally flat", see [4]. "Locally wild" means "not locally flat". For the definition of "cellular", see [11].)

Proof. Let g_t $(0 \le t \le 1)$ be a pseudo-isotopy of \mathbf{R}^{p+1} which shrinks $\Gamma(X, \mathbf{R}^1)$ at time t = 0. Define \bar{g} on $\mathbf{R}^p \times \mathbf{R}^1 \times \mathbf{R}^{q-1} \times I$ by

$$\tilde{g}(x, y, z, t) = (g_t(x, y), z), \quad x \in \mathbb{R}^p, y \in \mathbb{R}^1, z \in \mathbb{R}^{q-1}, t \in I.$$

Clearly, \tilde{g} is a pseudo-isotopy shrinking $\Gamma(X, \mathbb{R}^q)$ at time t = 0.

Now, let ε : $\mathbf{R}^q \to [0, 1]$ be a continuous function such that $\varepsilon(y) = 0$ if and only if $y \in Y$. Define h on $\mathbf{R}^p \times \mathbf{R}^q \times I$ by

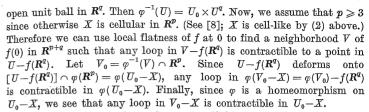
$$h(x, y, t) = \bar{g}(x, y, \max(\varepsilon(y), t)), \quad x \in \mathbb{R}^p, y \in \mathbb{R}^q, t \in I.$$

It is easily checked that h is a pseudo-isotopy of \mathbb{R}^{p+q} shrinking $\Gamma(X, Y)$. This completes the proof of (1). Setting $Y = \{0\}$ for $0 \in \mathbb{R}^1$, we see that $X \times 0$ is point-like in \mathbb{R}^{p+1} , so that (2) is proved.

Conclusions (3) and (4) are quite easy to prove and (5) follows from a well-known argument similar to the one in the following paragraphs.

We turn now to the proof of (6). Let y_0 be a point of Y° . Then there is a neighborhood W of $f(y_0)$ in R^{p+q} such that the triples $(W, W \cap f(R^q), f(y_0))$ and $(R^{p+q}, f_0(R^q), f_0(0))$ are homeomorphic, where f_0 is the embedding we get by setting $Y = R^q$. Hence we can assume $Y = R^q$ and $y_0 = 0$.

Suppose, under these assumptions, that f is locally flat at 0. Let U_0 be a neighborhood of X in \mathbf{R}^p , and let $U = \varphi(U_0 \times U^a)$, where U^a is the



To summarize, we have shown that if f is locally flat at a point y_0 of Y° , then the inclusion $X \subset R^p$ satisfies McMillan's cellularity criterion [11]. However, X need not be a compact absolute retract, so we must appeal to the extension of McMillan's theorem [8] to see that X is cellular in R^p . (X is cell-like by (2).)

THEOREM 1.2. If $n \ge 1$ and $k \ge 3$ there are uncountably many closed embeddings of \mathbf{R}^n into \mathbf{R}^{n+k} , no two being setwise equivalent.

(A closed embedding is one whose image is a closed set. Two embeddings $f, g: X \rightarrow Y$ are setwise equivalent if there is a homeomorphism of Y which carries f(X) onto g(X).)

Proof. First set p=k and n=q. Let A be an arc in \mathbb{R}^p such that \mathbb{R}^p-A is not simply connected. (See [3].) Hypothesis (1.1)(a) with X=A is satisfied by [1]. Let Y and Y' be closures of open sets in \mathbb{R}^q , and let f and f' be the embeddings of \mathbb{R}^q obtained from $\Gamma(A,Y)$ and $\Gamma(A,Y')$ as in (1.1) (3). Then, by (3), (4), and (5), Y is the wild set of f and Y' is the wild set of f'. Consequently, if f and f' are setwise equivalent, then $Y \approx Y'$. We will show in (1.4) that there are uncountably many possibilities for Y.

