A note on the theory of shape of compacta

by
Karol Borsuk (Warszdwa)

In this note we shall study some relations between the notion of
the shape of a compactum and some other topologiecal notioms.

§ 1. Basic definitions. Let X,Y De two compacta lying in the
Hilbert cube Q. A sequence of maps fi: @ @ is said to be a fundamental
sequence from X to ¥ (notation: f = {fs, X, ¥}, or f: X »¥) (eompare [1],
p. 223) if for every neighborhood V of ¥ there is a neighborhood U of X
such that

fe/U = frsafU  in V for almost all k.

Two fundamental sequences f= {fs, X, I} and ' = {fz, X, ¥} are said
to be homotopic (notation: f ~ f') if for every neighborhood V of ¥ there
is a neighborhood U of X such that

/U~ fi/U in V for almost all k.

If fr is the identity map i: @ —@ for every k=1, 2, ..., then the funda-
mental sequence {fr, X, X} is said to be the fundamenial identity sequence
for X, and it is denoted by ix.

By the composition gf of two fundamental sequences f= {fs, X, ¥}
and g = {g, Y, Z} one understands the fundamental sequence {gxfs, X, Z}.
If there exist two fundamental sequences f: X =Y and g: ¥ X such
that gf: X=X is homotopie to the fundamental identity sequence ix,
then we say that Y fundamentally dominates X (notation: X % 7). It
there exist two fundamental sequences f: XY, g: ¥ —>X such that
the relations gf ~ix and fg = ir both hold, then X and ¥ ave said to be
fundamentally equivalent (notation: X 2 ).

Replacing in those definitions the compacta X, ¥ by the pointed
compacta (X, x,) C(Q, %), (¥, %) C(Q,y,) and also the neighborhoods
U,V by the pointed neighborhoods (U, @), (¥, %,) one gets the notion
of the fundamental pointed sequence f= {fv, (X, @), (¥,%)};, of the
homotopy of pointed fundamental sequences and of the fundamental domi-
nation and of the fundamental equivalence for poinied compacta.
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By the shape of a compactum (see [2]) we understand the collection
Sh(X) of all compacta ¥ such that there exist two compacta X, ¥'Co
homeomorphic to X and to I respectively and satisfying the relation
X’% Y. The shape of the compactum consisting. of only one point is

sald to be trivial. Analogously one gels the notion of the shape Sh(X s @)
‘'of a pointed compactum (X, x,).

A closed subset 4 of a compactum X C @ is said to De a fundamental
retract of X ([3], p. 59) if there exists a fundamental retraction of X
to 4, i.e. a fundamental sequence r = {1z, X, 4} satistying the condition
7i{@) = & for every point #e¢d and k=1,2,.. In particular, every
retract of X is a fundamental retract of X, but not conversely. It is also
clear that X fundamentally dominates each of its retracts. The funda-
mental refracts of the AR-sets are said to be fundamental absolute retracts,
or FAR-sets ([3], p. 66), and the fundamental retracts of the ANR-sots
are said to be fundamental absolute neighborhood retracts, or TANR-sets
([31, p- 67).

Let (X, ) De a pointed compactum and (¥, y,) a pointed compactum
Iying in @. A sequence of maps &: (X, @) (@, ¥,) is said to be an ap-
provimative map of (X, x,) towards (Y, y,) ([1], p. 246) if for every neigh-
borhood ¥ of ¥ the homotopy & = &4 in (V, 4,) holds for almost all T
We denote this approximative map by {£x, (X, %)~ (¥, 4 o)}, or shortly by &,
Another approximative map = {e5 (X, 0) (T, o)} is said to be Tomotopic
to & if for every neighborhood V of ¥ the homotopy &~ nx in (V, y,)
holds for almost all &. Tn particular, £ is said to De null-homotopic if it is
homotopic to the approximative map 5= {m, (X, @), (X, o)} given
by the formula (%) = y, for every point # ¢ X and for every k=1,2, ..
The classes of all homotopic approximative maps from (X, x,) towards
(¥, y,) are said to be approvimative classes from (X, m,) towards (X, y,).
In the case where X is the n-dimensional sphere S", the approximative
maps from (8", x,) towards (¥,y,) constitute a group mu(Y, y,) called
the n-th fundamental group of (¥, ¥o) ([1], p. 251). If ¥ ¢ ANR, then
aa(Y, y) is isomorphic with the nth homotopy group m (Y, 7,). The
group za( ¥, y,) is trivial if and only if every approximative map of (8", x,)
towards (¥, y,) is null-homotopie.

