

References

- [1] D. Blackwell, On a class of probability spaces, Proc. 3rd Berkeley Symposium Math. Statist. and Prob. Volume 2 (1956), pp. 1-6.
- [2] A Borel set not containing a graph, Ann. Math. Statist. 39 (1968), pp.
- [3] C. Kuratowski, Topologie, Volume I, Edition troisième, Warszawa, 1952.
- [4] P. Novikoff, Sur les fonctions implicites mesurables B, Fund. Math. 17 (1931),
- [5] W. Sierpiński, Sur deux complémentaires analytiques non-séparables B, ibid. 17 (1931), pp. 296-297.
- [6] E. Szpilrajn-Marczewski, On the isomorphism and the equivalence of classes and sequences of sets, ibid. 32 (1939), pp. 133-148.

INDIAN STATISTICAL INSTITUTE

Recu par la Rédaction le 4. 12. 1968

A general realcompactification method

J. van der Slot (Amsterdam)

Conventions. The closure of a set A in a space X will be denoted by $cl_X A$. Collections of subsets of a space are indicated by German letters. If $\mathfrak U$ is a family of subsets of a space then the symbol $\mathrm{cl}_X\mathfrak U$ is used to denote the collection of all $\operatorname{cl}_X U$ for which $U \in \mathfrak{U}$. The union and intersection of a family of sets ${\mathfrak U}$ will be denoted by $\bigcup {\mathfrak U}$ and $\bigcap {\mathfrak U}$, respectively. For further basic conventions in general topology we refer to [6].

Introduction Let X be a T_1 -space and let \mathfrak{S} be a subbase for the closed sets of X. If $\mathfrak S$ has certain separation properties and is closed for certain set-theoretical operations (for instance, closed for the taking of finite intersections), then there is a standard way [2] to extend X to a compact Hausdorff space. Indeed, we consider all maximal centered systems of members of \mathfrak{S} which have empty intersection in X, and let them serve as the new points for the extended space $\beta(\mathfrak{S})X$. $\beta(\mathfrak{S})X$ endowed with a suitable topology is a Hausdorff compactification of X. In particular, $\beta(\mathfrak{S})X$ is the Čech–Stone compactification of X in case X is completely regular and $\mathfrak S$ is the collection of all zero-sets of X [4].

In [5] Aarts and de Groot generalized this construction for the case where $\mathfrak S$ is not closed for finite intersections but only has certain separation properties (cf. also [1]). Let M be the collection of all maximal centered systems of members of \mathfrak{S} . By adding to each $\mu \in M$ the elements $S \in \mathfrak{S}$ that intersect each member of μ we obtain new collections $\overline{\mu}$. Those $\overline{\mu}$ which have empty intersection in X are in general not centered, but still do have the property that each two elements of it have a non-empty intersection; they are so-called maximal linked systems and serve as the new points for the extended space $\beta(\mathfrak{S})X$. By choosing a suitable topology for $\beta(\mathfrak{S})X$ we obtain a Hausdorff compactification of X.

In this paper our purpose is to adapt the above procedure for the realcompact case; thus, starting from a fixed closed subbase S, to obtain a general real compactification $v(\mathfrak{S})X$ which depends on \mathfrak{S} (see [4] for the definitions of realcompactness and realcompactification). Of course, we must see to it that $v(\mathfrak{S})X = vX$, the Hewitt realcompactification of X, in case where $\mathfrak S$ is the collection of all zerosets of a completely regular space X.

We proceed as follows: Instead of considering all maximal linked systems $\bar{\mu}$ for $\mu \in M$ we rather consider those $\bar{\mu}$ for which μ has the countable intersection property. Let $v(\mathfrak{S})X$ denote this restricted collection of linked systems; then $v(\mathfrak{S})X$ becomes a subspace of $\beta(\mathfrak{S})X$. We shall prove that $v(\mathfrak{S})X$ is a realcompact space and show that it has some properties analogous to the Hewitt realcompactification vX.

Indeed, we have $v(\mathfrak{S})X = vX$ if \mathfrak{S} is the collection of all zero sets of X and X is completely regular. We also prove that $v(\mathfrak{S})X = X$ iff each maximal centered system of members of \mathfrak{S} with the countable intersection property has a non-empty intersection.

