Some wild spheres and group actions

. by
R. C. Lacher* (Tallahassee, Fla.)

We present here methods for constructing uncountably many
topologically distinct g-spheves in §°%%, provided p >3 and ¢ > 1. The
methods allow us to construct actions of various groups on §”* having
any one of the wild spheres as fixed-point set, so that we obtain un-
countably many actions of certain groups on certain spheres. For @ a finite
group, we show that there are uncountably many topologically distinet
actions of & on S°* each having a g-sphere for its fixed-point set,
provided p =3, ¢=1, and 877" admits a fixed-point-free @-action.
Since such p always exists for a particular finite group &, we obtain that,
for some n depending on @, there exist uncountably many topologically
distinet @-actions on §". Essentially the same result holds for circle
actions: there are uncountably many topologically distinet cirele actions
on 8%, each rotating freely about a g-sphere of fixed-points, provided
p=4, ¢g>1, and p is even. .

Other examples in the same spirit as ours may be found in [2], [9],
[10], [14], and [16]; other references are found in the bibliographies of
these articles.

NoTarioN. R” is used to denote the euclidean n-space, S the one-
point compactification of R". The symbol “~" means “iy homeo-
morphie to”.

1. Wild spheres. In most of our constructions we will need to
consider decompositions of the following type.

DEFINITION. Let X be a compact set in R”, and let ¥ be a closed
get in R. Then I'(X, Y) is defined to be that decomposition of R"™
— R? xR? whose non-degenerate elements are the sets of the form
Xxy,ye¥.

Recall that a decomposition I' of a space § is shrinkable by a pseudo-
isotopy if there is a pseudo-isotopy h (0<?T<<1) of 8§ such that
by = identity and {he'(s)| s « §}=I. A pseudo-isotopy of § is a homo-
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topy h: 8 xI—+8 such that h; = identity, A; is a homeomorphism of §
onto itself for 0 < ¢ <1, and %y(S) = 8.

ToeorREM 1.1. Let the following be given:

(2) A compact set X in R® such that the decomposition I'(X, RY) s
shrinkable by a pseudo-isotopy, and

(b) A closed subset ¥ of R® for some q=1.

Then the following hold:

(1) The decomposition I' = I'(X, ¥) is shrinkable by a pseudo-isotopy;
in particular, RV*Y M~ RPTE,

(2) X %0 is cellular in R,

(3) If f: R* >R’ is defined by f(y) = ¢(2, y), y < RY, where ¢ is
the guotient map and z, ¢ X, then f is an embedding of R* onto a closed swub-
set of R*™,

(4) f is locally flat at each point of R'—7.

(5) If R°*—X is not simply connected and D = 3 then f is locally wild
at each point of ¥° = R?—(R*-Y).

(6) If X is not cellular in R® and p + 4 then I is locally wild at each
point of ¥°.

(For the definition of “locally flat”, see [4]. “Locally wild” means
“not locally flat*’. For the definition of “cellular”, see [11].)

Pr?of‘ Let g; (0 <t < 1) be a pseudo-isotopy of R®** which shrinks
I(X, R’) at time ¢ = 0. Define § on R’ xR' xR"™* x I by

G, y,2,8) = (gl(m:y)ag)a # <R’ y R, 2R tel.

Clearly, 7is a pseudo-isotopy shrinking I'(X, R at time { = 0.
. Now, let e: R*—[0, 1] be a continnous function such that e(y) = 0
if and only if y ¢ ¥. Define % on R’ xR? x I by

Wz, y,t) = g(w, ¥, max (s(y), t)) , @eR’ yeRY tel.

It is easily checked that % is a pseudo-isotopy of RF*¢ shrinking I'( X, ¥).
This completes. the proof of (1). Setting Y= {0} for 0 ¢ R', we see that
X x0 is point-like in R*™, so that (2) is proved.

