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obvious remarks may be made: a Boolean algebra is atomless if and ounly
if every maximal chain of it is dense-in-itself; a Boolean algebra is
s~-complete if and only if every maximal chain in it is N complete;
@ Boolean algebra is superatomie (see [1]) if and only if no maximal chain
in it has a dense-in-itself subchain. Nevertheless, the order types of the
maximal chains of a Boolean algebra together with the cardinal number
of maximal chains of each order type does not completely determine the
structure of the algebra: letting & be any cardinal that ig the limit of
a strictly inereasing w-sequence of infinite cardinals, so that s < %, if
is easily shown that if B and B’ are the Boolean algebras of finite and
cofinite subsets of sets of cardinalities s and 8%, respectively, then both B
and B’ will have maximal chains only of type w- w*, and both will have
exactly 8% of these. :

ExawpLE. J. Jakubik, in [3], has constructed Boolean algebras
having maximal chains of varying length. A method of construction
alternate to that presented there is indicated by the following observation:
if {Ba: @ € A} is a set of atomless Boolean algebras, and B is their Boolean
product, and ¢ is a maximal chain in B, for some g e 4, then ¢ is a maximal
chain in B.
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On smooth dendroids

by
J. J. Charatonik and Carl Eberhart (Lexington, Ky.)

§ 1. Introduction. Investigating fans, especially very simple ones,
called smooth (see [7], p. 7 and [9]) we have observed that the
notion of smoothness of fans can be easily extended to smoothness of
dendroids. Smooth dendroids ave very close to some partially ordered
spaces, called generalized trees, which were studied by Ward (see [16],
D. 801). He assumed that the considered space is Hausdorff but not
necessarily metrizable, and defined a generalized tree as a hereditarily
unicoherent continuum which admits a closed, order-dense partial order
with unique minimal element. Koeh and Krule in [11], p. 679 have re-
placed the condition “order-dense” by the weaker one, “monotone”,
and have proved (op. cit. p. 680) the following

THEOREM 1. (Koch and Krule). Let X be a hereditarily unicoherent
continuum, and let p e X. The following are equivalent:

(1) <p is a monotone, closed partial order on X;

(2) there emists a monotone, closed partial order < on X with unique
minimal element p;

(8) X is arcwise connected, and for every net {2} in X 4t is true that
PT,=>pT if B>, )

If further (1), (2) or (3) holds, then X is locally connected at p.

The weak cut point order on X with respect to p, <p, is defined
by @ <py if and only if # e py, where py denotes the intersection of all
subeontinua of X containing p and y (see e.g. [11], p. 680). If X is a den-
droid, then <, is a partial order.

This paper contains investigations of smooth dendroids, i.e. metric
generalized trees in sense (8) of above Theorem. Some of our theorems
are generalizations of known theorems concerning fans, contained in [7].

§ 2. Definitions and preliminary properties. All continua. considered
in this paper are metrie, provided the opposite is not said. The dis-
tance from z to y will be denoted by d(z, ). A dendroid is a heredi-
tarily unicoherent and arcwise connected continmum. Tt follows that it
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must be hereditarily decomposable ([4], (47), p. 239), thus 1-dimensional
(loco cit., (48)). If a dendroid has only one ramification point ¢ (op. cit.,
p. 230), it is called a fan with the top ¢ (see [7], p. 6). A fan X with the
top ¢ is said to be smooth provided that if a sequence of points a, of X
tends to a limib point @, then the sequence of arcs ta, is convergent and
Lim ta, = fa. Generalizing this notion, admit the following

N0

DerFiNiioN. A dendroid X is said to be smooth if there exists a point
p e X, called an initial point of X, such that for every convergent sequence
of points a, of X the condition

(2.1) lim ay = a
N-+c0
implies that
(2.2)  the sequence of arcs pay is convergent
and
(2.3) Lim pay, = pa .
Nn~>00

The set of all points p of X each of them can be taken as an initial
point of X will be called the initial set of X.

Further, the notion of generalized tree will be used in the sense
of [11], i.e. as & Hausdorff (not necessarily metric) hereditarily unicoherent
continuum which admit a monotone, closed partial order with unique
minimal element.

The following corollaries can be drawn from the above definitions.

CoROLLARY 1. If the space is metrie, then the notion of smooth dendroid
and of generalized tree coincide.

In fact, it follows from definitions of smooth dendroid and of gener-
alized tree by Theorem 1.

CorROLLARY 2. Hvery smooth fan X is a smooth dendroid.
Namely the top of X can be taken as an initial point of X.
CoROLLARY 3. No non-smooth fan is a smooth dendroid.

In other words, if a dendroid is smooth and if it is a fan, then it is
2 smooth fan. Indeed, let X e a smooth dendroid with an initial point p,
and suppose X to be a fan with the top #. If p = ¢, then X is a smooth
fan by definition. If p 5 ¢, take a convergent sequence of points a, of X
for which (2.1) holds. If all points a,, for sufficiently great =, lie in the
same arc starting from ¢, then Lim ta, = ta trivially. If not, we have

. N0
Pan = Pt lan, and since (2.3) holds, hence we conclude that Lim ta, = ta.
00

COROLLARY 4. Hvery dendrite X is a smooth dendroid. The initial sei

of X is equal o the whole X,
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For every dendrite is a dendroid (see [4], p. 239). Conditions (2.2)
and (2.3) follow from (2.1) for an arbitrary point p ¢ X by the local con-
nectedness of X.

COROLLARY 5. If a dendroid X is smooth and if the initial set of X is
equal to the whole X, then X is a dendrite.

For every initial point of X is a point of the local connectedness
of X by Theorem 1.

COROLLARY 6. If a dendroid X is swmooth, then every subdendroid of X
is also smooth (the heredity of smoothness for dendroids).

In fact, let a dendroid X with an initial point p be smooth, and
let ¥ be a subcontinuum of X. Thus Y is a dendroid (see [4], (49), p. 240).
If p € Y, then p is an initial point of I too. If p « X\ Y, then take an
arbitrary point y e Y, since X is hereditarily unicoherent, py n ¥ is
a continuum, thus it is an arc (or a-point) as a subcontinunm of the
arepy. Let p’ be an end point of this arc which is different from y (if
py ~ Y is a point, we put p’ = y). Let {a,} be a sequence of points of ¥
for which (2.1) holds. Thus we have pay = pp' v p'an for n=1,2, ..,
and pa = pp’ v p'a, whence we conclude tliat the sequence of arcsp’en
is convergent and Lim p'a, = p'a by (2.2) and (2.3).

Nn—00

§ 3. The initial set. Let N(X) be the set of points of X at which
X is not locally connected.

THREOREM 2. If X 48 a smooth dendroid with an initial point p, then
the constituent of the set X\N(X) containing p is the initial set of X.

