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A general realcompactification method

by
J. van der Slot (Amsterdam)

Conventions. The closure of a set 4 in a space X will be denoted
by clx A. Collections of subsets of a space are indicated by German letters.
Tf U is a family of subsets of a space then the symbol clx¥ is used to
denote the collection of all clx U for which U e [, The union and inter-
section of a family of sets U will be denoted by U U and () U, respectively.
For further basic conventions in general topology we refer to [6].

Introduction Let X be a T;-space and let & Dbe a subbase for the
closed sets of X. If © has certain separation properties and is closed for
cortain sebt-theoretical operations (for instance, closed for the taking
of finite intersections), then there is a standard way [2] to extend X to
a compact Hausdorff space. Indeed, we consider all maximal centered
systems of members of & which have empty intersection in X, and let
them serve as the new points for the extended space B(S)X. B(8)X
endowed with a suitable topology is a Hausdorif compactification of X.
In particular, f(S)X is the Clech—Stone compactification of X in case X
is completely regular and S is the collection of all zero-sets of X [4]

In [5] Aarts and de Groob generalized bhis construction for the case
where & is not closed for finite intersections but only has certain sepa-
ration properties (cf. also [1]). Leb M Dbe the eollection of all maximal
centered systems of members of G. By adding to each u ¢ M the elements
§ e G that intersect each member of 4 we obtainnew collections u. Those x
which have empty intersection in X are in general not centered, but
still do have the property that each two elements of it have a non-empty’
intersection; they are so-called maximal linked systems and serve as the
new points for the extended space 5(&)X. By choosing & suitable topology
for (S)X we obtain a Hausdorff compactification of X. .

In this paper our purpose is to adapt the above procedure for the
realcompact case; thus, starting from a fixed closed subbase &, to obtain
a general realcompactification v(&)X which depends on & (see [4] for
the definitions of realcompactness and realcompactification). Of course,
we must see to it that »(S)X = vX, the Hewitt realcompactification
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of X, in case where & is the collection of all zerosets of a completely
regular space X,

We proceed as follows: Instead of considering all maximal linkeq
systems u for x4 ¢ M we rather consider those z for which x has the count-
able intersection property. Let o(S)X denote this restricted collection
of linked systems; then »(&)X becomes & subspace of B(B)X. We shall
prove that v(G)X is a realcompact space and show that it has some
properties analogous to the Hewitt realcompactification . vX.

Indeed, we have v(8)X = vX if & is the collection of all zero sets
of X and X is completely regular. We also prove that v(B)X = X iff
each maximal centered system of members of & with the countable
intersection property has a non-empty intersection.

This yields an intrinsic characterization of realcompactness which
seems to be new. :

Furthermore, »(8)X is maximal in some sense: Leb fr XY be
continuous and & and T closed subbases of X and ¥, respectively, such
that f7(T) €  for each T ¢ T. If v(S)X and »(T) Y are defined as above,
then f has a continuous extension which carries v(8)X into »(T) ¥.

It should be pointed out that the results in this paper intersect with
those of my thesis [7]. However, the techniques used to obtain the main
theorems are different.

1. ‘Separation conditions for a subbase; centered systems of subbase
elements. In this section, we define the separation conditions which are
introduced in [5]. Cf. also [1] and [7]. We also prove some auxiliary
propositions.

Two subsets 4 and B of a topological space X are said to be screened
by a finite family € of subsets of X if & covers X and each element of €
meets at most one of 4 and B.

A subbase S for the closed sets of a ‘space X satisfies the condition
of subbase-regularity () provided that each 8 <& and z¢ S are screened
by afinite subcollection of &. & satisfies the condition of subbase-normality
if each two disjoint elements of & are screened by a finite subcollection of .

ExamMprEs. 1. The family of all closed sets of a normal space is
a closed (sub)base which satisfies the conditions of subbase-regularity.
and subbase-normality.

