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may ask is 4% strong enough. The answer ig “no”. The figure above indicates
how to construct a one-to-one continuous plane image of a line which
is semi-locally-connected but not one of the desired curves.

Question: Can 2-aposyndesis be substituted for local connectivity
in Theorem 2% That is, if the one-to-one continuous s-l-c plane image X of
a line has the property that for # in X and y and z in X —u2, there exigty
a closed (rel. X) and connected subset of X —(y-+#) which contains z in
its interior (rel. X), then is X both locally connected and locally compact?
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Maximal chains in atomic Boolean algebras

by
George W. Day (Laramie, Wyoming) *

J. Jakubik [3] has given an example of a Boolean algebra with atoms,
which also has a maximal dense-in-itself chain of elements. The prinecipal
result of this note is a necessary and sufficient condition that a chain
be isomorphic to a maximal chain of an s—-complete atomic Boolean
algebra. (A Boolean algebra is said to be N-complete if it is ~'-complete

“whenever ¥ < 8.) In addition, several examples pertinent to related

questions on Boolean algebras are given. Our notation will follow that
of Dwinger [2].

TEeOREM. In order that the chain C be isomorphic to a maximal chain
in an N"-complete atomic Boolean algebra, it is necessary and sufficient
that O is N"-complete, has a maximal and a minimal element, and has no
complete dense-in-itself interval.

Proof. We need only establish that these conditions are sufficient.
Let B be the Boolean algebra of finite unions of half-open intervals,
[a, b), of C. Then {[0, ¢): ¢ e C} is a maximal chain in B, which we here-
after identify with C. Let S(B) be the Stone space of B, that is, the set
of prime ideals of B with the usual topology. Let P be any set of prime
ideals of B such that

(1) f [a, b] is & dense-in-itself interval of C, then there is an element I
of P such that a+b eI, and

(ii) if I eP, then C ~I has no mawimal elemeni and C—1I has no
minimal element.

Note that since ¢ generates B, no two elements of P have the same
intersection with . Next, let F' be the field of sets generated by finite
subsets of P and open-and-closed sets in §(B). For each weB, let O(x)
be the corresponding open-and-closed set in S(B); that is, let O(#)
={I: I <8(B) and @¢I}. Denoting symmetric difference by @, it is
readily shown that 7 = {S@®O(z): § is & finite subset of P and « e B}.

LevwA. F is atomic.

* Supported by a University of Wyoming Faculty Summer Research Fellowship.
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Proof. The singletons of P and the isolated points of S(B) are atoms
of F. It § is a finite subset of P and # ¢ B, and §—0(z) is not empty,
each singleton of that set is an atom in S@®O(x). If 8—0(x) is empty
and 8®0(z) is not, then § is a finite proper subset of O(x) and for some
non-zero element y of B, we have that O(y) CO(z)—8 = § @O0 (2). There
exist elements ¢ and b of ¢ such that « <b and @ <y. Either [a, b
contains a jump, so that y contains an atom of B and O(y) contains an
isolated point of S(B), or [a, b] is dense-in-itself, so that by property (i)
of P there is an I e P such that @b¢I and I e O(y).

LemmA, If 2 € B and O(x) C P, then x = 0.

Proof. For each ¢ e C other than the maximal element of €, let I(c)
be the unique prime ideal of B whose intersection with € is {y: g ¢
and y < e} The seb {I(c): ce 0 and ¢+ 1} is dense in §(B) and, by
property (i) of P, is disjoint from P.

Levmya, O = {0(c): ¢ e C} is a mawimal chain in F.

Proof. Suppose that for some finite subset § of P and some z ¢ B,
8@®O0(2) is ordered with every element of (. Then, if ¢ ¢ ¢, either 8B 0(=)
C 0(c), 5o that O(G) C 8 and z< ¢ by the preceding lemma; or O(c)
C 8®0(z), so that 0(cz) C S and ¢ < 2. Since C is 2 maximal chain in B,
we thus see that 2 ¢ C, and that SDO(2) is also ordered with O(z).

If 8®0(2)C O(z), then S§CO(2). In this case, if ce ¢ and <z
then O(cz) $ 8, by the preceding lemma; thus, SQO (z) = 0(z)7S¢_ O(c).
Since S®O () is ordered with each element of ¢, it follows that Ofe)
C O(2)—S. Hence, if TeS, then I~ 0= {e: ceC and ¢ < 2}. Hence,
C—1I has a minimal element, and I is not an element of P. Thus, § = 0
and S@®O0(z) e C'. The dual argument similarly disposes of the case in
which 0(2) C S®O(z).

F, then, is an atomic Boolean algebra with a maximal chain (7,
that is isomorphic to . It may be noted in passing that if O is infinite,
then the eardinality of F is the larger of the cardinalities of ¢ and P.
Moreover, since P can be chosen so that its cardinality is no larger than
that of 0, ¢ can be embedded as a maximal chain in an atomic Boolean
algebra of the same cardinality as C.

Levma. O is a mavimal chain in B, the s~-completion of F.

Proof. Suppose that for some b ¢’ there is a partition C; v C,
of ' such that if deC, then d < b, and if d e C,, then b < d. Tf ¢, has
a maximal element, 0(c) for some ¢ e ¢, then since F is dense in F', there
is an element @ of 7 such that 0 < & < 0(c)b. Since a is a subset of every
element of C, and is disjoint from every element of (., which contains
& maximal element, a can contain no singleton from P; thus we may
assume that there are elements » and y in C such that z < y and 0(zy)
< 0(c)d. Since no elements of ¢’ lie in the open interval between O(c)

Mazimal chains in atomic Boolean algebras 295

and b, we can conelude that ¢ = ¢ and O(y) = b, contrary to the definition
of b. Hence, €, has no maximal element, and by similar argument, €, has
no minimal element. It follows that both C; and ¢, are wx~-complete.