Conclusions (3) and (4) are quite easy to prove and (5) follows from
a well-known argument similar to the one in the following paragraphs.
) We turn now to the proof of (6). Let 9o be a point of ¥°. Then there
is a neighorhood W of f(y,) in R**? such that the triples (W, W ~ f(RY,
fyo)) and (R"*4, f(RY), £x(0)) are homeomorphic, where fo is the embed-
ding we get by sefting ¥ = R Hence we can assume ¥ = RY and y, = 0-

Suppose, under these assumptions, that f is locally flat at 0. Let U,
be a neighborhood of X in R?, and let U = ¢(U, x U?%), where U® is the
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open unit ball in R%. Then ¢ (T) = Uy x UL Now, we assume that p > 3
since otherwise X is cellular in R”. (See [8]; X is cell-like by (2) above.)
Therefore we can use local flatness of f at 0 to find a neighborhood V of
£(0) in R*™ such that any loop in V—f(R? is contractible to a point in
U—f(RY). Let Vo=g¢ (V) R’. Since U—f(RY) deforms onto
[U—f(R)] ~ @(R") = p(U,—X), any loop in ¢(Ve—X)=g¢(Vo)—f(RY
is eontractible in ¢(U,—X). Finally, since ¢ is 2 homeomorphism on
U,—X, we see that any loop in ¥,—X is contractible in U,—X,

To summarize, we have shown that if f is locally flat at a point y,
of Y°, then the inclusion X CR” satisfies McMillan’s cellularity eri-
terion [11]. However, X need not be a compact absolute retract, so we
must appeal to the extension of MeMillan’s theorem [8] to see that X is
cellular in RP. (X is cell-like by (2).)

TaeEOREM 1.2. If n =1 and k = 3 there are uncountably many closed
embeddings of R™ into R™*, no two being setwise equivalent.

(A closed embedding is one whose image is a closed set. Two em-
beddings f, g: X Y are sefwise equivalent if there is a homeomorphism
of ¥ which carries f(X) onto g(X).)

Proof. First set p = & and n = ¢. Let A be an arc in R® such that
R?— 4 is not simply connected. (See [3].) Hypothesis (1.1)(a) with X = 4
is satistied by [1]. Let ¥ and ¥’ be closures of open sets in R? and let f
and f be the embeddings of R? obtained from I'(4, ¥) and I'(4, ¥’)
ag in (1.1) (3). Then, by (3), (4), and (5), Y is the wild set of f and ¥" is
the wild set of f*. Consequently, if f and f’ are setwise equivalent, then
Y~ ¥'. We will show in (1.4) that there are uncountably many pos-
sibilities for Y.

COROLLARY 1.3. If n>1 and k=3, there are uncountably many
embeddings of 8™ into 8*TF no two of which are setwise equivalent.

To complete the proof of (1.2) we need the following cardinality
result.

LMy 1.4. Let X, be the set of compact subsets of R® which are closures
of open seis in R% If g = 1 then Ky contains uncountably many topological
types. :

Proof. First assume that ¢ > 2. Let £ be the set of compact subsets
of R*™. Since ¢ > 2, £ has uncountably many topological types. We
will construct for each I « € an element L e Kq such that L x0 C L and L
fails to be a manifold precisely along the set L x 0. It follows then from
invariance of domain that Ly~ L, =L ~ L, and hence that ¥¢ contains
uncountably many topological types.

To construct L, leb Iy, s, ... be a dense sequence in L. Liet 8, be & smaall
cirele in R? centered at I, x 1. Assuming that 8. has been defined for
each sequence o of the form a= (i, -, jn)y 1 <Je <4, 166 Sa; ovoy Bunt1y
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be very small circles, Su; centered at I; X (1f(n-+1)). Make sure that the
collection {8}, is disjoint and that diamS. < [2(length of a)]™* for each a
Let 8 be the union of the S,. Finally, let L be the closure of a tapering
regular neighborhood of § in R%

If g=1, we can give a similar argument using the fact that there
are uncountably many topological types of initial segments of countable
ordinals.

2. Definitions. Let & be a topological group, X a topological space.
An action of G on X is a mapping a: G xX X with the following
properties:

For each g € G, the equation ag(x) = a(y, x) defines a homeomorphism oy
of X onto itself.

a, is the identity map on X.

ap o ag = apg for all g, he@.