Proof. Let P be the initial set of X. Thus P C X\N(X) by Theo-
rem 1. Denote by C the constituent of the set X\N (X) which contains p.
To prove P C ( take a point g e P and a point a € pg. For an arbitrary
convergent sequence of points a, satisfying (2.1) we have

(3.1) Lim pan, = pa
and
(3.2) Lim ga, = qa

since p and ¢ are initial points. Further

aa, C pa v pay

whence
' Ls aa, Cpa v Ls pay
N—>00 N—>00
ie.
(3.3) Ls aa, C pa

N-+00

by (3.1). Similarly
aay C qo v qay
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whence
Ls aa, C qa v Ls qay
. N~>00 N—>00
ie.
(3.4) Ls aa, C ga
n—>00

by (3.2). Thus we conclude from (3.3) and (3.4) that
Ls aa, Cpa ~ qa

n—>00

le.
Ls aar = a
n—oo
since @ e pg. It implies that X is locally avewise connected at a, which
shows P C (.
To prove ¢ CP take a point ¢eC and a convergent sequence of

points a, with the limit «. Thus (2.2) and (2.3) holds. Define points b,
and b by

n

{3.5) Pha=pgpe, and  pb= pq~ pa.
S0, we have

(3.6) Qty = qby, U bya, and ge = gb v ba .

Since b e pg C C, hence b is a point of local arcwise connectedness of X.
It follows that

(3.7) limb, =5,
N~>00

Indeed, let ¢ be a positive number and let U be an e-neighborhood
of b such that every point of U can be joined with b by an arc lying
entirely in U. Since b« pa = Lim pa, by (3.5) and (2.3), all ares ;ba,,,
byj a finite number, intersect U. Points of the sets pay, ~ U can be joined
with b by ares contained in U, we see that b,e U by the definition (3.5)
of b,, which proves (3.7). It implies that

(3.8) Lim ¢by, = gb .
n—~o
To prove
(3.9) Lim apb, = ab

cbserve that ab C 1i a,b, C Ls anbn by Corollary 1 in [7], p. 7 ; S0 we
n—>00
should prove e

(3.10) L8 anb, Cab.
Obviously ﬂl_ﬁo by C LS pay = pa = pb U ba. But pb C pg, whence

n—>c0

we conclude that every point e pb\b is a point of local arcwise con-
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nectedness of X, so o small neighborhood of » can intersects only a finite
number of ares azby. Thereby (3.10) follows, which proves (3.9). Bqualities
(3.8) and (3.9) give immediately Lim ga, = ga, thus g P.

N—>00

CorOLLARY 7. The initial set of @ smooth dendroid is arcwise connected.

CoRroLLARY 8. If the initial set P of a smooth dendroid X is closed,
then P is a dendrite.

Indeed, if P is closed, then it is a continuom by Corollary 7, thus
it is a dendroid as a subcontinuum of X (see [4], (49), p. 240). But if p < P,
then X is locally connected at p by Theorem 1. Hence P must be locally
connected at p, which implies that P is a dendrite.

COROLLARY 9. If a fan X is smooth, then the initial set of X is equal
{v the constituent of the set X\N(X) containing the top of X.

§4. The T-relation on dendroids. YWe recall here the relation of
nonaposyndeticity of F. B. Jones (see [10], p. 404) and use it to
characterize the smooth dendroids among all dendroids.

Let X be a continuum. For points # and y of X define Ty if and
only if every subcontinuum of X which contains y in its interior also
containg @ Put

T, = {y| «Ty}.

The following theorem is a well-known result (see [8], p. 115).

TaEOREM 3. The velation T is closed, and the set Ty is a continuum
for every x e X. )

Recall that a closed quasi order on X is a transitive, reflexive re-
lation < whose graph is closed in X xX. If < is a closed quasi order
on X and 4 iz a subset of X, then the set L(4)= {z| 2 < a for some
a e A} is said to be the lower set of A. It is easily seen that the lower
set of a closed set is closed, and that X contains elements which are
minimal relative to <; that is, there exists-an element p in X such that
if » < p, then p < .

The next theorem gives a useful relation between the 7'-relation
on X and certain closed quasi-orders on X.

TEEOREM 4. If < is a closed quasi-order on X such that
(41)  L(x) is connected for each z e X,
and
(£.2)  p and q are minimal elements of X implies that p < q and ¢ < p,
then © <y for each xz eX and each y € Ts.

Proof. Suppose # < 9. Then there exists an open set U about ¢ such
that for each point a ¢ U we have # <t a. Now L(U) is a closed set con-
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taining y in its interior. Further, » ¢ X\L(T). To see that L(T) is connected,
take points @ and b in L(U). The sets L(a) and L(b) are connected by (4.1)
closed, and they contain minimal elements p and ¢ respectively. Since
P < g Dby (£2) and L(g) is connected by (4.1), we have L(a) v L(q) v L(b)
Is 2 connected set containing @ and b and lying in L(T). Thus (D) is
connected. So y e X\T,; and the proof is finished.

The next theorem contains a partial converse to the previous theorem,

THEOREM 3. Let X be o dendroid and p ¢ X. Then D 18 an wnitial point
of X if and only if

(4.3) prnle=w for all xeX .

Proof. If p is an initial point of X, then <p is & closed partial order
of X with connected lower sets and unique minimal element. Hence by
the previous theorem # < 4 for each 4 e T,. Thus z e py for each y e Ty,
therefore condition (4.3) is satisfied.

Conversely, suppose (4.3) lLolds and =z <p¥. Then y e X\T, and
hence there is a continuum K containing ¢ in its interior which fails to
contain ¢. Let K’ = I u yp. Note that K’ is a continuum containing y in
its interior which fails to contain . Hence V — (ANE') xInt K is an
open set in X x.X which contains (x,y). Let (2, w) e V. If 2 <, w, then
2 € pw. But pw C K'; henee z e K'. This is a contradiction and we conclude
that ¢ <t w for all (2, w) « V. Hence <p is closed, that is, p is an initial
point of X. )

We remark that there ave easily constructed examples of non-closed
partial orders on the circle with connected lower sets and unique minimal
elements. For loeally connected continua the T-relation is trivial (T, = »
for all #) and hence the condition that = <y for all y e T\ is not sufficient
to guarantee that < is closed in general.

Observe that if the equality T,— x holds for all points # of a con-
tinuum X, then X is locally connected. Thus

(.4} A dendroid X is a dendrite if and only if To=x for all zcX.
The next theorem also characterizes smooth dendroids in terms
of T, sets.
TaroREM 6. A dendroid X has an initial point (i.e. X is smooth) if
and only if
(4.5} for each %,y €X either vy ~ Tp=m or xy ~Ty=y.

Proof. Firstly suppose the dendroid X has an initial point p. Let x
and y be points of X and admit @y ~ Tz # «. Then since 7T, is a continuum
and X is hereditarily unicoherent, the intersection xy ~ Ty is an arc w2
where 2 = 2. By Theorem 5 we have P2~ Tp= . Hence px n gy = z;
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in other words py = ps v ay. By Theorem 5 again, py n Ty=y and
therefore oy ~ Ty =y, thus (4.5) is satisfied.
Secondly suppose (4.5) is true. Let

N={2eX| T, 2a}.