2. In a completely regular space the (sub)base of all zerosets (2)
satisties the conditions of subbase-regularity and subbase-normality
(41, p. 17). :

(*) This condition is defined in [7] in a somewhat different way.
.(") A subset Z of X is called a zeroset of X if there exists a real-valued continuous
function f on X such that Z = @ X| flz) = 0}.
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A subbase & for the closed sets of a space X satisfies the countability
condition iff each countable cover of X by members of {X\8| § €&} has
a countable refinement by members of &,

Exawpres. 1. In a countably paracompact normal space, the (sub)
base of all closed sets satisfies the countahility condition.

2. In a completely regular space the (sub)base of all zerosets satisfies
the countability condition.

Recall that if & is a family of subsets of a topological space X, then
a centered system ¥ of members of S is prime iff each finite cover of X
by members of & contains a member of F. As a matter of fact, each maximal
centered system is prime.

The following two propositions will be needed in the sequel.

ProrostrioN 1. If & ds a subbase for the closed sets of a space X which
satisfies the condition of subbase-regularity, then the infersection of every
prime ceniered system § of members of & consisis of at most one point.

Proof. If p e\ F and if g is a point of X which is different from P,
then there exists § ¢ G such that p € 5, ¢ ¢ § and a finite cover {81y eers Su}
of X by members of © which screens S and ¢. Sinee § is prime, there
exists a natural number i (1 < i < n) such that S; €g. Obviously, p e 8;
and ¢ ¢8;. Thus 8; is a member of § which does not contain g, e, ¢¢N T

ProrosITION 2. Let & be a closed subbase for @ space X which satisfies
the conditions of subbase-regularity, subbase-normality and the countability
condition. Then the following statements are equivalent.

(i) Bvery mazimal centered system of members of S with c.i.p. (coun-
table intersection property) has a non-empty intersection.

(i) Every prime centered sysiem of wmembers of & with cip. has
a non-empty intersection.

Proof. (ii)= (i). Trivial!

(i) = (ii). Let § be a prime centered system of members of & with
the eountable intersection property. § is econtained in a maximal centered
system ® of members of S; hence, it suffices to show that & has the
countable intersection property. Suppose, on the contrary, that there
exigts. a countable subcollection {(] i =1, 2, ..} of & with empty inter-
section. Since & satisfies the countability condition, the countable cover
{X\&] 1=1,2,..} has a countable refinement {8x] n=1,2,..} con-
sisting of members of &. For each n = 1,2, ..., select an index 4, such
that 8, C X\@;, and a finite cover &, of X by members of & which
screens S, and G4,. Since § is prime, for n = 1,2, ... there exists H, e G,
such that B, «§. Obviously, B, ~ Gy, & O since G is a centered system,
and 80 B, 8,=0@. It follows that [{H. n=1,2,..} =@. This
contradicts the fact that § has the countable intersection property.
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Recall that a completely regular space is realcompact iff each maxima]
centered family of zerosets with the countable intersection property hag
non-empty intersection. Thus, taking for & the subbase of all zerosets,
in the previous proposition, we obtain an equivalent condition of real-
compactness in terms of prime centered systems. This fact is well known
and is used as auxiliary condition to prove that the property of real-
compactness is inherited by topological produects and closed subspaces.
See [4] for further information.

2. The construction of the realcompactification »(S)X. In this section
we give an outline of the construction of the realcompactification »(S)X.
Throughont this section, let X be a T)-space and & a closed sub-

icm®

base for X which satisfies the conditions of subbase-regularity, subbase- -

normality, and the countability condition. For sake of convenience we
sometimes use Greek letters to denote centered systems of members of S,

DerFINtTION. A subcollection ¥ of & is called a linked system iff each
two members of  have a non-empty intersection.

ProrosITION 3. 8. Bach mawimal centered system u of members of G
is contained in a mazimal linked system g by defining = {8eG| ST 0@
for all T e p}.

b. If (M u 5= O, then p consists of all S €& containing a fiwed point
of X and p = p.