This yields an intrinsic characterization of real compactness which seems to be new. $\dot{}$

Furthermore, $v(\mathfrak{S})X$ is maximal in some sense: Let $f\colon X\to Y$ be continuous and \mathfrak{S} and \mathfrak{X} closed subbases of X and Y, respectively, such that $f^{-1}(T)\in \mathfrak{S}$ for each $T\in \mathfrak{T}$. If $v(\mathfrak{S})X$ and $v(\mathfrak{T})Y$ are defined as above, then f has a continuous extension which carries $v(\mathfrak{S})X$ into $v(\mathfrak{T})Y$.

It should be pointed out that the results in this paper intersect with those of my thesis [7]. However, the techniques used to obtain the main theorems are different.

1. Separation conditions for a subbase; centered systems of subbase elements. In this section, we define the separation conditions which are introduced in [5]. Cf. also [1] and [7]. We also prove some auxiliary propositions.

Two subsets A and B of a topological space X are said to be screened by a finite family $\mathfrak E$ of subsets of X if $\mathfrak E$ covers X and each element of $\mathfrak E$ meets at most one of A and B.

A subbase \mathfrak{S} for the closed sets of a space X satisfies the *condition* of subbase-regularity (1) provided that each $S \in \mathfrak{S}$ and $x \notin S$ are screened by a finite subcollection of \mathfrak{S} . \mathfrak{S} satisfies the *condition* of subbase-normality if each two disjoint elements of \mathfrak{S} are screened by a finite subcollection of \mathfrak{S} .

EXAMPLES. 1. The family of all closed sets of a normal space is a closed (sub)base which satisfies the conditions of subbase-regularity and subbase-normality.

2. In a completely regular space the (sub)base of all zerosets (2) satisfies the conditions of subbase-regularity and subbase-normality ([4], p. 17).

EXAMPLES. 1. In a countably paracompact normal space, the (sub) base of all closed sets satisfies the countability condition.

 $2. \ \,$ In a completely regular space the (sub) base of all zerosets satisfies the countability condition.

Recall that if $\mathfrak S$ is a family of subsets of a topological space X, then a centered system $\mathfrak F$ of members of $\mathfrak S$ is prime iff each finite cover of X by members of $\mathfrak S$ contains a member of $\mathfrak F$. As a matter of fact, each maximal centered system is prime.

The following two propositions will be needed in the sequel.

Proposition 1. If $\mathfrak S$ is a subbase for the closed sets of a space X which satisfies the condition of subbase-regularity, then the intersection of every prime centered system $\mathfrak F$ of members of $\mathfrak S$ consists of at most one point.

Proof. If $p \in \bigcap \mathfrak{F}$ and if q is a point of X which is different from p, then there exists $S \in \mathfrak{S}$ such that $p \in S$, $q \notin S$ and a finite cover $\{S_1, ..., S_n\}$ of X by members of \mathfrak{S} which screens S and q. Since \mathfrak{F} is prime, there exists a natural number i $(1 \le i \le n)$ such that $S_i \in \mathfrak{F}$. Obviously, $p \in S_i$ and $q \notin S_i$. Thus S_i is a member of \mathfrak{F} which does not contain q, i.e., $q \notin \bigcap \mathfrak{F}$.

Proposition 2. Let $\mathfrak S$ be a closed subbase for a space X which satisfies the conditions of subbase-regularity, subbase-normality and the countability condition. Then the following statements are equivalent.

- (i) Every maximal centered system of members of $\mathfrak S$ with c.i.p. (countable intersection property) has a non-empty intersection.
- (ii) Every prime centered system of members of $\mathfrak S$ with c.i.p. has a non-empty intersection.

Proof. (ii) \Rightarrow (i). Trivial!