Assume N 5 @, for otherwise X is a dendrite by (4.4) and each
point of X is an initial point. Define a relation < on N by & <y if and
only if 4y ~ Tx # & or 2 = y. We claim that < is a partial order on N,

Suppose # <y and y < 2. If & £ y, then 2y ~ T, 5= 2 and oy~ Tysy
which contradicts (4.5). Hence < is antisymmetric. Suppose # <y and
y <2 Assume @ # y 5= 2. Then ay ~ T, + 2 and yz N Ty+#y. Since T,
is a continuum and X is hereditarily unicoherent, yz ~ Ty is an arve yt
where 7 y. Since ay ~Tya and (4.5) holds, xy Ty=19y. Hence
@y N~ yz=1y; in other words, 2z = a2y v y2. Now 2z ~ T,D 2y ~ Ty 2.
Thus ¢ < 2z and < is transitive.

Choose a maximal chain C in N. Consider two cages:

Case 1. O has a minimum element p. We claim that p is an initial
point of X. Suppose xeX and px ~ T, 2. Then x <p and x# p,
which contradicts the maximality of ¢. Hence px ~ T, = g for all © ¢ X
and 80 p is an initial point of X by Theorem 5.

Case 2. ¢/ has no minimum element. Then ¢/ is a set directed by <
(i.e. for each # and ¥ in C there is z in ¢ which is less than both # and y).
Let p be a cluster point of the net ¢. We claim that p is an initial point
of X. Choose a sequence of points a; in ' 5o that a4, < a; and p= 111;1 a;.

i
It follows from the proof of tramsitivity of < that a;@sq, ~ Qip1@ite = Qi1
for all ¢=1,2,... Thus
n-—1
Ay Gy = iq (ST 228

for each n. By a result of Borsuk (see [1], Lemma, p. 18) |J ayay is an

n=1
are, and since p is the limit point of a,, we have that a:y; e a;p for each 4.
Suppose there exists a point # ¢ X such that P Ty o Hayp ~pe#p,
then a, ¢ px for some n. But this is impossible since we would then have
@ O Ty % and an® N T, 5 ay contrary to (4.5). Hence e,z = a,p w pa.
But then # < a, for each aqe C, a contradiction. Thus (4.3) holds and
80 p is an initial point of X by Theorem 5.

§ 5. Countably generated dendroids and semi-smoothness. A dendroid X
15 countably generated provided X is irreducible about a countable closed
subset 4 of X. If the set A has n cluster points, where n is either
finite or countably infinite, then X is called #-countably gemerated. For
example, a harmonic fan is 1-countably generated, a dendroid composed
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of two harmonic fans joined at their tops is 2-countably generated, while
a Cantor fan is not countably generated at all.

Let ¥ be a subeontinuum of a continuum X. Denote by TxY) the
set of all points y ¢ ¥ such that if K is a subcontinuum of ¥ containing y
in its ¥-interior, then » ¢ K.

Lenma 1. Let w.and y be points of a dendroid X with Y e T\(x). There
is a 1-countably generated subdendroid V of X containing @ and y so that
yeTY).

Proof. Let U, be the (1/n)-neighbourhood of y and let K, be the
subcontinuum of X irreducible about U,. Note that Ky = m-_ya] ae Uyl
and that # ¢ K. Hence there is a point y, € U, such that A(YYn, ) < 1fn.
Let T Dbe the subeontinnum of X irveducible about the set of points
Ys Y1y Y2y ... Then ¥ is l-countably generated since lim y, = y. Further

oo

el since T= {Jyy, and d(yy,, @) < 1/n. Now suppose that O ig
n=1

& continwum in ¥ containing y in its Y-interior. Then ¢ containg all
but a finite number of the points Yn, hence all but a finite number of
arcs yyn. We conclude that z e ¢. Thus Yy e Ty(X).

THEOREM 7. 4 dendroid X is smooth if and only if every 2-countably
generated subdendroid of X is smooth.

Proof. Sinee smoothness is hereditary one way is clear. Suppose X
is not smooth. Then by Theorem 6 there exist two points » and y in X
with oy mn Tos£ 2 and #y ~Tysty. Choose &' e (zy ~ T2)\(#) and
Y e(zy n Ty\(y). By Lemma 1 there are 1-countably generated sub-
dendroids ¥; and Y, of X containing #, #' and y, y' respectively so that
e To{T7) and y' e Ty(¥y). Pub Y= T, u 2y Y, So Y is a gsub-
dendroid of X. Denote by A;, where =1 or 2, a countable set which
generates Yy (i.e. such that ¥ is irreducible aboub 44). Then 4, v {x, Yy}
v 4, gencrates ¥, hence T ig 2-countably generated. If € is a continuum
in ¥ containing ' in its Y-interior, then ¢ ~ ¥, is a continuum in I
containing ' in itg Y;-interior; hence #’ e To(Y). Similarly ' e Ty(Y).
Sinee points #” and y’ lie in the are @y, we conclude that neither zy ~ T4(Y)
is @ nor my ~ Ty(Y) is Y. Thus ¥ is not smooth by Theorem 6, which
finishes the proof.

On the basis of the last theorem one might BHe tempted to think
that the property of not being smooth is finite in the clags of dendroids
in the sense that there is a finite set of 2- countably generated non-smooth
dendroids such that a.dendroid X is not smooth if and only if it contains
& copy of & member of this set. To state this notion more precisely, let +
be & class of spaces and let 7 be a property. Call & finite in the class 4
provided there is a finite sef F of members of & such that a member X
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of & has property 7 if and only if X containg a homeomorphic copy of
some member of ¥. For example, a result of Kuratowski (see [13], Theo-
rem A, p. 278) can be restated as: the property of not being embeddable
in the plane is finite in the class of local dendrites.

THEOREM 8. The property of not being smooth is qot finite in the class
of dendroids.

UV

2 A
Fig. 1

Proof. Let D, be the 1-countably generated dendroid illustrated
in the figure 1. In general let D, denote the 1-countably generated
dendroid which looks like D, except that i has n44 arcs erected above
it instead of ¢ ares. We observe that D, is non-smooth and that each
non-smooth subdendroid of D, must contain some Dy and

(5.1) if Dy C Dy, then m>=mn.

Further, we observe that D, is homeomorphic with D, if and only
if n=m.

Now suppose F = {F,, F,, ..., F;} is a set of dendroids such that
a dendroid X is non-smooth if and only if X contains a copy of some
member of F.

Take an arbitrary D,. Since it is non-smooth, D, confains a copy
of some member of F, say Fi: :
(5.2) F;CD,.

Let § be a subset of & such that F; e 5 if and only if there egists
& natural # such that #; C Dy. As a subset of ¥, &' is a finite set. Since
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every member F; of 5 is a non-smooth subdendroid of some Dj, it must
contain some Dn. Let us assign to every Fj; a natural m; defined by

(5.3) m; = inf{m| Dm CFi}.

So we have a correspondence from the set ¥ to the set of all such
naturals mi. Thus the last mentioned set must be finite.

But it follows from (5.3) in particular, that Dy, CFy, which leads
to m:>=n by (3.2) and (5.1). So we conclude that for every natural
there exists some m; such that m; > n. Hence the set of all such m; is
infinite, a contradiction. R

Define a dendroid X to be semismooth provided there exists in X
a point p such that whenever a, converges to g, then Ls pas is an ave.