Proof. a. Let us suppose, on the contrary, that there exist S yTep
such that § ~ T' = @. Because of the condition of subbase-normality, S and T
are screened by a finite subcollection {8, ..., S,} of S. There exists
t (1<i<n) such that S;ep, and s0 ;" S #0, §;n T =0 by the
definition of g This contradicts the fact that {9, ..., Su} screens the
pair (8, T).

b. Let # €[4 and suppose that there exists § e S such that Seg
and @ ¢ 8. Because of the regularity condition for & there exists a finite
subeollection {Si, ..., Sn} of & which screens the pair (z, 8). Obviously,
there exists 4 (L <4 <\ m) such that §; e u, and 50 § ~ §; % @. Thus né S
which contradicts @ () p. :

Now, let M be the family of all maximal centered systems of members
of & Let (€)X ={u| pe M} and for SeG % = {6| peM,Sepn}
Then the collection {§**| § ¢ S} is a subbase for a topology on AB(S)X
and f(&)X is a Hausdorff compactification of X. By identifying each
% € X with the linked system {§ ¢ S| # ¢ 8}, X becomes a dense subspace
of f(G)X. For detailed proofs see [5] (%).

(*) N.B. For the construction of §(8)X, it is not necessary that & satisfies the
countability condition. ’
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Next, we consider the subeollection M’ of A consisting of those u
with the countable intersection property (e.i.p.).

We define v(€) X = {u] 1 e M'). Then »(S)X is a subspace of p(S)X
and the family of all §* = {| u ¢ ', S ey} for § € G is a closed subbase.
Using the countability condition for & one easily verifies that ik = u for
each u e A['; thus the elements of v(G) X\ X are maximal centered systems
of members of & with ec.i.p. that have an empty intersection in X (the
corresponding property of g(S)X fails).

The following proposition says that ¢(S)X is the intersection of
o-compact subspaces of f{S)X. Hence, v(S)X is a realcompactification
of X (see [4], p. 119).

ProrosITION 4. Denote by y the collection of all countable covers of X by
members of . For Wey, let W™ = {8 8§ e U} and Y=} {{_UY| U eyl
Then Y = v(G)X.

Proof. Let u= e v(S)X. For each U ey there exists § el such
that 8 e g which implies u ¢ S**. Thus, % € Y. On the other hand, if e Y.
then in order to prove u e v(S)X, it is sufficient to show that x has the
countable intersection property. Let us suppose, on the contrary, that
there exists Siem, +=1,2,.., such that N {S: i=1,2,..}=0.
Obviously, {X\S8i] i =1, 2, ...} is a countable cover of X which, by virtue
of the countability condition for &, has a countable refinement
{I';1 j=1,2,..} by members of G. Since ¢ Y, there exists an index m
such that u e Thf. Thus T, e . There also exists an index # such that
T~ Sp= 0. Because S, e p this gives a contradiction.

PROPOSITION 5. a. v(S) X = vX if & is the collection of all zerosets of X,

b. The equality v(S)X = X holds if and only if the following con-
dition is satisfied:

Each mawmimal ceniered sysiem of members of S with the counlable
wntersection property has a non-empty indersection.

Proof. a. See [4].

b. For every maximal centered system p of members of & with the
countable intersection property, we have the equivalence (Proposition 3)

Nu#0

Because we have identified these z with the points of X the proposition
follows.

The foregoing results yield the following intvinsic eharacterization
of realcompactness.

THEOREM 1. 4 T,-space X is a realcompact completely reqular space
if and only if there exists a closed subbase & for iis topology that satisfies
the conditions of subbase-regularity, subbase-normality and the countabilily
18

there exists © e« X such that p= {8 <G| zeS}.

<=

Fundamenta Mathematicae, T. LXVIL
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condition, and, moreover, satisfies the condition that each maximal centered
system of members of © with the countable intersection property has a non-
empty infersection.