(i) \Rightarrow (ii). Let \mathfrak{F} be a prime centered system of members of \mathfrak{S} with the countable intersection property. \mathfrak{F} is contained in a maximal centered system \mathfrak{S} of members of \mathfrak{S} ; hence, it suffices to show that \mathfrak{S} has the countable intersection property. Suppose, on the contrary, that there exists a countable subcollection $\{G_i | i=1,2,...\}$ of \mathfrak{S} with empty intersection. Since \mathfrak{S} satisfies the countability condition, the countable cover $\{X \setminus G_i | i=1,2,...\}$ has a countable refinement $\{S_n | n=1,2,...\}$ consisting of members of \mathfrak{S} . For each n=1,2,..., select an index i_n such that $S_n \subset X \setminus G_{i_n}$ and a finite cover \mathfrak{E}_n of X by members of \mathfrak{S} which screens S_n and G_{i_n} . Since \mathfrak{F} is prime, for n=1,2,... there exists $E_n \in \mathfrak{E}_n$ such that $E_n \in \mathfrak{F}$. Obviously, $E_n \cap G_{i_n} \neq \emptyset$ since \mathfrak{G} is a centered system, and so $E_n \cap S_n = \emptyset$. It follows that $\bigcap \{E_n | n=1,2,...\} = \emptyset$. This contradicts the fact that \mathfrak{F} has the countable intersection property.

⁽¹⁾ This condition is defined in [7] in a somewhat different way.

^(*) A subset Z of X is called a zeroset of X if there exists a real-valued continuous function f on X such that $Z = \{x \in X | f(x) = 0\}$.

Recall that a completely regular space is *realcompact* iff each maximal centered family of zerosets with the countable intersection property has non-empty intersection. Thus, taking for $\mathfrak S$ the subbase of all zerosets, in the previous proposition, we obtain an equivalent condition of real-compactness in terms of prime centered systems. This fact is well known and is used as auxiliary condition to prove that the property of real-compactness is inherited by topological products and closed subspaces. See [4] for further information.

2. The construction of the realcompactification $v(\mathfrak{S})X$. In this section we give an outline of the construction of the realcompactification $v(\mathfrak{S})X$.

Throughout this section, let X be a T_1 -space and $\mathfrak S$ a closed subbase for X which satisfies the conditions of subbase-regularity, subbase-normality, and the countability condition. For sake of convenience we sometimes use Greek letters to denote centered systems of members of $\mathfrak S$.

DEFINITION. A subcollection $\mathfrak F$ of $\mathfrak S$ is called a *linked system* iff each two members of $\mathfrak F$ have a non-empty intersection.

PROPOSITION 3. a. Each maximal centered system μ of members of $\mathfrak S$ is contained in a maximal linked system $\overline{\mu}$ by defining $\overline{\mu} = \{S \in \mathfrak S \mid S \cap T \neq \emptyset \text{ for all } T \in \mu\}.$

b. If $\bigcap \mu \neq \emptyset$, then μ consists of all $S \in \mathfrak{S}$ containing a fixed point of X and $\overline{\mu} = \mu$.

Proof. a. Let us suppose, on the contrary, that there exist S, $T \in \overline{\mu}$ such that $S \cap T = \emptyset$. Because of the condition of subbase-normality, S and T are screened by a finite subcollection $\{S_1, ..., S_n\}$ of \mathfrak{S} . There exists i $(1 \leq i \leq n)$ such that $S_i \in \mu$, and so $S_i \cap S \neq \emptyset$, $S_i \cap T \neq \emptyset$ by the definition of $\overline{\mu}$. This contradicts the fact that $\{S_1, ..., S_n\}$ screens the pair (S, T).

b. Let $x \in \cap \mu$ and suppose that there exists $S \in \mathfrak{S}$ such that $S \in \overline{\mu}$ and $x \notin S$. Because of the regularity condition for \mathfrak{S} there exists a finite subcollection $\{S_1, \ldots, S_m\}$ of \mathfrak{S} which screens the pair (x, S). Obviously, there exists i $(1 \leqslant i \leqslant m)$ such that $S_i \in \mu$, and so $S \cap S_i \neq \emptyset$. Thus $x \notin S_i$ which contradicts $x \in \cap \mu$.

Now, let M be the family of all maximal centered systems of members of \mathfrak{S} . Let $\beta(\mathfrak{S})X = \{\overline{\mu} | \mu \in M\}$ and for $S \in \mathfrak{S}$ $S^{**} = \{\overline{\mu} | \mu \in M, S \in \overline{\mu}\}$. Then the collection $\{S^{**} | S \in \mathfrak{S}\}$ is a subbase for a topology on $\beta(\mathfrak{S})X$ and $\beta(\mathfrak{S})X$ is a Hausdorff compactification of X. By identifying each $x \in X$ with the linked system $\{S \in \mathfrak{S} | x \in S\}$, X becomes a dense subspace of $\beta(\mathfrak{S})X$. For detailed proofs see [5] (3).