N0
It is readily seen that smooth dendroids are semismooth; it can also be
seen that none of the dendroids Dy, is semismooth. As an example of
non-semismooth fan we can take the non-planar fan constructed by
Borsuk in [2].

It is known that every smooth fan can be embedded into the Cantor
fan, thus into the plane (it follows from [7], Theorem 9, p. 27 and [9],
Corollary 4). So the question can be posed whether every semismooth
fan is imbeddable in the plane. The answer is negative. Namely take in
the plane a Cartesian rectangular coordinate system with a point p (0, 0)
as the origin and consider points @ = (—1, 0), ¢ = (1, 0), an = (—— (n—+1)/n,
~1/n), by = (—(n-+1)/n, 1/n) and ¢x = (1, 1/n). Thus we have a = lim a,

n—>00

= lim b, as well as ¢ = lim ¢,. Joining & and ¢, p and @, a, and ba, b,
Ni~>00 Nn—>000

and ¢, by straight segments we obtain a sequence of polygonal lines pe,
with the limit segment ac. So

X=uacv |J pon
n=1

is a semismooth planar fan. Observe that the point & is not accessible
by an are, i.e. there exist no arc in the plane which has only the point a in
common with X, even if we replace X by an arbitrary its homeomorphie
image in the plane. Thus adding an arc ab to X with property ab n X = (a)
we shall have a non-planar dendroid ab v« X being a semismooth fan.

The next natural question concerning the possibility of the embedding
of some dendroids into the plane is whether every smooth dendroid is
imbeddable in the plane. The answer to thiz question is also negative.
To show this, take in the plane a system of polar coordinates r, ¢ with
the pole at a point p, and consider points @ = (2, 0), @, = (2, —are tan 1/n),
bn= (1/n,0), &n = (1/n, 3=2). Join points « and p as well as a, and ¢
by straight segments, and points b, and ¢, by arcs consisting of all points
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(7, @), where r = 1/n and 0 < ¢ < 3n/2. The dendroid ¥ obtained in such
a way, namely

o
Y=ypav aub,
n=1

is smooth and has p as an initial point. As previously, p is not accessible.
Thus pg v ¥, where pq is an arc such that pg ~ ¥ = (p), is a smooth,
non-planar dendroid.

Another example of a smooth, non-planar dendroid ean be obtained
in the same form pq v ¥ by taking the Cantorian swastika (see [12], p. 1)
with the only initial point p, as ¥.

The following figures (see Fig. 2) are some of the simplest possible
non-smooth semismooth dendroids.

The question which remains unanswered is whether the property
of non-smoothness is finite in the class of semismooth dendroids; in
particular does the set F of the nine dendroids in Fig. 2 demonstrate
the finiteness?

‘We remark that one can also ask whether nonimbeddability in the
plane is finite in the class of dendroids (smooth dendroids, semismooth
fans or semismooth dendroids).

§ 6. Images of smooth dendroids. In this section we investigate various
kinds of mappings on dendroids with the aim of finding out the extent
to which smoothness is an invariant of these mappings.

Firgt we prove two known results about monotone mappings.

ProrosITION 1. If f is a monotone mapping from a hereditarily uni-
cohereni continuum X into a space X, then the restriction of f to any sub-
continuum of X is also monotone.

Indeed, if K is a subcontinuum of X, then (fiH) '(4)=Ff"'(y) n K
is a continunm by hereditary unicoherence of X.

ProrosITION 2. If f is a monotone mapping from a dendroid X onio
a Hausdorff space ¥, then Y is a dendroid, and if ©,y e X, then f(ay)
= (@) f(y).

Proof. Y is a metric continuum since it is the Hausdorff image of
2 metric continuum. Thus Y is a dendroid (see [6], Corollary 2, p. 219).
The final assertion is a special case (using Proposition 1) of a theorem
(see [4], § 43, II, 3, p. 133) that the monotone image of a continuum
irreducible between x and ¥ is a continuum irreducible between f(x)
and f(y).

Through out the remainder of the section X and Y are dendroids
and f is a continuous mapping from X into ¥.

PROPOSITION 3. f is monotone if and only if flzy) = f(@)f(y).
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Proof. One way follows immediately from Proposition 2. Suppose
fay) =f@)f(y) for all 2,yeX. Let z¢T and 2,y ef#). Then
F@)f() = (2). But oy CF(f(ay)) = £ {f(@)f (1)) = £ (z). Hence e is
connected and so f is monotone.

DEFINITION. Let pe X. A mapping f will be called order-preserving
with respeet to p (or simply <p-preserving) if and only if @ <p ¥ implies
(@) < f(y).

PROPOSITION . The following are equivalent:

(i) f(p2) = f(p)f (@) for each u e X,
(i) f is <p preserving,

(it}) flpz is monolone for each x e X.

Proof. (i) implies (ii). Suppose # <, 4. Then « e py- Hence f(x) « f(py)
=F(2)f(y), s0 fl&) <y F(y).

(ii) implies (iii). Stuppose ¢, epa with sepw and f(z)= f(w). If
leow, then z<pt<pw. Hence [(z)<yy @) <qon f(w). o flz) = 1(1)
= f(w) and flpz is monotone.

(iif) implies (i). It follows from a theorem of Kuratowski, cited
above in the proof of Proposition 2. .

Note that f is monotone if and only if f is <p-preserving for all ped.

THEOREM 9. If f is <p-preserving mapping of X onto Y and p is an
initial point of X, then f(p) is an initial point of T

Proof. Bince p is an initial point of X’ , we have that the graph of <,
iy closed in X xX. To show that J(p) is an initial point of ¥, it suffices
to prove that for each g e ¥ we have T, ~ gf(p) = ¢ (see Theorem 3).
So suppose that zegf(p) with ¢+ 2 Then ge T\zf(p). Let Q=1"q)
and Z = f~'(z). Note that Q and Z ave compact subsets of X with the
property that (@ xZ)~ (graph <) =0 (if (2,4)eQ xZ and x <zp ¥,
then g = f(#) <up) f(y) = 2). Hence there are open sets U and ¥V in X
such that @ x ZC UxV and (T x V) ~ (graph <,) = 0. Let K = {z ¢ X
# <p v for some v ¢ V}. K is easily seen to be a continuum containing Z
in its interior and eontaining no peint of Q. Therefore FH) is a continuum
containing # in its inferior and such that ¢ e Y\f(K). Hence z ¢ T\T,.
Thus Tq ~ gf(p) = ¢, so f(p) is an initial point of ¥.

As a consequence of Proposition 3 and Theorem 9 we have

CoroLLARY 10. If f 48 a monotone mapping of a smooth dendroid X
onto X, then Y is o smooth dendroid and f(P)C P', where P and P’ denote
the initial sets of X and ¥ respectively.