Consider now the ideal J of ¥ defined by J = {#: < e-+d for some
¢ e C; and d € G,}. This ideal is readily seen to he NT-complete; thus J wJ
is an s"-regular subalgebra of F' that contains ¢’ but not b. J w J will
also contain every P-singleton unless 7 € P, where I is the prime ideal
of B for which I ~ C corresponds to ¢ through the natural correspondence
between ¢ and (.

Suppose that I eP; letting a = {I}, we see that a¢J v J. Let F"
= {#: 2eF’ and for some yeJ v J, Ty <a< a-+y}. Then F” is an
N"-complete, 8T-regular subalgebra of F', and since a € B’ and J w J CF",
it follows that F" = F'. Consequently, for some element b’ of J uld,
either b =ab’ or b= a-+b". Thus, b’ = @b or b’ = a-+b; in either case,
we find that if de ¢, then d <} and if de C, then b < d. From the
definition of J, b’ must be a maximal element of ¢, or a minimal element
of (€, contrary to the hypothesis that I e P.

We now see that F and all P-singletons are contained in J v J- ; thus,
J v J=F. Hence, beJ wJ, which contradiets our original assumption
on b. We conclude that €' is a maximal chain in F*.

Since F" is an s~-complete atomic Boolean algebra, this result
completes the proof of our theorem.

We close with a few examples relevant to some questions about
maximal chains in Boolean algebras.

Exawpre. It is well known that every countable atomless Boolean
algebra is isomorphic to the free Boolean algebra on countably many
generators, and that this algebra is generated by a chain isomorphie to
the [0, 1] rational number chain. A special case of the above procedure
yields a countable atomic Boolean algebra with a maximal chain that is
isomorphiec to that chain.

Exawrrm. To generalize the theorem, one might seek to answer the
question, “Under what conditions on a distributive lattice D can D De
embedded in an atomic Boolean algebra B so that each maximal chain
of D is also maximal in B?*’ Of course, every finite distributive lattice
can be so embedded. Consider, on the other hand, D = {(rys): r and s
are rational numbers, re[0, 1], se[, 1] and 7 = s}, with the ordering
“ry8) << (8, u) iff r <t and s < w”. Yt-is easily verified that D is a distrib-
utive lattice with maximal chain € = {(r, 3):7 [0, £)} © {(}, 8):5 € (}, 1T}
moreover, in any lattice-embedding of D in a Boolean algebra B, the
B-complement; of the element (0, 1) of D is ordered with. every element of €.

Exavern. One may also ask to what extent the maximal chains of
a Boolean algebra characterize the structure of the algebra. Several
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obvious remarks may be made: a Boolean algebra is atomless if and ounly
if every maximal chain of it is dense-in-itself; a Boolean algebra is
s~-complete if and only if every maximal chain in it is N complete;
@ Boolean algebra is superatomie (see [1]) if and only if no maximal chain
in it has a dense-in-itself subchain. Nevertheless, the order types of the
maximal chains of a Boolean algebra together with the cardinal number
of maximal chains of each order type does not completely determine the
structure of the algebra: letting & be any cardinal that ig the limit of
a strictly inereasing w-sequence of infinite cardinals, so that s < %, if
is easily shown that if B and B’ are the Boolean algebras of finite and
cofinite subsets of sets of cardinalities s and 8%, respectively, then both B
and B’ will have maximal chains only of type w- w*, and both will have
exactly 8% of these. :

ExawpLE. J. Jakubik, in [3], has constructed Boolean algebras
having maximal chains of varying length. A method of construction
alternate to that presented there is indicated by the following observation:
if {Ba: @ € A} is a set of atomless Boolean algebras, and B is their Boolean
product, and ¢ is a maximal chain in B, for some g e 4, then ¢ is a maximal
chain in B.
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On smooth dendroids

by
J. J. Charatonik and Carl Eberhart (Lexington, Ky.)

§ 1. Introduction. Investigating fans, especially very simple ones,
called smooth (see [7], p. 7 and [9]) we have observed that the
notion of smoothness of fans can be easily extended to smoothness of
dendroids. Smooth dendroids ave very close to some partially ordered
spaces, called generalized trees, which were studied by Ward (see [16],
D. 801). He assumed that the considered space is Hausdorff but not
necessarily metrizable, and defined a generalized tree as a hereditarily
unicoherent continuum which admits a closed, order-dense partial order
with unique minimal element. Koeh and Krule in [11], p. 679 have re-
placed the condition “order-dense” by the weaker one, “monotone”,
and have proved (op. cit. p. 680) the following

THEOREM 1. (Koch and Krule). Let X be a hereditarily unicoherent
continuum, and let p e X. The following are equivalent:

(1) <p is a monotone, closed partial order on X;

(2) there emists a monotone, closed partial order < on X with unique
minimal element p;

(8) X is arcwise connected, and for every net {2} in X 4t is true that
PT,=>pT if B>, )

If further (1), (2) or (3) holds, then X is locally connected at p.

The weak cut point order on X with respect to p, <p, is defined
by @ <py if and only if # e py, where py denotes the intersection of all
subeontinua of X containing p and y (see e.g. [11], p. 680). If X is a den-
droid, then <, is a partial order.

This paper contains investigations of smooth dendroids, i.e. metric
generalized trees in sense (8) of above Theorem. Some of our theorems
are generalizations of known theorems concerning fans, contained in [7].

§ 2. Definitions and preliminary properties. All continua. considered
in this paper are metrie, provided the opposite is not said. The dis-
tance from z to y will be denoted by d(z, ). A dendroid is a heredi-
tarily unicoherent and arcwise connected continmum. Tt follows that it
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