A characterization of smoothness in dendroids

by
L. Mohler * (Warszawa)

Introduction. In this paper we present a condition equivalent to
smoothness for dendroids. In particular, we show that a dendroid is
smooth if and only if it is contractible by a retracting homotopy in
such a way that some point remains fixed throughout the homotopy.
The paper is divided into three sections. In the first we prove the above
mentioned theorem. The second section is devoted to applying this result
to obtain a slightly stronger result for fans, answering a question raised
by Charatonik in [3]. The third section is devoted to some remarks con-
cerning the possibility of extending our results to arbitrary hereditarily
unicoherent continuna. It will be seen that this generalization is in fact
vacuous, since any hereditarily unicoherent continuum satisfying the
hypotheses of the proposed theorem must alveady be a dendroid.

1. A condition equivalent to smoothness in dendroids.

DEeFINTTION 1.1. A metric space is said to be a continuum if it is
compact and connected.

. DEFINITION 1.2. A continuum is said to be hereditarily unicoherent
if the intersection of any two of its subcontinua is connected.

In [2], p. 187 Charatonik gives the following characterization of
hereditary unicoherence.

Levma 1.3. A continuum H is hereditarily unicoherent if and only if
given any set X C H, there exists a unigue subcontinuum I(X) of H which
8 irreducible with respect to containing X.

DEFINITION 1.4. A continuum is said to be a dendroid if it is heredi-
tarily unicoherent and arcwise connected.

Remark 1.5. It follows from 1.3 that if D is a dendroid and %,y e D
(# # v), then there is a unique are in D whose endpoints are « and ¥.

* The research constitutes a part of the author’s doctoral dissertation at the
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Norarion 1.6. If D is a dendroid and @, y € D, we let zy denote the
unique arc in D whose endpoints are # and y.

DEeFINITION 1.7. A dendroid D is said to be smooth if there exigty
some point p ¢ D such that given any sequence a, in D with lim ay = a,

n->00

it follows that Lim a,p = ap (for the deﬁhi‘uion of Li, Ls and Lim,
n—>00
see [8], pp. 335-339).
We now recall a theorem proved by Charatonik in [3], p. 7.

TEROREM 1.8. If D is a dendroid and a, and b, are sequences in D
such that lim ay = a and lim by, = b, then 1i ayb, is a continuum and

n—+00 00 00"

ab C 1i ab,.

N—03

DerINITION 1.9. A relation < on a set X is said to be a partial order
if it is reflexive, antisymetric and transitive.

DerINrTioN 1.10. A partial order < on a topological space X is said
to be continwous if < is closed as a subset of X x.X.

Dermvrrion 1.11. Let D be a dendroid and let p e D. We then define
& partial order <, on D as follows: If &, y ¢ D, we set @ <p ¥y if and only
if zey.

The following lemma is a corollary of theorem 1 in [7]:

Leuma 1.12. A dendroid D is smooth if and only if there ewists o point
P eD such that the partial order <, is continuous.

For the remainder of the paper we let I denote the unit interval
[0, 1] of real numbers.
) DepinrTion 1.13. A homotopy h: X xI+X on a topologieal space X
is called a refracting homotopy if for every tel the map hy: X —X, given
by Mu(z) = h(z,t), is a retraction.

ToEorREM 1.14. Jf a dendroid D admits a homotopy h: D xI-+D
satisfying

() & is ‘@ retracting homotopy,

(i) 2 contracts D to a point p e D,

(iii) 2(p, )= p for every 11,
then D is smooth.

Pro. of. Suppose that D, h and p are as above. We will show that
t.he partial order <, is continuouns. Let z, and Yn be sequences in D with
Lim o, = o, lim g =y and @, <y ya for every n=1,2,3,... We wish

N~->00
to .show that # <py. Now ay ~ 2p is connected since D is hereditarily
unicoherent. In fact my ~ #p is an are (it is a subeontinuum of the arc ap).
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Thus it is a closed subinterval of the totally ordered (in 1;11@ sense of <)
arcxp and so it must have a minimal element. So let

1 ¢ = min(zy ~aep) (in the sense of <).