Next, we consider the subcollection M' of M consisting of those μ with the countable intersection property (c.i.p.).

We define $v(\mathfrak{S})X = \{\overline{\mu} | \mu \in M'\}$. Then $v(\mathfrak{S})X$ is a subspace of $\beta(\mathfrak{S})X$ and the family of all $\mathcal{S}^* = \{\overline{\mu} | \mu \in M', \mathcal{S} \in \overline{\mu}\}$ for $\mathcal{S} \in \mathfrak{S}$ is a closed subbase. Using the countability condition for \mathfrak{S} one easily verifies that $\overline{\mu} = \mu$ for each $\mu \in M'$; thus the elements of $v(\mathfrak{S})X \setminus X$ are maximal centered systems of members of \mathfrak{S} with c.i.p. that have an empty intersection in X (the corresponding property of $\beta(\mathfrak{S})X$ fails).

The following proposition says that $v(\mathfrak{S})X$ is the intersection of σ -compact subspaces of $\beta(\mathfrak{S})X$. Hence, $v(\mathfrak{S})X$ is a realcompactification of X (see [4], p. 119).

PROPOSITION 4. Denote by γ the collection of all countable covers of X by members of \mathfrak{S} . For $\mathfrak{U} \in \gamma$, let $\mathfrak{U}^{**} = \{S^{**} | S \in \mathfrak{U}\}$ and $Y = \bigcap \{ \bigcup \mathfrak{U}^{**} | \mathfrak{U} \in \gamma \}$. Then $Y = v(\mathfrak{S})X$.

Proof. Let $\mu = \overline{\mu} \in v(\mathfrak{S})X$. For each $\mathfrak{U} \in \gamma$ there exists $S \in \mathfrak{U}$ such that $S \in \mu$ which implies $\overline{\mu} \in S^{**}$. Thus, $\overline{\mu} \in Y$. On the other hand, if $\overline{\mu} \in Y$. then in order to prove $\overline{\mu} \in v(\mathfrak{S})X$, it is sufficient to show that μ has the countable intersection property. Let us suppose, on the contrary, that there exists $S_i \in \mu$, i = 1, 2, ..., such that $\bigcap \{S_i | i = 1, 2, ...\} = \emptyset$. Obviously, $\{X \setminus S_i | i = 1, 2, ...\}$ is a countable cover of X which, by virtue of the countability condition for \mathfrak{S} , has a countable refinement $\{T_j | j = 1, 2, ...\}$ by members of \mathfrak{S} . Since $\overline{\mu} \in Y$, there exists an index m such that $\overline{\mu} \in T_m^*$. Thus $T_m \in \overline{\mu}$. There also exists an index n such that $T_m \cap S_n = 0$. Because $S_n \in \mu$ this gives a contradiction.

PROPOSITION 5. a. $v(\mathfrak{S})X = vX$ if \mathfrak{S} is the collection of all zerosets of X, b. The equality $v(\mathfrak{S})X = X$ holds if and only if the following condition is satisfied:

Each maximal centered system of members of \mathfrak{S} with the countable intersection property has a non-empty intersection.

Proof. a. See [4].

b. For every maximal centered system μ of members of \mathfrak{S} with the countable intersection property, we have the equivalence (Proposition 3)

 $\bigcap \mu \neq \emptyset \quad \iff \quad \text{there exists } x \in X \text{ such that } \overline{\mu} = \{S \in \mathfrak{S} | \ x \in S\} \;.$

· Because we have identified these $\bar{\mu}$ with the points of X the proposition follows.

The foregoing results yield the following intrinsic characterization of real compactness. $\begin{tabular}{ll} \hline \end{tabular}$

Theorem 1. A T_1 -space X is a realcompact completely regular space if and only if there exists a closed subbase $\mathfrak S$ for its topology that satisfies the conditions of subbase-regularity, subbase-normality and the countability

^(*) N.B. For the construction of $\beta(\mathfrak{S})X$, it is not necessary that \mathfrak{S} satisfies the countability condition.

condition, and, moreover, satisfies the condition that each maximal centered system of members of $\mathfrak S$ with the countable intersection property has a non-empty intersection.