§ 2. Some shape invariants. A pointed compactum (¥, y,) C (@, %)
is said to be appromimatively n-connected (compare [6], 223) if for every
neighborhoqd ¥ of ¥ there is a neighborhood V. o 0f ¥ such that every map
of the pointed u-sphere (8", a) into (V,, %) is mull homotopic in (T, y,).
A compactum ¥ C Q is said to be approvimatively n-connected if (¥, 1,) is
approximatively #-connected. for every point y, e ¥.

It is clear that the nth fundamental group g X, 4,) of any approxi-
matively n-connected pointed compactum (¥, y,) is trivial. The con-
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verse is not true, because if ¥, is a point of the solenoid of Van Dantzig T,

then the group m(Y,¥,) is trivial, but (¥, 7, is not approximatively

1-connected. Let us observe also that approximative 0-connectedness

is the same as connectedness.

(2.1) TEEOREM. If (Y, y,) 4s approzimatively wn-connected mzd' (1", Yo}
fundamentally dominates (X, ), then (X, ) is approxitnatively
.- connected.

7
fundamental sequences f= {fi, (X, #o), (T, o)}y g = {gr: (T, m0), (X, %)}
such that gf = fx.en- .

Let U be a neighborhood of X. Then there exists a neighborhood
T,CU of X and an index &, such that

(2.2)  gefef(Usy o) = if(Usy ) in (U, a) for every k> F, .
Now we can assign to U; a neighborhood ¥; of X and an index %>k

such that
(2.3) g(V)C U, for every k> ks .

Since (X, %,) is approximatively #-connected, there exists‘ a neighbor-
hood ¥, CV; of ¥ such that every map B: (8", @) (¥, Yo 1SY1mll~homo-
topie in (¥, y,)- We can assign to T, a neighborhood U, C T of X and
an index k; > k, such that

(2.4) (T CVy  for every =Ty .

Consider now a map a: (8%, a)—=>(U,, #,). It follows‘ by (2.4) thimt
fra: (8", a) (Vo ¥o). If we recall the definition of the nelghbor-hood Vo
we infer that the map fro is null-homotopic in (Vy, o). Applying (2.3),
we infer that

@5 - gefra= 0 in (T, ) -

If one recalls that U, C U, and that %>k, one infers by (2.2) that
Gifel( T, #) = if(Uy, @) in (T, @) for every k= k. It follows that

(2.6) grfre~a in (U, ).

Tt suffices to recall the inclusion U, C U in order to obtain from (2.5)

" and (2.6) the homotopy grfra =~ 0 in (U, w,) for every k > k. Thus the

approximative n-connectedness of (X, @) i§ prqved. e

A pointed eompactum (¥, 4,) C (@, %) i3 Si}vld to be appromimatively
contractible if for every neighborhood V of ¥ in the space @ theyn?p
(X, 94e): (T, 90) ~( T, 9) is null-homotopie in (¥, g,). A compactum Q
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iy said to be approvimatively eontractible if ( Y, 9,
contractible for every point y, e ¥.

Let us observe that

is approximatively

(2.7) Approzimative contractibility implies approzimative n-connectedness
Jor every m=0,1, ...

Proof. Let (Y, y,) be an approximatively contractible pointed com-
pactum. Consider an open neighborhood ¥ of ¥. Then there is a homotopy

9 ¥ x0,1> =V
satisfying the conditions

8y, 0=y, 9y, 1) =y, for every point yeT

and
D (Yos 1) = 4o

Since V' is an absolute neighborhood retract for me

exists a neighborhood ¥, of ¥ such that & can be

#: ¥y x 0,1y -V satisfying the conditions:
Py, 0=y, ¥y, )=y, for every point y eV, .