Remark. Examples show that “confluent” may not be substituted
for “monotone” in Corollary 10. Namely let (z,y) denotes a point with
rectangular coordinates in the plane. Join points (—1,0), (1,0) and
(1,%/n) with the origin (0,0) by straight segments. The continuum
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obtained is a smooth fan having (-1, 0) as an initial point. The mapping f
defined by f(x,y) = (=], y) takes (=1, 0) to (1, 0), a point of non-loeal
connectedness of the image.

However we have no example to show that a confluent image of
a smooth dendroid need not be smooth.

Now we show that every smooth dendroid ecan be obtained as the
image of the Cantor fan F¢ under an <;-preserving map, where £ is the
top of Fo.

Recall that a metric d on a dendroid X is radially convex with respect
to a point p ¢ X provided that x ¢ py and & 5 y implies d(p, ) < d(p,y).

THEOREM 10. A dendroid X is smooth with an initial point p if and
only if X has a metric which is radially conven with respect to p.

Proof. By Theorem 1, <, has a closed graph. Now the result follows
one way from the Carruth’s Theorem 1 (see [3],.p. 229) which says that
if < is a closed partial order on the compact metric space X , then there
exists an equivalent metric on X which is radially convex with respect to <.

Conversely suppose X has a metric, radially convex with respect
to p. To show that p is an initial point of X it suftices to show, according
to Theorem 5, that px » Ts= 2 for all z e X. Let qepr with ¢+ .
Then d(p, g) < d(p,®). Hence K = {ze X| d(p,2) < d(p, q)+ ¢}, where
e= (d(p,%)—d(p, ¢))/2 is a continunm containing ¢ in its interior and
not containing x. Hence ¢ € X\ 7.

THEOREM 11. If o dendroid X has o metric d which is radially convers
with respect to some point p € X, then there is an <,- preserving map f of Fg
onto X such that f(1) = p.

Proof. Take in the plane a system of polar coordinates r , @ With
the pole at a point ¢ Consider the Cantor discontinuum ¢ in the arc
0<p<1 of the circumference = 1, i.e. the set of points ¢ = (1, ¢),

]
where = D, 2ny/3° and ;=0 or 1. J oining all points ¢ ¢ 0 with ¢ by
i=0

straight segments ¢ we have the Cantor fan Fo. We see that << 1 for
all points of Fe.

Assume d(p, ) <1 for all z ¢ X. Denote by ¢ an arbitrary continu-
ous mapping from ¢ onto X. Extend g to f: Fe—X ag follows. If
(r, ¢) etc C Fe, then f(r, ¢) is the point @ on pg(e) sueh that

(6.1) ad(p, ) =rd(p, g(c)) .

To see that fis continnous, suppose a sequence of points (74, gn) €t
is convergent to a point (r,q)elec in Fo. If r % 0, then ¢ = limg,,

N—>00

whence ¢= lime, and, g being continuous, g(c) = limg(c,). Since X
NA-+00 n—>00

©
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is smooth with the initial point p, we have pg(e) = Lim pg(ca). Hence
00

every cluster point of the sequence of points Fru, gn) = @, lies in pg(e).
Let y be a cluster point of . Then d(p,y)= limd (P, xa)
N0

= lim md(p, gle)) = lim #, Lim @ (1) glew) = #a (p, g(e)). Therefore the
7700 00 00

sequence {#,} has only one cluster point, namely the point & in py(c)
such that (6.1) holds. If 7 = 0 then lim#, = 0, thus lim (7, ga) = L.
n—>o0 N—>00

By (6.1) d(p, @a) = rad(p, g(¢n)). But d(p, glen) < 1, 50 lim d(p, 2) = 0.

Thus lim %, = p, whence f(t) = p.

n-s00

CoROLLARY 11. Lei X be a dendroid. The Sfollowing arve equivalent:

(i) X 4s smooth,

(i) X admits a radially conver metrie,

(lil) X 4s image of Fo under an <i-preserving map.

COROLLARY 12. Bvery smooth dendroid is contractible.

Indeed, X has a radially convex metric d with regpect to an initial
point p, such that d(p, z) <1 for all z e X.

So, for # ¢ X and 0 < s <1 put k(z,s) =y, where y is a point of
the arcpz such that

A(p,y)=d(p,2)-(1—s).

It is easy to see that h: X x[0, 1]-X is continuous and hiz, 0) ==
as well as h(z,1)=p for all z < X.

The inverse is not true, as it shows an evample of non-smooth
contractible fan in [7], p. 31.

A class # of continua has a common model 3 under continuous
mappings if there exists a continuum I Delonging to 4 with property
that every member of « i3 a continuous image of M. Corollary 11 says
that if 4 denotes the class of smooth dendroids, then there exists a com-
mon model for #, namely the Cantor fan F¢. Since it is a fan, it can be
taken as a common model for the class of smooth fans. The latter result
is known (see [7], Theorem 10, p. 28 and [9], Corollary 4). The problems
whether common models exist in the classes of semismooth fans, of
uniformly arcwise connected fans (for the definition see § 8 here), of all
fans, of semismooth dendroids, of uniformly arcwise connected dendroids
or of all dendroids are open.

A clags £ of continua has a universal element U if there exists a con-
tinuum U belonging to +4 with property that every member of + can be
homeomorphically embedded into U. It is known that a universal element,
namely the Cantor fan, does exist in the class of smooth fans (see [7],
Theorem 9, p. 27 and [9], Corollary 4). The problem whether a universal

Fundamenta Mathematicae, T. LXVII 22
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element exists in the class of smooth dendroids is open. Also the questiong
concerning the existence of universal elements in all classes of the particular
kinds of dendroids mentioned above are unanswered.

§ 7. Further characterizations. A necessary and sufficient condition
for fans to be smooth was given in [7], Theorem 1, p. 7. A very
similar condition characterizes smooth dendroids, and the proof of a cor-
responding theorem can he made in the same way as for fans. However
this proof is rather long, so we shall give here some other one using the
result for fans and Theorem 10. The condition in matter ig given by

TEEOREM 12. A dendroid X is smooth if and only if there exists a point
P e X such that for any two convergent sequences {an} and {bp} conditions

(7.1) lima,=a, limb,=25
n—>o0 N—»00
and
(7.2) Un €pby  for n=1,2,..
imply
(7.3) Lim ayby, = ab .
Nn—>00

Proof. If there is a point p in X such that the above implication
holds, then putting a, = 2 and denoting by, by a, as well as b by @ we see
that (7.3) gives (2.3), so X is smooth by definition.

Conversely let X be smooth and let # be an initial point of X, By
Theorem 10, there is a metric d on ¥ radially eonvex with respect to 2.

Let an, by, a and b be points in X which satisfy (7.1) and (7.2). We
wish to show that I by = Li ayb, = ab.

N—>00 N—>00

By Corollary 1 in [7], P. 7, we have that
(7.4) ab C 1i ay,b, .

From a,b, C pby,, we obtain
(7.5) Ls 4,8, C Ls pby, .
A~+00 N—00
Since p is an initial point of X s
(7.6) Ls pbu = pb .

Let ¢ L . i [
eﬂ —>§o @nbn. Then there exist a sequence €, € du,,bn, coD-

verging to #. Hence

(7.7) Lim d(ea,; p) = d(@, p) .