COROLLARY 1.3. If $n \ge 1$ and $k \ge 3$, there are uncountably many embeddings of S^n into S^{n+k} no two of which are setwise equivalent.

To complete the proof of (1.2) we need the following cardinality result.

LEMMA 1.4. Let \mathcal{K}_q be the set of compact subsets of \mathbf{R}^q which are closures of open sets in \mathbf{R}^q . If $q \geqslant 1$ then \mathcal{K}_q contains uncountably many topological types.

Proof. First assume that $q \ge 2$. Let $\mathfrak L$ be the set of compact subsets of R^{q-1} . Since $q \ge 2$, $\mathfrak L$ has uncountably many topological types. We will construct for each $L \in \mathfrak L$ an element $\widetilde L \in \mathcal K_q$ such that $L \times 0 \subset \widetilde L$ and $\widetilde L$ fails to be a manifold precisely along the set $L \times 0$. It follows then from invariance of domain that $\widetilde L_1 \approx \widetilde L_2 \Rightarrow L_1 \approx L_2$, and hence that $\mathcal K_q$ contains uncountably many topological types.

To construct \widetilde{L} , let l_1 , $\overline{l_2}$, ... be a dense sequence in L. Let S_1 be a small circle in \mathbb{R}^a centered at $l_1 \times 1$. Assuming that S_a has been defined for each sequence a of the form $a = (j_1, ..., j_n)$, $1 \leq j_i \leq i$, let $S_{a_1}, ..., S_{a(n+1)}$

be very small circles, $S_{\alpha i}$ centered at $l_i \times (1/(n+1))$. Make sure that the collection $\{S_a\}_a$ is disjoint and that diam $S_a \leq [2(\text{length of }\alpha)]^{-1}$ for each a. Let S be the union of the S_a . Finally, let \widetilde{L} be the closure of a tapering regular neighborhood of S in \mathbb{R}^q .

If a=1, we can give a similar argument using the fact that there are uncountably many topological types of initial segments of countable ordinals.

2. Definitions. Let G be a topological group, X a topological space. An action of G on X is a mapping $\alpha: G \times X \to X$ with the following properties:

For each $g \in G$, the equation $a_g(x) = a(g, x)$ defines a homeomorphism $a_g(x) = a(g, x)$ of X onto itself.

a, is the identity map on X.

 $a_h \circ a_g = a_{hg}$ for all $g, h \in G$.

If $q \neq h$ then $\alpha_q \neq \alpha_h$.

Two actions α , α' of G on X are (topologically) equivalent if there is a homeomorphism h of X onto itself such that $a'_q = ha_q h^{-1}$ for all $q \in G$.

If a is an action of G on X, we define the fixed-point set F(a) to be the set $\{x \in X \mid a_q(x) = x \text{ for all } q \in G\}$, a is fixed-point-free if $F(\alpha) = \emptyset$. More generally, if H is any subset of G, we let $\alpha | H$ denote the map $a|(H\times X)$ and $F(\alpha|H)=\{x\in X|\alpha_h(x)=x \text{ for all } h\in H\}$. The action a is said to be free when $F(\alpha|H) = \emptyset$ for all subsets H of G, $H \neq \{1\}$.

The following observation is useful in distinguishing non-free group actions:

If a and a' are equivalent actions of G on X, then $(X, F(\alpha|H))$ $\approx (X, F(\alpha'|H))$ for all subsets H of G

3. Wild finite group actions.

THEOREM 3.1. Suppose that there exists a fixed-point-free action of the finite group G on the sphere S^{p-1} , $p \ge 3$. Let Y be the closure of an open set in \mathbb{R}^q , $q \geqslant 1$. Then there exist an action a of G on \mathbb{R}^{p+q} and an embedding $f: \mathbb{R}^q \to \mathbb{R}^{p+q}$ such that

- (1) the fixed-point set of a is $f(\mathbf{R}^q)$, and
- (2) the wild set of f is Y.