Now, if a is a map of (8%, a) into (V,, %), then setting

for every 0 <t <<1.

tric spaces, there
extended to a homotopy

x(@, 1) =da(®),1) for every (z,1)e 8" x €0,1>,
we get a homotopy y: (8" x<0,13) =V satisfying: the conditions:
2@, 0) =a(@), y(@,1)=y,
x(a, 1) =y,

for every point z e 8",
for every 0 <t<1.

Hence o is null-homotopie in (V, y,). Thus the proof of (2.1) is finished.
Jsing an analogous argument to that used in the proof of Theorem

(2.1), one gets the following

(2.8) THEOREM. If (T, Yo) 8 an approzimatively contractible pointed com-
pactum and if (¥, y,) %(X ) To)y then (X, x,) is approximatively
contractible. )

It follows by Theorems (2.1) and (2.8)
proximative n-connectedness and approxim:
monotonous shape-invariants.

that both properties, ap-
ative contractibility, are

§3. The case of ANR-sets. Let us prove the following

(3.1) TumoREM. If ¥, is a point of a compactum ¥ € ANR, then (¥, 1y,
18 approximatively n-connected if and only if the group (Y, yo) 4
trivial. The approvimative contractibility of (¥ ,v,) is equivalent to
the contractibility of Y in ttself.

icm®
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Proof. We have already observed that the approximative #-con-

impli (¥, yo) is trivial.
nectedness of (¥, y,) implies that z.(Y, y,

On the other hand, let us assume that y,¢ ¥ ¢ ANR and that th.e
group za(Y, o) is trivial. Consider a neighborhood V of ¥. There is
= neighborhood V, of ¥ and a retraction r: V,—¥ such that the' segment
7_1/7(?4])911«35 in V for every point 4 e V,. Now, if f: (8", @) =(Vo, ¥o) is & map,
then setting

g(@, 1) = (L—1)f(@)+t-2f(2)
one gets a homotopy ¢: 8" x<0,1 -V such that

plz, 0) =f(=), o@,1)=71f(2)

for every (z,1) eS8"X (0,1,

for every point x e 8"
and

(2, t) = ¥y, for every 0 <i<<1.

Tt follows that the map f is homotopic in (V,¥,) to the map f': ( 8" 2
(Vs ¥o) given by the formula

f(w) = 1f(2)

Since the values of f' belomg to ¥ and since for ¥ ¢ ANR the g?();lp‘
an(Y, 9,) is isomorphic to the nth homotopy group (Y, yﬂl)l, we yl'n ez)
that f is null-homotopic in (¥, y), whence also in (V, %) Thus (¥, 5,
i imatively #-connected. o

’ &pliﬁ);s:;ngl to they second part of theorem, observe that the f:ontmcmbl}}ljsly
of Y in itself implies that ¥ « AR and consequentl.y (X, y,) is contmlctl de
in itself to ,, hence also approximatively contractible. On thfz ;Ehel}’l 1a§ 1;
it (¥,y,) is approximatively contractible, then for.evefy neighbor ;)ot v
of Y there is a homotopy ¢ contracting ¥ to g, in V. We can se ecf m
so that there is a retraction 7: ¥—¥. Then the formula ?,u(y, t) = ?‘ga(g{% ? vm
every (¥, 1) e Y X <0,1)> defines a homotopy » contracting Y in itself to y,.

for every point e X .

§ 4. Movable compacta. A compactum Y CQ is said to be mo?c
able ([4], p. 137) if for every neighborhood‘ ¥V of ¥ T;heireye;l:r:
a neighborhood ¥, of ¥ such that for every neighborhood d 0 g
is a homotopy ¢: ¥, x 0,15V such that m(y,yO) = ]Tj.\;\rqi{(?./s’etg <
for every point y e V. Itis known ([4], p. 137 avnc.l 140} that a s ‘< e
all plane compacta are movable, and also that if ¥ is movable %

then X is movable. The solenoids of Van Dantzig are examples of not
movable compacta. .

Remark. It is known ([5], p. 226) that if ¥ is a movable c(f)m}?ac;cltllg
and if 4,, yo -arve two points belonging to one comlaqnent 1(3 the’gﬁape
Sh(Y, 4,) = Sh(Y, y). In particular, f(?r movable cgntmu&lt ﬁ-ﬂlmjvs o
Sh(Y, y,) does not depend on the choice of the point ¥e. y
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Theorems (2.1) and (2.8) that in this case the specification of the poing
Yo e ¥ is immaterial for the definitions of the approximative n-cop-
necteduness of a movable continunm ¥ and of its approximative con-
tractibility. In this case we can denote the nth fundament
(Y, yo) shortly by am(¥).