©
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But for each m,
(7.8) @y, D) < d(Capy D) ,
by the radial convexity of d. Now (7.8) implies that
(7.9) d(a, p) < d{z, p).
So we conclude from (7.5), (7.6) and (7.9) that z e ab. Consequently,

(7.10) Ls apby, Cab C 1i azb, .
T->00 N0
Thus (7.3) follows from (7.10).
It is easy to see that Theorem 12 is very similar to Theorem 1 in [77,
p. 7. Remark however, that we cannot replace (7.2) by

(7.11) anba\(p) is connected

as it was done for fans (see loco cit., (3.1)) beeause (7.11) does not imply
(7.2) for smooth dendroids (for fans we ean establish (7.2) without loss
of generality, having (7.11), see op. cit. (3.3), p. 8). It can be seen by
the following example, in which (z,y) denotes a point with rectangular
coordinates.

Join point p = (0, 1) with (0, 0) and with points (1/n, 0) by straight
segments. The continnum F; obtained in this way is a harmonic fan with
the top p. Next join the point ¢ = (0, 1/2) with (0, 0) and with points
(—1[n, 0) by straight segments. We get another harmonic fan F, with
the top ¢. Put X = F, v ¥, and let

an = (—=1/(2n—1),0) and by = (<1/2n,0).
Thus (7.11) holds, we have mneither (7.2) nor ba e pan, (7.1) holds
with @ = b= (0, 0), hence the arc ab reduces to the point @ and Lim a,b,
N0

is the straight segment ga. Whence (7.3) is false.
As a corollary similar to Corollary 3 in [7], p. 9 we have
CoroLLARY 13. If X 45 a smooth dendroid with an initial point p, and
if for any two sequences conditions (7.1) and (7.2) hold, then

(112) aeph,
thus - ' _
(7.13) ab\(p) is connected .

Indeed, (‘7.1>) and (7.2) imply (7.12) because the partial order <, is
closed. But it is not true that (7.1) and (7.11) imply (7.13) for smqoth
dendroids as they do for smooth fans. As an example consider points

29%
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a=(0,1),b=(0,—1),¢=(1,0),p = (0,0), a= (A/n, 1), b = (1/'”/; —1)
and pub

X=abvopvw |anb,
n=1

where the ares ab, ¢p and a.b, are straight segments. Thus Y is a smooth
dendroid with p as an initial point, (7.1) and (7.11) hold true, but
P cab\((a) w (b)), whence (7.13) is false.

Theorem 2 in [T], p. 9 gives another condition which characterizeg
smooth fans. As a generalization of this theorem to smooth dendroids
we shall prove the following

TEEOREM 13. A dendroid X has a radially convex metric d with respect
to o point p e X if and only if it has o metric &' such that for any number
e > 0 there emists a number 1 > 0 such that for any two points & and b of X
conditions

(7.14) apChp or bpCap
(7.15) d'(a, by <y
imply

(7.16) O(ab) < e.

Proof. Firstly, let d be a radially convex metric on X with respect
to p. We shall show that d satisfies the condition, i.e. that d can be taken
as d'. Suppose the condition is not true. So there is an &> 0 that for
every natural # we can find two points a, and b, such that

(7.17) P Chpp  or  bup Canp,
(7.18) A(an, bn) < 1/n,
(7.19) 0(anba) = &.

It follows from (7.17) that there exists a subsequence {nz} of naturals
for which either

(7.20) P Chyp  for k=1,2,..
or ‘
(r.21) buyp Canp for k=1,2, ..

Assuming (7.20) we conclude from (7.19) that there are points
Ok € Un, by, With property

(7.22) A(an,, cx) = 22 .
The metric d being radially convex with respect to p, we have

(7.23) AP, am) < d(p, cx) < d(p,bny) .

©
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It follows from the triangle axiom that

d(p’ bﬂk) < d(ﬁ’ aﬂk)+d(ank5 bﬂk) 3
thus
A(p; buy) < Ap, an)+1)0g

by (7.18). Hence
A, any) < d(p, ex) < d(p, an)+1/ng

by (7.23), and we see that d(@ny, cx) must be arbitrarily small for suf-
ficiently large mx, contrary to (7.22).

Secondly, let d' be a metrie for which the condition in matter holds
and suppose there is no radially convex metric with respect to p on X.
Thus p is not an initial point of X according to Theorem 10. By Theorem 5
there exists & point x in X with

prnTy#£e.
Thus we can find a point ¢ e pr with ¢ 5 2 and ¢ ¢ T». Take
e=d'(g,®)3.

So there is an n > 0 such that for any two points o and b of X con-
ditions (7.14) and (7.15) imply (7.16). Take = such that

(7.24) 2/n < min(y, &)
and let U, be the 1/n-neighbourhood of ¢. So
(7.25) da,q)<n for every aeU,.
Denote by K, the unique continuum irreducible about U,. Thus
(7.26) K= Ufagl a < Ua},

and ¢ eIntH,. Since ¢ € Ts we have z ¢ K, according to the definition
of T. _

Further, let V, be the 1/n-neighbourhood of x. The union (J{ag| a e Ua}
being a set dense in K, by (7.26), for any n satisfying (7.24) there exists
a point ay € U, such that

(1.27) g Va2 0.

It follows that
(7.28) 8(ang) > €.

The metric d’ satisfying the condition, we conclude from (7.25)
and (7.28) that the negation of (7.13) must hold for points ¢ and @, i.e.

(7.29) neither anp Cpg, mnor pgCanp .
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Thus the common part of ares pg and a,p is an arc being a proper
subarc of each of them.
- Let # be & point of ang ~ T, which exists by (7 :27). So the sequence
of points @, is convergent and

lima, = .

N>00

It is easy to see that points @, lie in ares anp because otherwise we
would have w, epg, thus @ epg contrary to the definition of q.
Consider now Li pa, which is obviously a non-empty set. By
N0

Corollary 1 in [7], p. 7 it is a continuum and we have

poC Li pay, .

Since ¢ e pe, thus for any n there is a natural ¢ such that if & > ¢, then
Prprr N Up # 0.
Let buir € poyar ~ Uy, Thus we have
(7.30) Purr C Py s, C panir,

s0 (7.14) is satisfied for anyr and by,z. Since points an4x and b,ir both
belong to U,, we see that

d’(an«rk, bn+L) <7

by (7.24), thus (7.15) is satistied. But Tntk € Unikbnyy DY (7.30) and @,z
eVurx CVy by definition, whence

‘S(a'n+7cbn+k) =€
contrary to (7.16).
.COROLLA_RY 4. A dendroid X dis smooth if and only 1if there emist
apoint p € X and a metric d such that Jor every number & > 0 there is @ number

7> 0 such that for amy two points a and b of X conditions a<pb and
d(a, b) <n imply 6(ab) < e.

§ 8. Uniform arcwise connectedness. Recall that a set X is said to be
uniformly arcwise connected (see [5], p- 198 and [7], p. 12) if it is arcwise
connected and if for every number & > 0 there is a natural % such that
every are 4 in X contains points Qg Ay ..., ax such that

%1
A= L_J Aiigy ,
and o
0(aiairi) <e  for every §— 0,1,..,%k-1.