Proof. Let γ be a fixed-point-free action of G on the sphere S of radius one, center 0, in \mathbb{R}^p . Extend γ radially to an action β on \mathbb{R}^p which takes each sphere ||x|| = r onto itself, $r \geqslant 0$, and whose fixed-point set is {0}.

Now, for each $g \in G$, γ_g is a homeomorphism of S of finite period. Hence, by Newman's Theorem [15], the fixed-point set F(g) of γ_g is closed

and nowhere dense in S. Therefore, the set $N(g) = \{x \in S | \gamma_g(x) \neq x\}$ is open and dense in S. Clearly, then,

$$\bigcap_{g \in G} N(g) \neq \emptyset$$
.

I.e., there exists a point z of S such that $\gamma_q(z) \neq \gamma_h(z)$ whenever $q \neq h$. It follows that there is an open neighborhood V of z in S such that $\nu_{\sigma}(V) \cap \nu_{h}(V) = \emptyset$ whenever $q \neq h$. Let U be the union of all interiors of line segments joining $0 \in \mathbb{R}^p$ with points of V. U is an open set of \mathbb{R}^p with the property:

$$\beta_g(U) \cap \beta_h(U) = \emptyset$$
 when $g \neq h$.

Using [3], we can easily construct an arc A in $U \cup \{0\}$, with 0 for one endpoint, such that R^p-A is not simply connected. Let X be the union of all the arcs $\beta_q(A)$, $g \in G$. Clearly X is a k-odd (where k = order of G) with the properties:

 $\mathbf{R}^p - X$ is not simply connected, and $\beta_q(X) = X$ for each $g \in G$.

Let $\Gamma = \Gamma(X, Y)$ be the decomposition of \mathbb{R}^{p+q} defined by X and Y. as in § 1, and let $\varphi: \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}/\Gamma$ be the quotient map. In [12], Meyer showed that $\Gamma(X, \mathbb{R}^1)$ is shrinkable by a pseudo-isotopy of \mathbb{R}^{p+1} , so that the hypotheses of Theorem 1.1 are satisfied. Therefore, we need only find an action α of G on \mathbb{R}^{p+q}/Γ whose fixed-point set is $\varphi(0 \times \mathbb{R}^q)$. But this is easy: first extend β over $\mathbf{R}^{p+q} = \mathbf{R}^p \times \mathbf{R}^q$ by the formula $\overline{\beta}_g(x,y)$ $=(\beta_q(x), y), q \in G, x \in \mathbb{R}^p, y \in \mathbb{R}^q$. Then $\alpha_q = \varphi \overline{\beta}_q \varphi^{-1}, g \in G$, gives the action a.

Applying (1.4) we get

COROLLARY 3.2. If S^{p-1} admits a fixed-point-free action of the finite group $G, p \geqslant 3, q \geqslant 1$, then there exist uncountably many mutually inequivalent G-actions on Sp+q each of which has a q-sphere for its fixedpoint set.

Corollary 3.3. Let $p \ge 3$ and $q \ge 1$. Then there exist uncountably many mutually inequivalent involutions on Sp+q each having a wild q-sphere for its fixed-point set.

Remark. Suspensions of Bing's examples [2] yield the cases p = 1, 2.

THEOREM 3.4. Let G be a finite group. Then there exists a fixed-pointfree action of G on some euclidean sphere.

Proof. There is a faithful representation $G \rightarrow O(n)$ for some n, where O(n) is the group of orthogonal $n \times n$ matrices, so we simply assume that G is a subgroup of O(n). Now, O(n) acts naturally on the unit sphere S of \mathbb{R}^n , hence G does; let F be the fixed-point set of this G-action. Now F is the intersection of a finite number of subspaces of R^n with S,

and hence F and its orthogonal complement intersected with S are spheres. Since G restricts to an action on the orthogonal complement of F intersected with S, the proof is complete.