The question arises whether in Theorem (3.1) the hypothesis that
Y ¢ ANR can be replaced by a less restrictive one, namely that Y ig
movable. Let us prove a theorem giving a partial answer to this questim{
First let us prove the following o

al group

(4.1) LEM‘MA. Let (X, 9,) C(Q, 4,) be an approzimatively 1-connected pointed
contm:uum and let ¥ be movable. Then for every neighborhood V of T
there is & neighborhood Vy of ¥ such that for every neighborhood T of ¥

ihero. ?’a:ists a homotopy p: Vyx<0,1> -V satisfying the Jollowing
conditions:

v, 0=y, 9y, )W for every point y cV,,
YW=y, for every 0 <t<1. '

Pf'oof. Since .(Y, %) is approximatively 1-connected, there exists

for a given open ne{ghborhood ¥ of ¥ a neighborhood ¥, CV of ¥ such that

every loop in ¥, with basic point %o is null-homotopic in (V, y,). Since ¥

is mox*a,]?le, there exists a neighborhood Vo CV; of X such that for every
open neighhorhood W C T, of ¥ there is a homotopy

@ Vex<0,1> >V,

such tl.lart (Y, 0) =y and ¢(y,1) e W for every point 4 ¢ V. Since Y is
a contlmmml, we can assume that W is an open connected subset of Q.
One can easily see that there exists a homotopy

P Wx 0,1 =T
such that X LW,
#y,0) =y  for every point yeW,
ey, 1),1) = 9, .
Setting ( 0y 1), ) Yo
'y, 1) = ¢y, 2t) for  yeVyand 0<¢
Py, 1) = ey, 1), 2-20 for yeV, and i<t

;_lf

1
we get & homotopy ¢”: ¥y x <0, 15 =V, su !

. ; 1 such that ¢'(y, 0) = v, ¢'(y,1) e W

for every. point y €V, and ¢'(y,,1) = Yy PROA S 3 ) €

Consider now the closed subset Z of ¥y x<0,1>

AN

2
= Ly
given by the formula

Z = ol > 0 1) < (o
Setting (o x (0)) © ((g) x €0, 1) © (7, x (1)) .

M) =gy, 1) for 0<i<1,
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we get a map of <0, 1) into V; satisfying the condition 4(0) = A(1) = y,.
Hence 4 is a loop in ¥y with y, as its Dasic point. We infer that there is
a homotopy a: <0,1) x<0, 1> =V satisfying the conditions:
a(0,t)=2(), a(l,f)=1y, for every 0 <t<
a(s,0)=a(s,1)=1y, for every 0 <s<1.

It follows that the map ¢'/Z: Z -V, is homotopic in T to the map
@ Z -V, given by the formulas:

Py, 0)=¢(¥,0), 2@, 1) =¢¥,1) for every point yely,
Py, ) =y, for every 0 <t <<1.

(4.2)

Since ¥, as an open subset of @, is an absolute neighborhood retract
(for metric spaces), we infer by the homotopy extension theorem that %
can be extended to a map w: V,x (0,17 . Formulas (4.2) and the
inclusion ¢'(Vy, 1) C W imply that v satisfies all the required conditions.

(4.3) THEOREM. If Y CQ is a movable and approximatively 1-connected
continuum, then for every n > 1 the group m(X) is trivial if and only
if ¥ is approzimatively n-connected.