If g+ h then g # an.

Two actions a, o' of G on X are (fopologically) equivalent if there is
a homeomorphism % of X onto itself such that aj = ha,h~" for all g ¢ G.

If o is an action of @ on X, we define the fizved-point set F(a) to be
the set {w e X| ag(x) = z for all ge G}, a is fized-poini-free if F(a)= 0.
More generally, if H is any subset of &, we let a/H denote the map
of(H xX) and F(a|H)= {z ¢ X|ap(#) = o for all h ¢ H}. The action « is
said to be free when F(a(H)= O for all subsets H of G, H = {1}.

The following observation is useful in distinguishing non-free group
actions:

If a and o ave equivalent actions of G on X, then (X, F'(a|H))
~ (X, F(o'|H)) for all subseis H of @

3. Wild finite group actions.

THEOREM 3.1. Suppose that there ewists a fiwed-poini-free action of
the finite group @ on the sphere 8°7%, p = 3. Let Y be the closure of an open
set in R, g > 1. Then there exist an action o of & on R**? and an em-
bedding f: R*->R**? such that

(1) the fived-point set of o is f(R?), and

(2) the wild set of f is Y.

Proof. Let y be a fixed-point-free action of & on the sphere S of
radius one, ecenter 0, in R”. Extend y radially to an action # on R” which
takes each sphere jjz] = r onto itself, » > 0, and whose fixed-point set
is {0}.

Now, for each ge @, y, is a homeomorphism of § of finite period.
Hence, by Newman’s Theorem [15], the fixed-point set F(g) of g is closed
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and nowhere dense in 8. Therefore, the set N(g) = (¢ S}yy(x) = 2} is
open and dense in S. Clearly, then,

N +0.

ge@@
L., there exists a point 2z of 8 such that y,(z) == ya(z) whenever g # 1.
It follows that there is an open neighborhood V' of z in S such that
yo(¥) o yu(V) = O whenever gz h. Let U be the union of all interiors
of line segments joining 0 ¢ R” with points of ¥. T is an open set of R?
with the property:

Bo(U) ~ pu(U) =0

Using [3], we can easily construct an arc 4 in U v {0}, with 0 for
one endpoint, such that R*—4 is not simply connected. Let X Dbe the
union of all the arcs fy(A4), g € G. Clearly X is a k-odd (where k = order
of @) with the properties:

when g#h.

R?—X is not simply connected, and Bo{X)= X for each ge@.

Let I'= I'(X, ¥) be the decomposition of R**? defined by X and ¥,
asin § 1, and let g: R*Y? >RP*YI be the quotient map. In [12], Meyer
showed that I'(X, R') is shrinkable by a pseudo-isotopy of R”*?, so that
the hypotheses of Theorem 1.1 are satisfied. Therefore, we need only
find an action a of G on RP*YI" whose fized-point set is ¢(0 XR?). But
this is easy: first extend § over R°*= R® xR by the formula f4(s, y)
= (Bo(#),3), g6, weR’, yeR. Then ay=gfyg s geb, gives the
action a.

Applying (1.4) we getb

COROLLARY 3.2. If 87! admits a fived-poini-free action of the finite
group @, p=3, q=1, then there ewist uncountably many mutually in-
equivalent G -actions on 8% each of which has a g-sphere for its fized-
point set.

COROLLARY 3.3. Let p =3 and ¢>=1. Then there emist wncountably
many mutually inequivalent involutions on S”"? each having a wild q-sphere
for its fized-point set.

Remark. Suspensions of Bing’s examples [2] yield the casesp =1, 2.

TarorEM 3.4. Let G be a finite group. Then there exisis fiwed-point-
free action of G on some euclidean sphere.

Proof. There is a faithful representation G-—>O{n) for some =,
where O(n) is the group of orthogonal n X maitrices, s0 we simply as-
sume that & is a subgroup of O(n). Now, O(n) acts naturally on the gmt
sphere § of R", hence & does; let ' be the fixed-point set of this G-ag_etlon.
Now F is the intersection of a finite number of subspaces of R" with 8§,
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and hence F and its orthogonal complement intersected with S are
spheres. Since @ restricts to an action on the orthogonal complement
of ¥ intersected with S, the proof is complete.