By theorem 1.8 xy C Li @yys. Therefore, since qewaxy we can find

N0

points ¢n € Tpyn such that lim g, = ¢. Since ¢n e anyn and & <p Ya for
N0

each n, it is not difficult to see that @, <, gn for each n, i.e. znegqup for
each n. Now note that for each n h({g.} xI) is a subcontinuum of D
containing gu and p (h(gn, 0) = gu and h{ga, 1) = p). Therefore, since D
is hereditarily unicoherent we must have gup Ch({gs} xI) for each =
(see lemma 1.3, recalling that ¢u.p = I{{gn, })). Thus an e b ({gu} x I) #()1'
each n, i.e. for each n there exists ¢, e I such that h{qu, ta) = . Passing
t0 a subsequence if necessary, we may assume that lim ¢, =1 The

PIRes

continuity of 7 then yields

(2) h(g, t) = lim h(gn, ln) = lim @ = .

N—~00 00
Now hdD) is a subcontinuum of D containing  and p (k(p,1) =p by
hypothesis). Therefore, arguing as above, we must have ap C k(D).
But g e mp. Therefore, since I is presumed to be a retracting homotopy,
we can infer that h(g,t) = g¢. (2) then yields
3) g=.
Therefore & is minimal in sy ~ zp in the sense of <,. This is easily seen

to imply that # <, vy, completing the proof. B
Before proving the converse to the above theorem, we recall & theo-

rem proved by Carruth in [1].
TarorEM 1.15. If X is a compact metric space and < is a contintous
partial order on X, then there is an equivalent metric 7 for X satisfying

(%) if e<y<z in X and 55y #=, then 7(2,9) <r{®,2).
In fact,  can be constructed so that
(%%) if o<y <z in X, then vz, 2)=1r(@,y)+r¥, ).

TimorEM 1.16. If D is a smexn dendroid, then D admits a homotopy
hi D xI->D satisfying conditions (J)—(iii) of theorem 1.14. )

Proof. Let D be a smooth ¢ endroid and let p e D be such ~thaut <yp Iy
a continuoug partial order. Let ¢ Dbe a metric on D satisfying condi-
tion (¥%) of theorem 1.15. Sine > D is compact, we may also assume

1) max{p(i¢, p): weD}=1.
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< (&, p); there is a unique y e D with y <, ¢ and o(y,p)=r.
Phroof of claim. Let # and » be as above. Since {y ¢ D: y <p 2}
= #p 18 connected, there must be at least one y <, # such that oy, p)=r
Suppo.se now that y and z both have this property. Since {WeD: ygu}
= ap is totally ordered, we must have either y <,z or » <py. We suppose
(without loss of generality). that y <{, 2. Then since P <p Y <p 2 our
hypothesis concerning p implies that ’
{2) r=e(p,2) =@y +ely,s)=r+oly, 2.
Therefore we must have o(y,2) = 0, ie. y==z.
We now define a homotopy h: D xI—-D as follows:
B, 1) = jthzlzrt unique y <p » such that p(y, p)=1¢ if t < o(w, p)
|z it oz, p) <t.

CLAIM 2. h 48 continuous.

b

Proof of elaim. Since g is continuous, the two sets

A={z, ) e DxI: t<o(w,p)} and B={w,1)eDxI: g(x,p) <1}

are closed in D X I. Moreover 4 w B = D xI. So if we can show that 2 »

is c%ntmuous on these two sets; we will be done. Certainly % is continuous
on B. Now suppose that (a, t,) is a sequence in 4 and that lim (@, t,)
N—>00

= (2,1). Let y be o cluster point of {h(zn ta): m=1,2,8, ..} Since
h(ﬂin, ta) <_.p @n for every a, the fact that <p I8 continuous implies that
Y <p @ Since g(h(mﬂ,tn), p) =1, for every n and lim i, — t, the con-

. . 3 R =00
ﬁlnl]lllﬁy of ¢ implies tl.xat ey, p)=1t. But then y iy that unique ¥ < @
suc thaf: g{y,p) =1, 1.e. y = h(x, t). Since D is compact, this establishes
the continuity of b and completes the proof of claim 2.