Remarks. 1. If Sⁿ admits a fixed-point-free G-action, then so do all of the spheres S^{kn+k-1} , $k \ge 1$; new actions are constructed by taking joins.

2. Only a very restricted class of groups can act freely on spheres. See [13].

COROLLARY 3.5. Let G be a finite group, and let $q \ge 1$. Then, for infinitely many integers p, there exist uncountably many mutually inequivalent G-actions on S^{p+q} each having a q-sphere for a fixed-point set.

4. Circle actions. A "circle action" is an action of the group SO(2), the group of complex numbers of modulus one under multiplication. We say that an SO(2) action α on X rotates freely about $Y \subset X$ if (a) Yis the fixed-point set of a, and (b) for each $t \neq 1$ in SO(2), $a_t | (X - Y)$ is a fixed-point-free homeomorphism $(X-Y) \rightarrow (X-Y)$.

THEOREM 4.1. Let $p \ge 4$, $q \ge 1$, and $p \equiv 0 \pmod{2}$. Let Y be the closure of an open set in \mathbb{R}^q . Then there exist an action a of SO(2) on \mathbb{R}^{p+q} and an embedding $f: \mathbb{R}^q \to \mathbb{R}^{p+q}$ such that

- (1) a rotates freely about $f(\mathbf{R}^q)$, and
- (2) The wild set of f is Y.

Corollary 4.2. If $p \ge 2$ and $q \ge 1$, there are uncountably many mutually inequivalent SO(2) actions on S2p+q, each rotating freely about a wild q-sphere.

Remark. The condition that the fixed-point set have even codimension is necessary since the associated involution a_{-1} is orientation preserving. (See [17].)

Proof of Theorem 4.1. Since p is even, we can think of R^p as the image of C^r under the "forget" functor, where C = field of complex numbers and 2r = p. In this way we have a standard action ρ of SO(2) on R^p, rotating freely about the origin, given by scalar multiplication $C \times C^r \rightarrow C^r$ restricted to SO(2) $\times C^r$. It is clear that the set

$$\Sigma^{p-1} = \{(x_1, ..., x_p) \in \mathbb{R}^p | x_j > 0 \text{ for } j = 1, ..., p-1, \text{ and } x_p = 0\} \cup \{0\}$$

is a "slice" of the action ϱ ; that is, Σ^{p-1} intersects each orbit $\varrho(SO(2) \times x)$. $x \in \mathbb{R}^p$, in at most one point.

Now, as in the proof of (3.1), there is an arc A in Σ^{p-1} such that 0 is an endpoint of A and R^{p-1} —A is not simply connected. (See [3].) Since Σ^{p-1} is a slice of ϱ , the arcs $\varrho(t\times A)$ are pairwise disjoint except for their common endpoint 0, and hence $\varrho((SO)(2) \times A) = D$ is a disk in \mathbb{R}^p . Also,

if a loop in $\mathbb{R}^{p-1} - [A \cup (-A)]$ is contractible in $\mathbb{R}^p - D$, then the singular disk can be dragged back into R^{p-1} via ρ , so that

 \mathbf{R}^p — D is not simply connected.

and

D is invariant under the action o.

Finally, using the results in [7], we see that

D is tame in \mathbb{R}^{p+1} .

(In applying [7], notice that, for k=2 and $n=p+1 \ge 5$, the approximation theorem of Homma is a triviality using general position, so that the results announced in [7] are definitely true for k=2 and $n \ge 5$.)

The proof is now completed as in Theorem 3.1, Let $\Gamma = \Gamma(D, Y)$ be the decomposition of \mathbb{R}^{p+q} determined by $D \subset \mathbb{R}^p$ and $Y \subset \mathbb{R}^q$. Since D is tame in \mathbb{R}^{p+1} , the hypotheses of Theorem 1.1 are satisfied by the main result of [6]. Therefore, we need only find an action α of SO(2) on \mathbb{R}^{p+q}/Γ which rotates freely about $\varphi(0 \times \mathbb{R}^q)$, where φ is the quotient map. Again, this is easy: let $\bar{\rho}$ be given by $\bar{\rho}(t, x, y) = (\rho(t, x), y), t \in SO(2), x \in \mathbb{R}^p$, $u \in \mathbb{R}^q$, and define α by $\alpha_t = \varphi \overline{\rho}_t \varphi^{-1}$, $t \in SO(2)$.