Remarks. 1. If §* admits a fixed-point-free G-action, then so do
all of the spheres 8% k> 1; new actions are constructed by taking
joins.

2. Only a very restricted class of groups can aet freely on spheres.
See [13].

CoROLLARY 3.5. Let G be o finite group, and let q = 1. Then, for in-
findtely many integers p, there ewist uncountably many mutually inequivalent
G-actions on S”*? each having a q-sphere for a fimed-point set.

4. Circle actions. A “circle action” is an action of the group SO (2),
the group of complex numbers of modulus one under multiplication.

We say that an 80(2) action a on X rofates freely about YC X if (a) T .

is the fixed-point set of a, and (b) for each ¢+ 1 in SO(2), (X -7Y)
is a fixed-point-free homeomorphism (X —¥)->(X —Y).

ToeoREM 4.1. Leét p >4, =1, and p =0 (mod 2). Let ¥ be the
closure of an open set in R™. Then there exist an action o of SO(2) on BP*
and an embedding f: RE—>R"Y such that

(1) o rotates freely about f(RY, and

(2) The wild set of f is ¥.

CororrARY 4.2, If p>2 and g>1, there are uncountably many
mutually inequivalent SO(2) actions on S, each rotating freely about
a wild g-sphere.

Remark. The. condition that the fixed-point set have even
codimension is necessary since the associated involution a_, is orientation
preserving. (See [17].) .

Proof of Theorem 4.1. Since p is even, we can think of R? as
the image of C" under the “forget” functor, where C = field of complex
numbers and 2r = p. In this way we have a standard action o of SO(2)
on R”, rotating freely about the origin, given by scalar multiplication
Cx C" (" restricted to SO(2) x ¢, It is clear that the set

I8 = {(@yy ey @p) € RPlay > 0 for j = 1, vy p—1, and @, = 0} w {0}

is a “slice” of the action p; that is, 37~ intersects each orbit 0(S0(2) x ),
# € R, in at most one point.-

" Now, as in the proof of (3.1), there is an are 4 in X*~! such that 0 is
an endpoint of 4 and R**—4 isnot simply connected. (See [3].) Since Z¥~*
is a slice of g, the arcs o(fx4) are pairwise disjoint except for their
common endpoint 0, and hence ¢((80)(2) x4) = D is a disk in R®. Also,
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if 4 loop in R —[4 w (—4)] is contractible in R”—D, then the singular
disk can be dragged back into B*™' via p, so that

R"—D is not simply connected,
and ‘- . . .

D is invariant under the action o.
Finally, using the results in [7], we see that

D is tame in R*T.

(In applying [7], notice that, for k=2 and »=p41>35, the ap-
proximation theorem of Homma is a triviality using general position,
so that the results announced in [7] are definitely true for k = 2 and n > 3.)

The proof is now completed as in Theorem 3.1. Let I'=I'(D,Y)
De the decomposition of R**? determined by D C R’ and ¥ C R%. Since D
is tame in R"™", the hypotheses of Theorem 1.1 are satisfied by the main
result of [6]. Therefore, we need only find an action a of SO(2) on R*™TI"
which rotates freely about ¢(0 xR?), where ¢ is the quotient map. Again,
this is easy: let g be given by 2(t, #,y) = {e(¢, %), y), 1 eSO(2), # ¢ R,
y e RS and define a by o= ggp ", £<SO(2).

5. Non-euclidean fixed-point sets.

LevvA B.1. If p > 3 and g = 0, there is a compact space X such that X
is ot a (finite) polyhedron but the join X * 8% is @ (p+g-+1)-sphere.

Proof. Since join is associative, it suffices to prove the leml.:na,
assuming that ¢ = 0. Le., we need a non-polyhedron X whose suspension

‘is & (p--1)-sphere, whenever p > 3. Let 4 be an arc in 8P such that the

fundamental group of S°—A is infinitely generated. (See [3].) Then
clearly S7/4, 87 with A identified to a point, is not a (finite) polyhedron.
Let X = S°/A. As Brown observes in [5], the suspension of X is & (p +1)-
sphere by the argument of [1].