The following two propositions give us somewhat more information
aboub the structure of v(S)X. If § ¢ & then §* is defined as above. For
subcollections &, of & the notation &} is used to denote {§* § « G

PROPOSITION 6. a. &* is « subbase for the closed sets of v(S)X and
satisfies the conditions of subbase-regularity, subbase-normality and the
countability condition.

b. If {8 ¢=1,2,..} is a countable subcollection of & with empty
inlersection in X, then the collection {S¥| i=1,2,..} has an empty inter-
section in v(S)X.

e. Bach maximal centered system of members of &* with c.i.p. has an
non-empty intersection in v(S)X.

Proof. a. IfS* " I =0 for 8, T ¢ S, then § ~ T = B and so (8, 1)
is sereened by a finite subeollection {8y, .., 8.} of &. It follows that
{8%, ...; 8%} screens (8%, T*) (remark that two disjoint elements of ©
have disjoint stars in »(S)X). Thus we have proved the normality con-
dition for &*. The regularity condition for &* is proved similarly. To
prove the countability condition for &*, let {v(&)X\S*| 8¢S, C S} be
a countable cover of »(G)X. Obviously, {X\S] Se ©,} is a countable
cover of X which has a countable refinement T by members of S. By
Proposition 4 it follows that T covers »(S)X. Since for each T ¢ T there
exists SeG, such that T'CX\S and also T*C«(S)X\§*, it follows
that T* refines {v(&)I\5*| Se&S,).

b. If u=pme\ {8 i=1,2,..}, then Sieu for each i=1,2, ..
which contradicts the countable intersection property of u.

¢. Let &, be a subcolleetion of & such that SF is a maximal centered
system of members of &* with the countable. intersection property.
Using b one easily verifies that &, is & maximal centered system of members

of @ with c.ip. The collection G, is also a maximal linked system and '

is identified as a point of v(G)X which is in the intersection of GF.
PROPOSITION 7. For each S ¢ @ we have 8* = clyg xS (- '
Proof. Obviously, clyexS C §* Toprove §* C clyex S, let {84,
be a finite subeollection of & sueh that § C Sfo ..
v .. 8, and we also have §*C 87 u ... U 8% Indeed, if there would
exist z ¢ §* which i8 not in 8 U ... v §%, then for each §= 1,2,..,n
there exists Ty e such that Tyn 83 = 0. Thus § ~ (Ty A ... A Th) =0,
and consequently §* ~ (Tf ~ ...~ T%) =@ Dby the previous proposition.
This is impossible. Hence, §* is contained in the unions of all finite covers

very Su}
v 8. Then SC8, v

{*) As was pointed out by J. de Groot, in general it is not frue that §** = clge)x S.

icm®
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of 8 by elements of &*. It follows that 8* C elyex S becanse G* is a sub-
pase for the closed sets of »(&)X.

Remark. If & is closed for eountable intersections, then a slightly
stronger version of b in Proposition 6 is satisfied (this is the case when &
is the collection of all zerosets of a completely regular space X). One
eagily verifies that for each countable subcollection {Si i=1, 2, o}
of @ we have ({8} +=1,2,.}= ({8 i=1,2,.. 0%

3. Maximality and uniqueness of »(G)X. In this section we gene-
ralize the well-known result [4] which states that a continuous map
from a completely regular space X into a completely regular space ¥
has a continuous extension over the Hewitt realcompactifications of X
and Y.

We start with a proposition that gives a general method to form
extensions of mappings. Assume X and Y be T;-spaces and T a closed
subbase for Y satisfying the conditions of subbase-regularity, subbase-
normality and the eountability condition. -

PRrOPOSITION 8. Let f be a mapping from a dense subspace Z of X into’ ¥
such that [} {clx FHTY i=1,2,..} =@ for each countable subcollection
{T;| i=1,2,..} of T with empty intersection in Y. Under the hypothesis
that every mazimal centered system of members of T with e.i.p. has a non-
empty intersection in ¥ (d.e. v(T)Y = Y), f has a continuous extension
over X.