5. Non-euclidean fixed-point sets.

LEMMA 5.1. If $p \ge 3$ and $q \ge 0$, there is a compact space X such that X is not a (finite) polyhedron but the join $X * S^q$ is a (p+q+1)-sphere.

Proof. Since join is associative, it suffices to prove the lemma assuming that q=0. I.e., we need a non-polyhedron X whose suspension is a (p+1)-sphere, whenever $p \ge 3$. Let A be an arc in S^p such that the fundamental group of S^p-A is infinitely generated. (See [3].) Then clearly S^p/A , S^p with A identified to a point, is not a (finite) polyhedron. Let $X = S^p/A$. As Brown observes in [5], the suspension of X is a (p+1)sphere by the argument of [1].

THEOREM 5.2. If a is a fixed-point-free action of G on S^q , $q \ge 0$, $p \ge 3$, then there is an action \overline{a} of G on $S^{p+q+1} = S^p * S^q$ such that

- (1) $\overline{a} = a$ on S^q ,
- (2) the fixed-point set X of \(\bar{a} \) is not a (finite) polyhedron,
- (3) \overline{a} restricts to a fixed-noint-free action on $S^{p+q+1}-X$.

Proof. This is obvious from (5.1), by taking the "join" of the identity on X with α on S^{α} . Since $p \geqslant 3$, S^{α} is a topologically unknotted q-sphere in $X * S^q \approx S^{p+q+1}$, so that we can assume S^q to be in the standard position in $S^p * S^q$. (See [18].)

DEFINITION. If a is an action of the (topological) group G on P, a polyhedron, call a totally wild if, whenever $1 \neq g \in G$, a_g is not conjugate to a piecewise linear homeomorphism; i.e., there is no (topological) homeomorphism h of P such that $h^{-1}a_{q}h$ is piecewise linear.

acher

Remark. All of the circle action constructed in Section 4 are totally wild. In Section 3, a constructed action is totally wild if the original fixed-point-free action is free.

THEOREM 5.3. If there is a free action of G on S^{q} , $q \ge 0$, $p \ge 3$, then there is a totally wild action of G on S^{p+q+1} .

Proof. Let \overline{a} be action constructed in the proof of Theorem 5.2, where a is taken to be free. Then, for each $1 \neq g \in G$, X is the fixed-point set of \overline{a}_g . If \overline{a}_g were conjugate to a piecewise linear homeomorphism, then X would be homeomorphic to the fixed-point set of a piecewise linear map, which is impossible since X is not a polyhedron.