TeeoREM 5.2. If o is o fized-poini-free action of G on 8% ¢= 0, p = 3,
then there is am action @ of @ on SPTT = 8% % 8% such that
) E=a on &

(2) the fimed-point set X of @ is mot a (finite) polyhedron,

(3) @ restricts to a fived-poini-free action on S¥HT—X. '

Proof. This is obvious from (5.1), by taking the “join” of the
identity on X with a on S% Since p >3, 8" is a topologically unknotted
q-sphere in X # 87~ 8777+, 50 that we can assume S° to be in the standard
position in 8% x 8% (See [18].)

DermioN. If o is an action of the (topological) group & on P,
a polyhedron, call a totally wild if, whenever 1 # g € G, o5 is nqt conjugate
t0 & piecewise linear homeomorphism; i.e., there is no (topological) homeo-
morphism % of P such that A 'agh is piecewise linear.
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Remark. All of the cirele action constructed in Section 4 are totally
wild. In Section 3, a constructed action is totally wild if the original
fixed-point-free action is free.

THEOREM 5.3. If there is a free action of G on 8% ¢ = 0, p = 3, then there
is a totally wild action of G on S°TTT, '

Proof. Let a be action constructed in the proof of Theo;‘en1 5.2

haat}
where a is taken to be free. Then, for each 1 # ¢ « @, X is the fixed-point
set of a;. If @, were conjugate to a piecewise linear homeomorphism,
then X would be homeomorphic to the fixed-point set of a piecewise
linear map, whieh is impossible since X is not a polyhedron.
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About an imbedding conjecture for k-independent sets

by
A. B. Németh (Clyj)

Following [1] we say that a subset X of the‘ n~dimension€{l }*eal
Euclidean space R* 8 k-independent (0 <k <n—1) if any k-2 distinct
points of that subset are linearly indepeu‘dent. ™ N

Tn what follows the homeomorphic image of the set {(a', ...,a:'):
2 (@) <1} in B™ will be said to be an open m- cell; the homeomorlphlc
image of the set {(#!,...,2™): D@ =1} Wl]l.be s.aud to b.e an m— 1-sphere.

OK. Borsuk [1] has proved the following imbedding theovem con-
cerning %-independent sets:

If X is a compact k-independent sel in 1?." and if N is an open subset
in X containing & distinct points, then I\N is homeomorphic with a subset
Of Rn-—k. ) . ‘

In [6], p. 503 and in [4], another notion of ]c-u{dependenee is apphfa:li,
which is useful in applications‘in the approximation theory and which
will be ealled in the sequel k-veclorial-independence. ‘

The subset X of R™ will be said to be k-vec{oﬁal-iwd_@endmt if fo.r
any k of its distinet points &y, ..., Tk the vectors Oy, ..., Oxg, where O is
the origin in R", are linearly independent. ‘

OBSERVATION 1. A k-vectorial-independent subset X in E"is k—2-inde-
pendent in the sense of [1]. ,

Indeed, if @, .., % arve k distinet points in X, ’21}2&11 they canno;
be contained in any k—2-dimensional hyperplane H ) beeaﬂ.;ﬁse lsu:lzl
a hyperplane generates a k —1—dimensionar1. s.ubspace ‘Sfl.e. a 9: e
mensional hyperplane passing t];zough the orlg}n), and if @, ... ,ﬁ kbein
in H*?, the vectors Oy, ..., Oz would Dbe linearly dependent, g
in RF, ' o .

OBSERVATION 2. If X is a k-independent Si.bbsetni? R , then %d :nRZ'I'
be considered a %2 -vectorial-independent subset in R‘ . if we conside
as o hyperplane H" in B*™* not passing through the origin.

(1) For the sake of simplicity, the affine space and the vectorial Euclidean space
" .
of dimension n are denoted by the same symbol R”.
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