Suppose ¥ ¢ k(D) for some t e I. Then from the definition of & it is -

clear t]%at o(y,p) <t, ie. (y,1) e B. Therefore h(y,t) =y. This tells us
that & is a retracting homotopy. The fact that ¢(p, p) = 0 implies that
g'p, t? € B for every ¢ ¢ I and hence that hip,t)=pforeverytel (1) above
nfnphes that h(x,1)= = for every « e D. Finally, h(z, 0)= p f(;r every x
since 0 < o(x, p) for every x (i.e. (#,0) ¢ A and p is that unique y<p®
such that g(y,p) = 0). It is now clear that 2': DxI-D defined\i))y

Wiz, t) = h{z,1—1)
is the desired homotopy. &

. 'Jlfihe‘author does not know whether condition (i) is necessary in
?81 aﬂ? shing theorem 1.14. That is, suppose that D is a dendroid Wixich
admits a homotopy h: D x 7 —+D satisfying conditions (i) and (ii) of theo-

@ ©
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Cramy 1. Givon any weD and any real number r such that 0 <7

A characterization of smoothness in dendroids 373

rem 1.14. Does it still follow that D is smooth? In the next section we
will see that this is indeed the case for fans, thus answering a question
raised by Charatonik in [3].

2. An application to fams. In [3] Charatonik asks the following
question: If 7' is a fan which admits a homotopy : F x I -+F satisfying
conditions (i) and (ii) of theorem 1.14, does it follow that F is smooth?
We will angwer this question by showing that if a fan F admits such
2 homotopy, then I also admits a homotopy satisfying conditions (i)—(iii)
of theorem 1.14.

DrrINITION 2.1. A point p in a continuum X iy called a ramification
point of X (in the classical sense) if it is the common endpoint of three
(or more) ares in X whose only common point is p.

| DEFINITION 2.2. A topological space is called a fan if it is a dendroid
with exactly one ramification point, which is called its top.

DerFINITION 2.3. A fan F' with top p is said to be smooth it given

-a sequence @, in I such that lim x, = @, it follows that Lim z.p = ap (1)

s N—-00

DEFINITION 2.4. A point ¢ of a continuwum X is called an endpoint
of X (in the classical sense) if given any two ares 4; and 4, in X such
that ¢ e 4; ~ 4,, it follows that 4; ~ AN\{e} # O.

NoTATION 2.5. If F is a fan, we let B(¥F) denote {¢ ¢ F: ¢ is an end-
point of F}.

Remark 2.6. It is casy to verify that if F is a fan with top p, then
F=J{el: ecE(F)}.

We now begin some lemmas leading to the main result of this section.
For the remainder of the section we make the standing assumption that F
is a fan with top p and that h: F x I -7 is a retracting homotopy which
contracts F to some point ¢ e F.

LEMMA 2.7. There is o smallest number 1 e I such that hy(F) is an arc
(or a point).

Proof. Clearly {t e I: () is an are or & point} 5 O since h,(F) = {g}-
So it will suffice to show that this set is closed in I. We proceed by
showing that its complement is open in I. Suppose that hy(F) is neither
an arc nor a point. Then we must have p el (F) (the components of
F\{p} are all of the form ep\{p} for some e ¢ B (F)). Further, there must
be three distinct points e;, 6, 63 € H(F) such that e p\{p} N hio(F) # O
for i=1,2,3. Let
(%) @y e (esp\{P}) N My (F)  for i=1,2,3.

(t) The reader will note that ldefinition 2.3 appears to impose a stronger condition
than definition. 1.7. However, in [4] Charatonik and Eberhart show that the two con-
ditions are equivalent for fans.
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Let ¢ De a metric on F and define ¢ = min {o(@i, p): & = 1,2,38)
By the continuity of b we can find a 6> 0 such [I—t] <6 imI’)]ies.
that o(h(x, 1), h(z, %)) < ¢ for every s eF. Note that for every z el
and for every teI, there is a Path in k({} x[¢,1,]) from Mz, t) to
h(z,t). So if [t—t) < 6, then for ¢ = 1,2,3 h(w,t) must lie i’n the
path component of |y eF: o(h(w, 1), ¥) <&} containing h (@, t,). Bug
since & € hyy(F) for i =1,2,3 and % is a retracting homotopy, we have
h{wiy o) = @ for i =1, 2, 3. Therefore, by the choice of § we have

(%%) hwiyt) eesp\{p} for i=1,2,3 and [t—1] < 6.