References

- J. J. Andrews and M. L. Curtis, n-Space modulo an arc, Ann. of Math. 75 (1962), pp. 1-7.
- [2] R. H. Bing, Inequivalent families of periodic homeomorphisms of E³, ibid. 80 (1964), pp. 78-93.
- [3] W. A. Blankinship, Generalization of a construction of Antoine, ibid. 53 (1951), pp. 276-297.
- [4] M. Brown, Locally flat imbeddings of topological manifolds, ibid. 75 (1962), pp. 331-341.
- [5] Wild cells and spheres in higher dimensions, Mich. Math. J. 14 (1967), pp. 219-224.
- [6] J. L. Bryant, Euclidean space modulo a cell, Fund. Math. 63 (1968), pp. 43-51.
- [7] J. L. Bryant, and C. L. Seebeck, Locally nice embeddings in codimension three, Bull. Amer. Math. Soc. 74 (1968), pp. 378-380.
- [8] R. C. Lacher, Cell-like spaces, Proc. Amer. Math. Soc. 20 (1969).
- [9] L. L. Lininger, Actions on Sn, Topology (to appear).
- [10] On topological transformation groups, Proc. Amer. Math. Soc. 20 (1969), pp. 191-192.
- [11] D. R. McMillan, A criterion for cellularity in a manifold, Ann. of Math. 79 (1964), pp. 327-337.
- [12] D. V. Meyer, More decompositions of E^n which are factors of E^{n+1} , Fund. Math. (to appear).
- [13] J. Milnor, Groups which act on Sⁿ without fixed points, Amer. J. Math. 79 (1957), pp. 623-630.
- [14] D. Montgomery and L. Zippin, Examples of transformation groups, Proc. Amer. Math. Soc. 5 (1954), pp. 460-465.
- [15] M. H. A. Newman, A theorem on periodic transformations of spaces, Quart. J. Math. (Oxford Series) 2 (1931), pp. 1-9.
- [16] R. H. Rosen, Examples of non-orthogonal involutions of euclidean space, Ann. of Math. 78 (1963), pp. 560-566.
- [17] P. A. Smith, Transformations of finite period, ibid. (1939), pp. 690-711.
- [18] J. Stallings, On topologically unknotted spheres, ibid. 78 (1963), pp. 501-526.

INSTITUTE FOR ADVANCED STUDY Princeton, New Jersey FLORIDA STATE UNIVERSITY Tallahassee. Florida

Reçu par la Rédaction le 23. 4. 1968

About an imbedding conjecture for k-independent sets

by

A. B. Németh (Cluj)

Following [1] we say that a subset X of the n-dimensional real Euclidean space R^n is k-independent $(0 \le k \le n-1)$ if any k+2 distinct points of that subset are linearly independent. (1)

In what follows the homeomorphic image of the set $\{(x^1, ..., x^m): \sum (x^i)^2 < 1\}$ in \mathbb{R}^m will be said to be an *open m-cell*; the homeomorphic image of the set $\{(x^1, ..., x^m): \sum (x^i)^2 = 1\}$ will be said to be an m-1-sphere.

K. Borsuk [1] has proved the following imbedding theorem concerning k-independent sets:

If X is a compact k-independent set in \mathbb{R}^n and if N is an open subset in X containing k distinct points, then $X \setminus \mathbb{N}$ is homeomorphic with a subset of \mathbb{R}^{n-k} .

In [6], p. 503 and in [4], another notion of k-independence is applied, which is useful in applications in the approximation theory and which will be called in the sequel k-vectorial-independence.

The subset X of \mathbb{R}^n will be said to be k-vectorial-independent if for any k of its distinct points x_1, \ldots, x_k the vectors $\overrightarrow{Ox_1}, \ldots, \overrightarrow{Ox_k}$, where O is the origin in \mathbb{R}^n , are linearly independent.

Observation 1. A k-vectorial-independent subset X in \mathbb{R}^n is k-2-independent in the sense of [1].

Indeed, if $x_1, ..., x_k$ are k distinct points in X, then they cannot be contained in any k-2-dimensional hyperplane H^{k-2} , because such a hyperplane generates a k-1-dimensional subspace (i.e. a k-1-dimensional hyperplane passing through the origin), and if $x_1, ..., x_k$ were in H^{k-2} , the vectors $\overrightarrow{Ox_1}, ..., \overrightarrow{Ox_k}$ would be linearly dependent, being in R^{k-1} .

Observation 2. If X is a k-independent subset in \mathbb{R}^n , then it may be considered a k+2-vectorial-independent subset in \mathbb{R}^{n+1} if we consider \mathbb{R}^n as a hyperplane \mathbb{H}^n in \mathbb{R}^{n+1} not passing through the origin.

⁽¹⁾ For the sake of simplicity, the affine space and the vectorial Euclidean space of dimension n are denoted by the same symbol \mathbb{R}^n .