The following two propositions give us somewhat more information about the structure of $v(\mathfrak{S})X$. If $S \in \mathfrak{S}$ then S^* is defined as above. For subcollections \mathfrak{S}_1 of \mathfrak{S} the notation \mathfrak{S}_1^* is used to denote $\{S^* | S \in \mathfrak{S}_1\}$.

PROPOSITION 6. a. \mathfrak{S}^* is a subbase for the closed sets of $v(\mathfrak{S})X$ and satisfies the conditions of subbase-regularity, subbase-normality and the countability condition.

b. If $\{S_i|\ i=1,2,...\}$ is a countable subcollection of $\mathfrak S$ with empty intersection in X, then the collection $\{S_i^*|\ i=1,2,...\}$ has an empty intersection in $v(\mathfrak S)X$.

c. Each maximal centered system of members of \mathfrak{S}^* with c.i.p. has an non-empty intersection in $v(\mathfrak{S})X$.

Proof. a. If $\mathcal{S}^* \cap T^* = \emptyset$ for S, $T \in \mathfrak{S}$, then $S \cap T = \emptyset$ and so (S,T) is screened by a finite subcollection $\{S_1,\ldots,S_n\}$ of \mathfrak{S} . It follows that $\{S_1^*,\ldots,S_n^*\}$ screens (S^*,T^*) (remark that two disjoint elements of \mathfrak{S} have disjoint stars in $v(\mathfrak{S})X$). Thus we have proved the normality condition for \mathfrak{S}^* . The regularity condition for \mathfrak{S}^* is proved similarly. To prove the countability condition for \mathfrak{S}^* , let $\{v(\mathfrak{S})X\setminus S^* | S\in\mathfrak{S}_1\subset\mathfrak{S}\}$ be a countable cover of $v(\mathfrak{S})X$. Obviously, $\{X\setminus S| S\in\mathfrak{S}_1\}$ is a countable cover of X which has a countable refinement \mathfrak{T} by members of \mathfrak{S} . By Proposition 4 it follows that \mathfrak{T}^* covers $v(\mathfrak{S})X$. Since for each $T\in\mathfrak{T}$ there exists $S\in\mathfrak{S}_1$ such that $T\subset X\setminus S$ and also $T^*\subset v(\mathfrak{S})X\setminus S^*$, it follows that \mathfrak{T}^* refines $\{v(\mathfrak{S})X\setminus S^*| S\in\mathfrak{S}_1\}$.

b. If $\mu = \overline{\mu} \in \bigcap \{S_i^* | i = 1, 2, ...\}$, then $S_i \in \mu$ for each i = 1, 2, ... which contradicts the countable intersection property of μ .

c. Let \mathfrak{S}_1 be a subcollection of \mathfrak{S} such that \mathfrak{S}_1^* is a maximal centered system of members of \mathfrak{S}^* with the countable intersection property. Using b one easily verifies that \mathfrak{S}_1 is a maximal centered system of members of \mathfrak{S} with c.i.p. The collection \mathfrak{S}_1 is also a maximal linked system and is identified as a point of $v(\mathfrak{S})X$ which is in the intersection of \mathfrak{S}_1^* .

Proposition 7. For each $S \in \mathfrak{S}$ we have $S^* = \operatorname{cl}_{v(\mathfrak{S})X}S$ (4).

Proof. Obviously, $\operatorname{cl}_{v(\Xi)X}S \subset S^*$. To prove $S^* \subset \operatorname{cl}_{v(\Xi)X}S$, let $\{S_1, \ldots, S_n\}$ be a finite subcollection of $\mathfrak S$ such that $S \subset S_1^* \cup \ldots \cup S_n^*$. Then $S \subset S_1 \cup \ldots \cup S_n$ and we also have $S^* \subset S_1^* \cup \ldots \cup S_n^*$. Indeed, if there would exist $\overline{\mu} \in S^*$ which is not in $S_1^* \cup \ldots \cup S_n^*$, then for each $i=1,2,\ldots,n$ there exists $T_i \in \overline{\mu}$ such that $T_i \cap S_i = \emptyset$. Thus $S \cap (T_1 \cap \ldots \cap T_n) = \emptyset$, and consequently $S^* \cap (T_1^* \cap \ldots \cap T_n^*) = \emptyset$ by the previous proposition. This is impossible. Hence, S^* is contained in the unions of all finite covers

of S by elements of \mathfrak{S}^* . It follows that $S^* \subset \operatorname{cl}_{v(\mathfrak{S})X}S$ because \mathfrak{S}^* is a subbase for the closed sets of $v(\mathfrak{S})X$.