Since Ju(#) is connected and contains h(wiy 8) for ©=1,2,3 and for
every i, it follows that h(F) cannot be arc it [t—ty} < 6. This completes
the proof. @ ’

Lennia 2.8, If ty is the smallest number in T such that Tu(F) is an are
OF @& point, then p e fy(F).

Prootf. As we observed in the proof of 2.7, p ely(F) for every
te{tel: IyF) is neither an arc nor a point}. But clearly #, lies in the
closure of this set. The continuity of % yields the desired result. @

By lemma 2.8, if t, is the smallest number in the unit interval such
tha"c Tuy(¥) is an are, then P € hyy(F'). Thus there is a retracting homotopyv n
which over the interval [to, 1] contracts hy(¥) to P, le. there iy a mayp

Bt B F) X [tg, 1] R (1)

Slll(lh that hf is a retraction for every tety, 1], hy, = Iy (= Tug|huo( F))
I3 (-1;,‘1) =p for every = e hy,(¥) and Kip,t)=p for ev‘éry te [tn 13 (ali
of thl.s can be done since hy,(¥) is an arc containing p). Letting oli’ be asg
descmbed_ above, we now define a new homotopy &'": F' x I - as follows:

b, 1) it te[0,1,],

W'z, 8) = {
’ Wb, 1), it telly,1].

Obser‘ve thzlult .Wifh h_” defined as above we have D e W/ (F) for every i e I.
.Oertalntly 7; " s continuous, and the fact the composition of retractions
I8 & retraction implies that A iy a retracting homot i
z 5 @ g motopy. T ;
Iemma is now clear. ¢ #7. fThe Toliowing
- ILLI!;B‘IA 7’07 If a fan T with top p admits a retracting homotopy h:
B which contracts I to i 7 !’
g @& pownt, then I admits o homotopy h
(i) " is a retracting homotopy,
(i) " contracts T to ?,
(i) # (p, 1) =9 for every tel.
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Lemma 2.9 and theorem 1.14 now imply the following theorem:

THEOREM 2.10. If a fan F is contractible to a point by a retracting
homotopy, then F is smooth.

It should be remarked that theorem 1.16 is already known for fans.
In fact Charatonik and Eberhart have shown that if F is a smooth fan,
then F' is embeddable in the cone over the cantor set (this follows from [3],
theorem 9, p. 27 and [6], Corollary 4). This theorem and theorem 2.10
above suffice to answer all questicns raised by Cliaratonik in [3].

Theorem 2.10 above states that if a fan fails to be smooth, then it
also fails to be contractible by a retracting homotopy. The author does
not known the answer to the following question: Does there exist a fan
which fails to be contractible?

3. Some remarks on smoothness in hereditarily unicoherent continua.

Remark 3.1. Since any contractible Hausdorff space is arcwise
connected, if a hereditarily unicoherent continuum is. contractible by
a retracting homotopy, then it is a dendroid.

DerFiNITION 3.2. Let H be a hereditarily unicoherent continuum
and let p e H. We then define the relation <, on H as follows: we set
z<py in H if xeI({p,y}) (recall lemma 1.3).

We now state two .definitions of smoothness for hereditarily uni-
coherent continua. Lemma 1.12 above implies that these definitions agree
for dendroids.

DeFINITION 3.3. A hereditarily unicoherent continuum is said to be
smoothy if there exists a point p ¢ H such that the relation <, is a continu-
ous partial order on H.

DEFINITION 3.4. A hereditarily unicoherent continuum is said to be
smooth, if there exists a point p € H such that given any sequence G in H
such that lim a, = a, it follows that Lim I({an, p})=I({a, p}).

N0

n—oo
Remark 3.5. If a hereditarily unicoherent continuum H is smooth,,
then Koch’s theorem on the existence of order arcs (see [6]) implies that H
is arcwise connected.
There exist hereditarily unicoherent continua which are smooth,
but which fail to be contractible by a retracting homotopy. An easy
example is the subset H of the plane E* defined by

H = Cl{({(x,y) e B* y = sin(1lfz) and 0 < & £1}).

It is easy to show that, setting p = (1 s sin(l)), H is smooth,. But H is
not even contractible.
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The above remarks show that the generalizations of theorems -1.14

L. Mohler

and 1.16 into the setting of hereditarily unicoherent continua are either
vacuous or false.
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