©

m On smooth dendroids 317

It is known that every dendroid X is irreducible about the set E(X)
of all end points of X (see [15], Theorem 3.5, p. 193). Hence if we take
an arbitrary point @ ¢ X, then we have

X = [J{zel ¢ e B(X)}.
The following theorems give sufficient and necessary conditions
under which a dendroid is uniformly arewise connected.
THREOREM 14. 4 dendroid X = | {we| ¢ e H(X)} is uniformly arcwise

connected if and only if for every number > 0 there is a natural & such
that every are me contains poinls aq, &y, ..., ap such that

k-1
xe = _L/‘}) Aiiy1
=
and
(8.1) d(atairs) <& for every i=0,1, ..., k—1.

Proof. If X is uniformly arcwise conmected, then the condition in
question is satisfied by the definition of uniform arcwise connectedness.
Inversely, take an arbitrary arc 4 =abCX and let e, and e, be end
points of X such that aewe, and bexe,. Hence A C ze, U me,. Thus putting
¢ = 2¢ and k' = 2k we have a decomposition of the arc 4 into at most %’
arcs with diameters less than or equal to &, i.e. less than &', which proves
the uniform arcwise connectedness of X, .

CoROLLARY 15. A dendroid X = | {we| e e E(X)} is uniformly arcwise
connected if and only if for every number &> 0 there is a natural & such
that every are me confains Poinis a,, ay, ..., a7, where ] < k, such that

-1
we= | aittips
<0

and 6(aiair1) < ¢ for every 1 =10,1,...,57—1.

In the same manner as Theorem 14 we ean prove

THEOREM 15. A4 dendroid X = {xe| ¢ e E(X)} is uniformly arcwise
connected if and only if the condition from Theorem 14 4s satisfied with
0{asair) < e for every 1=0,1,...,k—1 instead of (8.1).

Levva 2. Let o dendroid X be smooth with p as an initial point of X
and let £ be a positive number. If we take in every arc ab such that ab\(p)
i8 connected, poinis

@ =Dy, Byy oory Bfy Ty =D
such that
Ty €Bi—1ir1  for 1=1,2,..,7,
d(wy wi31)=¢ for i=0,1,..,7—1 and d{ms,2;41) < ¢,

then there exists a matural k with property j <k for all arcs ab.
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Proof of this lemma is exactly the same as the proof of Lemma 2
in [7], p. 13 for smooth fans.

Lemma 2 leads to the following corollary, similar to Corollary 3
in [7], p. 14.

COROLLARY 16. Bvery smooth dendroid is uniformly arcwise connected,

Obviously the inverse is not true.

§ 9. Brush continua. The notion of the brush continnum was intro-
duced in [4], p. 234. Namely given any continuum @, a continnum B(Q)
is called a brush continuum with the base @ if ¢ C B(Q) and if B(Q) is
the union of straight segments zy called its generators, such that

(9.1)  there is a number 6 > 0 such that for every z the inequality
d(z, Q) > 6 holds,
(9.2)  there is a number % > 0 such that for every generator zy of B(Q)
and for every point z of ay the inequality d(z, Q) > #-d(z, ) holds,
(9.3)  for every point » the set 2zy\(¥) is a component of the set B(ONG.
It follows from the above definition that
94} @y~ Q= (y) for every generator sy of B(Q).

It is known that for every continuum @ there exists a brush con-
tinuum B(Q) with the base @ (see [4], Theorems 1 and 2, p. 234 and 235),
and if @ i3 a dendroid, then B(@) 1s also a dendroid (op. cit., Theorem 5,
p. 241).

Now we shall prove the following

THEOREM 16. If a dendroid X is smooth, then every brush continuwm
B(X) is dlso smooth and the initial set of X is contained in the initial set
of B(X). ”

Proof. Let X be a smooth dendroid with an initial point p, and
let B(X) be an arbitrary brush contirunum with the base X. Thus, by
the definition, B(X) is the union of straight segments zy where 4 ¢ X,
which satisfy (9.1)-(9.4) for Q@ =X. Take a convergent sequence of
points a, of B(X) with a limit point a, and let

An€nYn a8 well a8 aeay.

Thus (2.1) holds hy hypothesis. We shall prove that (2.1) implies
(9.

L=l4

) Iimyn:y.
7100

Indeed, consider two subsequences {yn} and {Ym,} of the sequence
{ys} such that

(9.6) hliﬂynk =y and 1}52 Yy =y .

©
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Hence (2.1) and (9.6) imply

Lim anyn, = ay’ and Lim Qo Ymy, = ay”

k=00 k00
the arcs #uyn being straight segments. If a s y, then the point a belongs
to the only one generator, namely to ay. Thus segments ay’ and ay' lie
in the segment xy and we have y' = y'' = y by (9.4), which proves (9.5).
It a=y, suppose one of points y' and y” satisfying (9.6) is different
from y. Say y’ # y. Hence for sufficiently great k we have
(9.7) d(anky ?/nk) > 4-d(a, y')
by (2.1) and (9.6). Substituting a,, and ¥, in place of » and y respectively
in (9.2) we have

Ay, X) = 7A@y Yuy)

which leads to the inequality
(9.8) A anys X) > 9-%d(a, y')
for sufficiently great k. Since ¢ = g, hence a ¢ X and we have

d(a’ﬂk} a) = d(aﬂkﬁ X) ’
thus by (9.8)
d(tn,, @) > n-1d(a, y'),

which contradicts (2.1). Therefore (9.53) is established. ) '
To prove that B(X) is smooth we ghall show that (2.1) implies (2.2)
and (2.3). Observe that for every » we have

(9.9) Pln = PYn © Yt .

The dendroid X being smooth by hypothesis, and (2.1) implying (9.5)
we see that the sequence of arcs pyn is eonvergent and

(9.10) Lim pyn = py .
n—+00
Further, the arcs y,a, being straight segments, we have from (2.1)
and (9.5)
(9.11) Lim g0 = ya .
00
Thus (9.10) and (9.11) imply (2.2) by (9.9) and we have
Lim pan = py v ya .
00

Since py C X and ya n X = (y) by (9.4), we conclude? Py < ya = pa,
s0 (2.3) holds and the proof of the smoothness of B(X) is finished.
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Moreover, we see that just the point

. peX was faken as an init
point of B(X), which implies that the initial set o i i i ”
Dl met ot B 1) set of X i3 contained in the

Since every initial point of B(X) is a point of the 1
al connected

of B(X) by Theorem 1, hence Th o i e
folloning , eorem 16 and Corollary 7 imply the

o F‘OROLI:ARY 17. .If a dendroid X is smooth, then the initial set of an
a} z-;;a'ry brush continuum B(X) is composed of the initial set of X and
of ali generators xy of B(X) every point of which 4 int of .
wetsies of B Y P f which is a point of the local cos-