Proof. Let y, be a point of T. We have already observed that the
approximative # -connectedness of (X, y,) implies that z,(Y, y,) is trivial.
It remains to prove that if (¥, y,) is not approximatively n-connected,
then the group z.(XY, ¥,) is not trivial. In this case there is a neighbor-
hood V of ¥ such that for every neighborhood W of T there exists a map
& (8", a) > (Q, 9y) with values in W which is not null-homotopic in. (¥, g,).
Since ¥ is movable and (Y, %, is approximatively 1-connected, we
infer by Lemma (4.1) that there exists a sequence =V, 2V, 2V, ...
of neighborhoods of Y such that every neighborhood of ¥ contains Va
for almost all » and, moreover, there exists for every n=1,2,..
a homotopy wa: Vu X {0, 1 =V, such that pu(y, 0) =¥, paly, 1) € Vana
for every point ¥ € Vi and ya(y,, ) = 7, for every number 0 < ¢ < 1. Let
£: (8", a)=(Q, y,) be a map with values in ¥ which is not null-homotopie
in (T, 4,). We défine the sequence of maps &, &, ... by induction, setting

Ensa(@) = palbal@), 1) for every point @ e 8™,

Then &: (8 a) (@, 4,) and &= &uyr In Vg for every n=1,2, ...,
but &, is not null-homotopic in V. It follows that
§ = {5117 (Sng a)">(1’" .7/0)}

is an approximative mayp which is not null-homotopic, whence the group
(Y, yo). is not trivial.
Thus the proof of Theorem (4.3) is finished.
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§ 5. A lemma on extension of maps. Now let us prove the f0110w-ing

(5.1) Lmava. Let (X, y,) C(Q, o) be a pointed compacium which is ap-
provimatively n-connected for every n=0,1,2, .. Then, for every
m=20,1,2, ... and for every neighborhood V of X there exists a neighbor-
hood Vi of Y such that if T is a triangulation of a polyhedron P and R
48 o polyhedron which is the union of some simplices of T satisfying
the condition dim(P\R) < m, then every map f: R—V with values
in Vi can be estended to a map of P into V.

Proof. Bince (Y, y,) is approximatively 0-connected, ¥ is a con-
tinuum. It follows that we can assume that V is open in @ and connected,
By the homotopy-extension theorem, we can replace f by any map
homotopic to f. Consequently we can assume that f maps all vertices of
the triangulation 7' belonging to R into ¥,.

If m = 0, then P\R is a finite set of vertices of 7 and we can extend f
onto P assigning to each of those vertices the value 7,. Now let us ag-
sume that our proposition is true for an m. Let P’ denote the union of R
and of all simplices of 7' with dimensions < m. Since (¥, y,) is aPProxi-
matively (m-+1)-connected, there exists a neighborhood V of ¥ such
that every map &: (8%, a)»(ﬁ,yu) is null-homotopic in (V, 4,). By the
hypothesis of induction, there exists a neighborhood ¥/, of ¥ such that
for every polyhedron P with a triangulation T and for every polyhedron B
which is the union of some simplices of T, every map f: BR—V with values
in V', can be extended to a map f of the polyhedron P’ which is the union
of R and of all simplices of T with dimensions < m into V. We can as-
sume also that f'(#) = y, for every vertex z of 7. Now let us assume that
dim (P\R) < m+1. Then P\P' is the union of a finite number of
(m-+1)-dimensional simplices 4 with boundaries 4° lying in P’. For every
such simplex A the restriction f'/4* may be considered as a map of (8%, a),
where a denotes one of the vertices of 7T, into (Y, y,). Since the values
of f” belong to V, we infer that f//4* can be extended to a map of 4 with
values in V. If we apply this procedure to each (m-+1)-dimensional
simplex 4 of T which is not contained in R, we get the required extension
of the map f with values in V.

Thus the proof of Lemma- (5.1) iy finished.

§ 6. FAR-sets. A relation between the notions of approximative
contractibility and approximative »-connectedness on the one hand
and the notion of the fundamental absolute retract on the other hand
is given by the following
(6.1) TEHEOREM. Every FAR-set YCQ s approzimatively, contractible

(hence also appromimatively n-conmected). Every finite- dimensional,

non-empty compactum Y CQ which is approvimatively n-connected

for every m=0,1, .. is an FAR-set.
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Proof. If ¥ ¢ FAR, then Y is a fundamental retract of Q, whence
Y < . Since ¢ is contractible in itself, we infer by (2.8) that ¥ is ap-
pm}z‘dmatively contractible, whence also approximatively «-connected for
every n=10,1,2, ..