Remark. If $\mathfrak S$ is closed for countable intersections, then a slightly stronger version of b in Proposition 6 is satisfied (this is the case when $\mathfrak S$ is the collection of all zerosets of a completely regular space X). One easily verifies that for each countable subcollection $\{S_i|\ i=1,2,...\}$ of $\mathfrak S$ we have $\bigcap \{S_i^*|\ i=1,2,...\}^*$.

3. Maximality and uniqueness of $v(\mathfrak{S})X$. In this section we generalize the well-known result [4] which states that a continuous map from a completely regular space X into a completely regular space Y has a continuous extension over the Hewitt real compactifications of X and Y.

We start with a proposition that gives a general method to form extensions of mappings. Assume X and Y be T_1 -spaces and $\mathfrak T$ a closed subbase for Y satisfying the conditions of subbase-regularity, subbase-normality and the countability condition.

PROPOSITION 8. Let f be a mapping from a dense subspace Z of X into Y such that $\bigcap \{\operatorname{cl}_X f^{-1}(T_i) | i=1,2,...\} = \emptyset$ for each countable subcollection $\{T_i | i=1,2,...\}$ of $\mathfrak X$ with empty intersection in Y. Under the hypothesis that every maximal centered system of members of $\mathfrak X$ with c.i.p. has a non-empty intersection in Y (i.e. $v(\mathfrak X) Y = Y$), f has a continuous extension over X.

Proof. Let p be an arbitrary point of X. Denote by \mathfrak{T}_1 the subcollection of \mathfrak{T} consisting of those sets T for which $p \in \operatorname{cl}_X f^{-1}(T)$. The extra condition on f implies that \mathfrak{T}_1 has the countable intersection property. Furthermore, the centered system \mathfrak{T}_1 is also prime. Indeed, if $\{T_k | k = 1, 2, ..., n\}$ is a finite subcollection of \mathfrak{T} which is a cover of Y, then the collection $\{\operatorname{cl}_X f^{-1}(T_k) | k = 1, 2, ..., n\}$ is a cover of X. Hence, there exists j $(1 \leqslant j \leqslant n)$ such that $p \in \operatorname{cl}_X f^{-1}(T_j)$, and we have $T_j \in \mathfrak{T}_1$. By virtue of Propositions 1 and 2 of Section 1 we can define $f^*(p) = \bigcap \mathfrak{T}_1$. The mapping $f^* \colon X \to Y$ is an extension of f, for if $p \in Z$, then we have

$$f(p) \in \bigcap \left\{ T \in \mathfrak{T} | \ p \in f^{-1}(T) \right\} = \bigcap \left\{ T \in \mathfrak{T} | \ p \in \operatorname{cl}_X f^{-1}(T) \right\} = f^*(p) \ .$$

Therefore, it remains to show that f^* is continuous. Let x be an arbitrary point of X and let T be some member of $\mathfrak T$ such that $f^*(x) \in Y \setminus T$. In order to prove the continuity of f^* , it suffices to show that there exists a neighborhood of x which is mapped into $Y \setminus T$ by f^* . Since $f^*(x) \notin T$, there exists a screening of the pair $\{f^*(x), T\}$ by a finite subcollection $\{T_1, T_2, ..., T_k\}$ of $\mathfrak T$. Let $T_1, ..., T_m$ be the elements of this collection that intersect T.

Define

$$U = X \setminus \bigcup \{ \operatorname{cl}_X f^{-1}(T_j) | j = 1, 2, ..., m \}.$$

⁽⁴⁾ As was pointed out by J. de Groot, in general it is not true that $S^{**} = \operatorname{cl}_{\beta(\mathfrak{S})X} S$.

Then U is a neighborhood of x in X which is mapped into $Y \setminus T$ by f^* . This completes the proof.

Proposition 8 together with Propositions 6 and 7 of Section 2 yield the following theorems.