Proof. Let p be an arbitrary point of X. Denote by T; the sub-
collection of T consisting of those sets T for which p e clxf (T). The
extra condition on f implies that I; has the countable intersection property.
Furthermore, the centered system I, is also prime. Imdeed, if {74 &
=1,2,..,n} is a finite subcollection of T which is a cover of ¥, then
the collection {clyf " (T%)| k= 1,2, ..., n} is a cover of X, Hence, there

~exists j (1 <j < n) such that peclxf "(Ty), and we have T;eI;. By

virtue of Propositions 1 and 2 of Section 1 we can define f*(p) = I;.
The mapping f*: X —-¥ is an extension of f, for if p ¢ Z, then we have

@) eN{T Xl pef (I} =N{T T peclxf (1)} =1"p).

Therefore, it remains to show that f* is continuous. Let # be an arbitrary
point of X and let T be some member of T such that He) e INT. In
order to prove the continuity of f*, it suffices to show that there exists
a neighborhood of # which is mapped into ¥\T by f*. Since f*(z)¢ T,
there exists a screening of the pair (f*(«), 7) by a finite subcollection
{Ty, Ty, .., Ty} of T. Let Ty,..., T be the elements of this collection
that intersect 7.
Define
oy M},

. U-——“X\U{Cle—l(Tj)! i=1,2,.
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Then U is a neighborhood of » in X which is mapped into Y\T vy f*
This completes the proof.

Proposition 8 together with Propositions 6 and 7 of Section 2 yield
the following theorems.

THEOREM 2. Let € and X be closed subbases for the Ti-spaces X and T ;
and suppose that S and T satisfy the conditions of 31(bbas‘e»ﬂ'eg‘ul(w'rz'ty’
subbase-normality and the countability condition. If f is a (continuous) map
from X into X such that f(T) ¢ G for each T « T, then there is a continuous
extension f* of f which carries v(S)X into v(T) Y.

THEOREM 3 (UNIQUENESS THEOREM). The extension 2(S)X of a space
X constructed in Section 2 is essentially unique in the sense that if n(@®)X
is any extension of X satisfying the conditions a, b and e of Proposition 6
of Section 2 (with the star operator replaced by the closure operator i u(G)X),
then there is a homeomorphism of v(S)X onto u(S)X which leaves T
pointwise fized.

Exavere. If X is a Lindelof space, then for each closed subbase S
which satisfies the conditions of subbase-regularity, subbase-normality
and the countability condition, we have v(G)X = X. This . statement
does not generally hold for arbitrary realecompact spaces. Indeed, if X is
a diserete space of cardinal > ,, then let & be the collection of all singleton
points and complements of singleton points in X. It is easy to see that ©
satisfies all required conditions, and (€)X is homeomorphic with the
one point compactification of X.

ToEoREM 4. Let {X,| ae A} be a collection of topological spaces and
X =II{X,} aecd}. Suppose that for ae A, S, is a closed subbase Jor X,
which satisfies the conditions of subbase-regularity, subbase-normality and
the countability condition. Then the collection S consisting of the sets s, (),
where @, is the nmatural projection onto the «'th ecoordinate space and C
a member of S, is o closed subbase for X which also satisfies these conditions
and »(S)X is homieomorphic with IT {v(G) X aed}e

Proof. One easily verifies that S is a closed subbase for X which
satisfies the conditions of subbase-regularity, subbase-normality and the
countability condition. By Theorem 2, for each aed, there exists
& continuous extension zf of =, which carries p(S)X into v(S,)Xe.
Define *: v(8) X +II{n(C,) Xu| a ¢ A} Dy the conditions (i*(@))e = ak(2)
(a € A). Proposition 8 gives a method to extend the inclusion map j of X
into »(S)X to a continuous mapping j*: II{o(Se) X, aed}—v(S)X.
The composition map j§*o4* has the property that it leaves the
dense set X pointwise fixed. Consequently, j*o4* is the identity map
of v(8)X. By applying the same argument to ¢* o §* the theorem now
follows.
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