In order to prove the second part of Theorem (6.1), we may assume
that there is a natural m such that ¥ is a subset of the m-dimensional
cube Q™ =@ ~ E™. Consider a null-triangulation T of the set Q™ T
(that is, a countable triangulation of the set Q™\ ¥ with the diameters
of simplices converging to zero). Let Vo= @"DV,DV,D.. be a de-

creasing sequence of closed neighborhoods of ¥ in @™ such that ¥ = ]QlV ¥

and that V; is the union of ¥ and of almost all simplices of T for every
E=1,2,..; we say that Vi is a polyhedrical neighborhood of Y. By
Lemma (5.1), there exists a neighborhood Wy of ¥ in @™ such that every
map defined on a subpolyhedron R of a polyhedron P with dim P < m+1,
with values in Wy, can be extended to a map of P with values in V.

Let g, denote the identity map i: @" @™ and let us assume that
for an index % a map

gi: Q" Q"
is already defined, satisfying the conditions:
ge(y) =y  for every point y ¢ ¥ and  gx(Q™)C Wi.

Then there exists a neighborhood W of ¥ (in §™) such that for every
polyhedra P, R as above, each map of R with values in W} can be extended
to a map of P with values in Wg.

Consider now the inclusion map j: ¥ —+Q™ Then j can be extended
t0 & map g’ of a neighborhood U of ¥ (a neighborhood in the space Q™)
with values in W%. Let W be a polyhedrical neighborhood of ¥ contained
in U. Setting '

R=[Q"x(0)]w[Wx(1)]CP=@"x<0,1
and )
@(x,0)= gi(z) for every point x @™,
@(x,1) = g'(x) for every point xe W,
we can extend the map g: R—~Q™ to a map ¢ @™ x{0,1, »>@™ with
values in Wg. It follows that the map gx is homotopie in Vi to the map
grs1: @™ —>Q™ given by the formula

grsa(z) = $(z,1) for every point z<Q™,
that s,
(6.2) Gr ~ gre1  in Vi for every k=1,2, ..
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Moreover, the condition grn(y) =y is for every point y e ¥ satisfiod.

Now let us consider the map p: @-—>Q™ given by the formula,

P(@) = (21, L3y ooy T, 0, ...)  for every point @ = (w, @, ...) Q.
_ Setting
(6.3) ful@) = gup(z) for every point zeQ,
we get a sequence of maps fi: @ —@. In order to finish our proof, it suffices
to show that {f¢, @, ¥} is a fundamental retraction of @ to ¥,

Let U be a neighborhood of ¥ in Q. Then there is an index Ty such
that '

T CU.
Since Vi C Vi, for every k =k, we infer by (6.2) and (6.3) that
So~=frn  in U for every k> k%, .

Hence {fs, @, I} is a fundamental sequence. Moreover, since guy) =y

for every point y € ¥, we infer by (6.3) that also fe(y) = y for every point

¥ e Y. Hence f= {fs, @, Y} is an extension of the fundamental identity

sequence {i, ¥, Y}, that is, f is a fundamental retraction. Thus the proof

of Theorem (6.1) is finished.

(6.4) CorOLLARY. In order that a finite-dimensional continwum Y C Q be
an FAR-sel it is necessary and sufficient that ¥ be movable and ap-

provimatively 1-connected and that all groups ma(Y, y,), where y, € T,
be trivial.

This follows from Theorems (4.3) and (6.1).

(6.5) ProBLEM. Does corollary (6.4) remain true if one cancels the hypothesis
of finite dimension?

§ 7. The shape of FAR-sets. Let us prove the following

(7.1) TrroREM. A compactum Y is an FAR-sel if and only if the shape
Sh(Y) of Y is trivial. :

Proof. First let us show that
(7.2) If Sh{ZX) = Sh(Y) and Sh(X) s trivial, {hen Sh(Y) is trividl.