. § 10. Countable smooth combs. Let X be a dendroid and let R(X)
ceuote.the set of all ramification points of X. It there exists an
11 O@r?l]i@l(]il X sid;[thz;t E(X)C ab, then X is said to be a comb. A comb X
S ca countable if the set R(X) is countable and if O .
: i 2 dz X < 8, fo
every z e R(X). In other words, a co i it nd omy i
2 ‘ s mb X is countable if and only if
fl (::&’),tthe‘ set of all gnd-pomts of X, is countable. For example if we Elrmt
! jefngular coordinates o= 0,0), b= (1,0), ¢ = (0,1), @ = (1/n, 0)
Yn = (1/n, 1), then the union of straight segments ab U be U g; is’
‘nYn

& countable comb. Obviously it is also smooth. "
s (I)tlfoﬂows‘fropn- th‘e abov'e definition of a comb that if a dendroid
a8 only one ramification point, i.e. if it ig a fan, then it is obviously

a comb. It is known that e i i
oo, Tt very fan ¥ can be written as the union of arcs

F= U {tel e B(F)},

z;l;t?;e z‘i}s n:ﬁll;; t}(;g) of .ti.;e fan F, and ¢ is an end-point of it. Similarly every

¢ 7 written as the union of some ares. Let ab

irreducible about R(X) and ! T0), Bor oodee oo

nd put B(X) =a b u R(X). For ever i

; ; : . y ]

Zee ,\R a(in .(ie];);e b.y Py the union of all ares te, where ¢ ¢ B{X), suzhptoligt

o ;5 .X\Ru(sYlf a ‘;ébt #b and Ord; X = 3, then T, reduces to an arc.

. E(X) (or b e I\R(X)) then T, (or I'y) is an are (or a point;
a or b are in E(X)). So we Lave o

(10.1) T=abo T te R(X)).
Let E{ == Fi ) E(X) Thus
(10.2) Fo= U {te] ¢y

for every ¢ ¢ lé’(X ). Substituti i
. stituting (10.2 i
of a comb X ag the union of gzufcs: ) k0. {10:1) we have e

X=abo U{Ultel e < Bl ¢ R(X)} .
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In the case when a comb X is countable, we see that R'(X) is count-
able and B is countable for every ¢e R'(X). Thus a countable eomb X
can be written in the form

o0 o
X=abv U (Utnan) .
n=1 m=1

Let 7(X) be the degree of the non-local connectedness of X defined
in [5], p- 190. If & comb X is countable, then 7(X) is a countable ordinal
and inversely. Thus from Theorem 18 in [5], p. 192 we infer the following

COROLLARY 18. If a comb Y is a continuous image of a comb X and
if B(X) is countable, then E(Y) is at most countable.

The following theorem is & generalization of Theorem 5 in [7], p. 15:

TuroREM 17. If @ dendroid X is smooth with countable E(X) and if
@ smooth dendroid X with countable B(Y) is @ continuous image of X, then
the set B(Y) is at most countable.

Proof of this theorem goes letter by letter exactly like the proof
of Theorem 5 in [7], p. 15 if we take t and ' there as initial points of X
and Y respectively.

Observe that the countability of E(Y) is an essential hypothesis
in the above Theorem: a dendrite with the set of end points being the
Cantor discontinunm is a continuous image of an arec.

Theorem 17 and Corollary 18 imply:

COROLLARY 19. If a smooth comb Y is a continuous image of & smooth
comb X and if E(X) is countable then E(Y) is not at most countable.

Remark that in the same manner as for fans (see [7], p. 21) one can
construct a family of n (for each n=2,3,..) countable combs in-
comparable in the sense that none of them is a continuous image of

H

another.
Further, remark that it can be proved also exactly as for fans in [7],

p. 30 that there exists neither & common model nor a universal element
(for the definitions see the final part of § 6 here) in the class of countable
smooth combs. However, in the class of all smooth combs, the question
about the existence of a common model has the positive answer (namely
the Cantor fan is a common model in this class by Corollary 11, thus also
the Cantor comb is), but the question concerning the existence of
a universal element in this class is open.
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Uber die Michtigkeiten und Unabhingigkeitsgrade
der Basen freier Algebren, II*

Peter Burmeister (Bonn)

Finleitung. Im Zusammenhang mit den im ersten Teil Dbehandelten
Problemen tauchte auch die Frage auf, ob verschieden michtige Basen
einer Algebra verschiedene Unabhingigkeitsgrade besitzen konnen und
was man fiber die Unsbhingigkeitsklassen der U-Basen der A-frei
erzeugten Algebren einer nichttrivialen primitiven Klasse 2 aussagen
kann. Dabei sei die Unabhingigkeitsklasse — die auch Unabhingigkeits-
grad genannt wird — einer Teilmenge M einer Algebra (4,f) (*) defi-
niert als

indap M: = {(B, ¢)] M ist(B, g)-frele Teilmenge (*) von (4,N}.

Es ist nun leicht einzusehen, daB tatséchlich die Unabhingigkeits-
Klassen verschieden michtiger Basen einer Algebra verschieden sein
konnen. Dazu betrachte man etwa das in der Einleitung von Teil I er-
wahnte Beispiel von C. J. Everett: Sei namlich (¥, f) — kurz: F— ein
Links—C—Modul fiber einem Ring C, wie ihn Everett in [5] angegeben

* Dissertation Bonn (D 5) 1966, Teil II. Gegeniiber dem entsprechenden Teil (§ 6)
der Dissertation ist die vorliegende Arbeit jedoch etwas erweitert worden, was an
einigen Stellen auch Anderungen der Beweise zur Folge hatte. Beziiglich der ver-
wendeten Begriffe aus der Allgemeinen Algebra wird auf Teil I verwiesen bzw. auf die
im Literaturverzeichnis angegebenen Arbeiten von J. Schmidt und J. Slomiriski,
insbesondere [8], [9] und [11]. Wegen der Begriffe aus der Theorie der Kardinalzahlen
vergleiche man H. Bachmann [1]. ‘

() Man beachte, dafl unter einer Algebra (4, f) stets eine nicht notwendig voll-
stéindige universelle Algebra mit der Trigermenge A und der Struktur f = (f;);cy ver-
standen werden soll. Wenn eine Algebra vollstindig sein soll, so wird extra daraunf
‘hingewiesen. Werden mehrere Algebren gleichzeitig betrachtet, so sollen sie -— sofern
nichts anderes vermerkt ist — vom gleichen Typus (d. h. ikmlich) sein. Haufig wird,
wenn keine Verwechselungen moglich sind, anstelle von (4, f) auch kurz 4 geschrieben:

(2) Zur Erinnerung: M heilt (B, g)-freie (auch: (B, ¢)-unabhiingige) Teilmenge
der Algebra (4, f), wenn jede Abbildung B: M —>B zu einem Homomorphismus § von
der von M in (4, f) erzeugten Unteralgebra (G M, ﬂcf:q) in (B, g) fortgesetzt werden
kann. M heiBt (B, g)-Basis von (4, f), wenn M dariiber hinaus (4, f) exzeugt: C;M = 4;
ist dabei (B, g) = (4, ), so heiBt M Basis von (4, ).
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