THEOREM 2. Let $\mathfrak S$ and $\mathfrak X$ be closed subbases for the T_1 -spaces X and Y; and suppose that $\mathfrak S$ and $\mathfrak X$ satisfy the conditions of subbase-regularity, subbase-normality and the countability condition. If f is a (continuous) map from X into Y such that $f^{-1}(T) \in \mathfrak S$ for each $T \in \mathfrak X$, then there is a continuous extension f^* of f which carries $v(\mathfrak S)X$ into $v(\mathfrak X)Y$.

THEOREM 3 (UNIQUENESS THEOREM). The extension $v(\mathfrak{S})X$ of a space X constructed in Section 2 is essentially unique in the sense that if $\mu(\mathfrak{S})X$ is any extension of X satisfying the conditions a, b and c of Proposition 6 of Section 2 (with the star operator replaced by the closure operator in $\mu(\mathfrak{S})X$), then there is a homeomorphism of $v(\mathfrak{S})X$ onto $\mu(\mathfrak{S})X$ which leaves X pointwise fixed.

EXAMPLE. If X is a Lindelöf space, then for each closed subbase \mathfrak{S} which satisfies the conditions of subbase-regularity, subbase-normality and the countability condition, we have $v(\mathfrak{S})X = X$. This statement does not generally hold for arbitrary realcompact spaces. Indeed, if X is a discrete space of cardinal $> \mathfrak{s}_0$, then let \mathfrak{S} be the collection of all singleton points and complements of singleton points in X. It is easy to see that \mathfrak{S} satisfies all required conditions, and $v(\mathfrak{S})X$ is homeomorphic with the one point compactification of X.

THEOREM 4. Let $\{X_a \mid a \in A\}$ be a collection of topological spaces and $X = \Pi\{X_a \mid a \in A\}$. Suppose that for $a \in A$, \mathfrak{S}_a is a closed subbase for X_a which satisfies the conditions of subbase-regularity, subbase-normality and the countability condition. Then the collection \mathfrak{S} consisting of the sets $\pi_a^{-1}(C)$, where π_a is the natural projection onto the a'th coordinate space and C a member of \mathfrak{S}_a , is a closed subbase for X which also satisfies these conditions and $v(\mathfrak{S})X$ is homeomorphic with $\Pi\{v(\mathfrak{S}_a)X_a \mid a \in A\}$

Proof. One easily verifies that $\mathfrak S$ is a closed subbase for X which satisfies the conditions of subbase-regularity, subbase-normality and the countability condition. By Theorem 2, for each $\alpha \in A$, there exists a continuous extension π_a^* of π_a which carries $v(\mathfrak S)X$ into $v(\mathfrak S_a)X_a$. Define $i^*\colon v(\mathfrak S)X\to H\{v(\mathfrak S_a)X_a|\ \alpha\in A\}$ by the conditions $(i^*(w))_a=\pi_a^*(w)$ $(\alpha\in A)$. Proposition 8 gives a method to extend the inclusion map j of X into $v(\mathfrak S)X$ to a continuous mapping $j^*\colon H\{v(\mathfrak S_a)X_a|\ \alpha\in A\}\to v(\mathfrak S)X$. The composition map $j^*\circ i^*$ has the property that it leaves the dense set X pointwise fixed. Consequently, $j^*\circ i^*$ is the identity map of $v(\mathfrak S)X$. By applying the same argument to $i^*\circ j^*$ the theorem now follows.

References

- [1] J.M. Aarts, Dimension and Deficiency in General Topology, Doct. diss., Univ. of Amsterdam, 1966.
- [2] O. Frink, Compactifications and seminormal spaces, Amer. J. Math. 86 (1964), pp. 602-607.
- [3] Zd. Frolik, A generalization of realcompact spaces, Czech. Math. Journ. 13 (1963), pp. 127-138.
- [4] L. Gillman and M. Jerison, Rings of continuous functions, Princeton, 1960.
- [5] J. de Groot and J. M. Aarts, Complete regularity as a separation axiom, Canad. Journ. Math. 21 (1969), pp. 96-105.
- [6] J. L. Kelley, General Topology, Princeton, 1955.
- [7] J. van der Slot, Some properties related to compactness, Doct. diss. Univ. of Amsterdam, 1968.

Reçu par la Rédaction le 30. 12. 1968