Proof. We can assume that ¥ containg only one point a. 1f Sh(X)
= Sh(Y), then there exist two fundamental sequences

F={H X, T} and 9= {g, ¥, X}

such that fg is homotopic to the fundamental identity sequence iy.
‘Moreover, we can replace g by any fundamental sequence homotopic
to it, in particular (since ¥ = (), we may assume that gu(y) =« for

icm

©
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i : 7.2), it remains to show that gf ~ ix.

int y € Q. In order to prove (7.2), .
everyﬂlx)jos is yobvious, because gufu(r) = o for every point xeX, whence
ot fundamental sequences ¢ f and ix are both generated by the same
fhe i: (@) —(a), Whence they are homotopic ([1], p. 226). ‘
" Si;lee every set Y CFAR is a fundamental re’?re?et of ¢ and since
n(Q) is trivial, we infer by (7.2) that S-h(Y‘) is trivial. ot
i On the other hand, if the shape of Y is trivial, then for an arbitrarily
electe]:l point o € ¥, there exist two fundamental sequences
E

f={fe, (@), Y} and ¢g= {gx, ¥, (a)}

b that gi(z) = @ for every
o fg iy and ¢f = i, YWe can assume (@ .
e ot _fi’ o e —ﬁBmotopy fg = iy implies that iy 18 homotopie to

: . Then th
point y € ¥. The (g, T, Y} given by the formula

the fundamental sequence g’ =
gr(@) = fula)  for every point 5¢Q.

: , ‘on
Tt follows that {g%, @, ¥} is an extension of ¢'. By the ‘];;mosggty ;Xt:;,il% .
theorem for fundamental sequences ({71, Qp 8; )S‘;fcel ! GII‘S ! fun_g&menml

a fundamental sequence #: ¢->X. I "
ezsfaidt‘iagntcw’ve infer that Y is an FAR-seb and the proof of Theorem (7.1)
T )

is finighed.
-(7.3) COROLLARY. If X ¢FAR and Sh(X) = Sh(X) then Y e FAR.

(1.4) ProBuEM. Is it true that X « FANR and Sh(X) = Sh(Y) implies

that ¥ e FANR? -
tum X CQ is said to be strong

tommon T f X there exists a neighbor-

d W of X there is @ homotopy

§ 8. Strong movability.
movable if for every nelghborhoo;d U o
hood T, of X such that for every neighborhoo

@: Uy x0,1)~»T
"satistying the following conditions:
(8.1) o, 0)=0, ¢@l)eW for every point @< Us,
¢ )
(8.2) plz,1)=a for every point @ e X.

ig movable.
It is clear that every strongly movable compactum 18 M

X < ANR
Exawprus 1. Bvery ANR-set X is strongly movable. In fact, X ¢

traction r: Up—>X
implies that there is a neighborhood Uy C [ O.f X mlljd ; ::V Tit  ices t‘; o
such that all segments 7 (), where @ ¢ Uy, lie in U.
(@, 1) € UgX 0,15,

— 1.7 (2 1—1) e for
(@, 1) = t-r(o)+ ot 83

isfyi 1
in order o obtain a homotopy ¢ satisfying (8
Fundamenta Mathematicae, T. LXVIL
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2, If X is strongly movable, then all Betti numbers Pu(X) of X are
tinite. In fact, if po(X)= co and if U is a neighborhood of X, then for
every neighborhood U, of X there is in X a true n-dimensional cycle
(with rational coefficients) ¥ homologous to zero in U,, but not homo-
logous to zero in X. Then there is a neighborhood W of X such that

(83) y~0  in W.

One can easily see that if a homotopy ¢: T, x<¢0,1> U satisfies
both conditions (8.1) and (8.2), then y = ®(y,1)~0 in the set (U, 1)
lying in W, contrary to (8.3). a

Examples 1 and 2 are both special cases of the following

(8.4) THEOREM. A compactum X C Q is an FANR-set if and only if X is
strongly movable.

Proof. First let us assume that X ¢ FANR. Then there exist a closed
neighborhood ¥V of X (in @) and a fundamental retraction r={rg,V, X}
Consider a neighborhood U of X. Then there exist a neighborhood T,
of X and an index %, such that

15[ Ug215,{U, in U for every k> ko .

Since 74,(#) = o for every point e X, the neighborhood U, may be
selected so that U, CV and that all segments @7y, (), with z ¢ Uy, lie in T.

Tt follows that r,/ U, is homotopic in U with the inclusion map j: U,-U.
Consequently

>(8.5) re[Us=j in U for every &k > ko .

-Now let W be a neighborhood of X. Then (V) C W for almost all E,
and since U, CV, we infer that there is an index k, > k, such that

(8.6) 1e(Ug) CW .
It follows by (8.5) and (8.6) that there exists a homotopy
¢: Uyx<0,1>>0U

such that ¢(z,0) =2 and @(2, 1) = 7 (@) for every point « ¢ X. Since
T(Uy) CW and r,(x) = 2 for every point € X, we infer that conditions
(8.1) and (8.2) are both satistied, whence X is strongly movable.

Now let us assume that X ig strongly movable. Then there exists
a decreasing sequence of closed neighborhoods

Vo=Q2V,2V,D...

©
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of X such that each neighborhood X contains V, for almost all # and,
moreover, there exists for every n=0,1,2,... a homotopy

Pat Vn+1 X <0, 1> —)Vﬂ
such that
(8.7 @ul#,0) =2, @a(®,1)eVyaya for every point = e Vasa
and
(8.8) oa(x,1) = for every point x e X .

Now let us define (by induction) a sequence of maps fi: Vi@ as
follows:
fi#) = @@, 1)  for every point x ¢V, .
Then
fw) =2 for every point we X,

HL(V)CV,.

Let us assume that for an index & > 1 a map fi: ¥ @ is already defined
such that

(8.9) fe(w)=a for every point ze X,
(8.10) TuV1) C Vs
Setting

Jut1(®) = gl fulw), 1]  for every point z eV,

we get a map frei: Vi—->0Q. )

It follows by (8.8) and (8.9) that fi:(x) = & for every pomt;‘ 7 e.X
and, by (8.7) and (8.10), that fr41(V;) C Viys. Moreover, (8.7) implies
that fu(@) = @alfi(z), 0] for every point « eV,. Since the values of g
belong to Vi, we infer that

(8.11) frra=fr in Vi for every k=1, 2, ...

If we recall that ¥, is a closed subset of @, we can extend the map
Jer Vi—>Q to a map 7 @ +Q. Hence 74V, = fi and we infer by (8.11)
and (8.9) that :
15[V vV in Vy for every k=1,2,...

and )
16(w) = &  for every point e X .

Since each neighborhood of X (in @) contains Vk- for almost all %,
we infer that {rg,V,, X} is a fundamental retraction of ?71 to'X.
Thus we have shown that X is a fundamental retract of its neigh-
borhood V,, whenee X is an FANR-set, and the proof of Theorem (8:.4)
is finished. -
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Regulated bases and completions of regular spaces

by
Solomon Leader (New Brunswick, N. J)

0. Introduction. One can construct the completion of a metrie
space from any topological base of open balls knowing only the binary
relation: § € ' on the base B defined to mean § is uniformly interior
to T' with the diameter of S at most half that of 7. Motivated by such
constructions involving a “regulator” S €T we infroduce here the
“abstract regulated base’” and show that it has a representation as a base
of regularly open subsets of a regular Hausdorff space with the regulator
on the base somewhat like a semi-topogenous order [2]. § €T always
implies 8 C T, the weakest regulator.

The representation theorem yields a technique for “completing”
a regular Hausdorif space relative to a base of regularly open subsets
and a regulator on the Dase. Such completions include all Hausdortf
compactifications and local compactifications as well as all metric com-
pletions, but not all completions of uniform spaces.

The concept of abstract regulated base comes under the program
set forth by K. Menger [8]. The compingent algebra of H. de Vries [13]
is a special kind of abstract regulated base. Our representation theorem
subsumes that of de Vries and thereby that of M. H. Stone [11].

Our “end” is a generalization of the concept introduced to eonstruct
compactifications by H. Freudenthal [4] and P.S. Alexandroff [1].
(See [6] and Chapter 21 of [12].)

1. Abstract regulated bases. An absiract regulated base (B, <) consists
of a non-empty set B and a binary relation < on B subject under Defini-
tion 1 to the four axioms A;-A, listed helow.

DerFmnrrioN 1. Given a, b in B we say that a meets b if there exmts 4
in B with both e¢<a and ¢ <b.

A;. If a<b and b <c¢ then a<e.
A,. If ¢<a is equivalent to ¢<b for all ¢ in B then a= 5.
Ay If a<b and ¢ meets every z <) then a<e.’ ’

* Work done under NSF-GP 7539.
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