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On decompositions of . 7-dendroids
by
J. J. Charatonik (Lexington, Ky.)

§ 1. Introduction. All continua considered in this paper are
metric. An irreducible continuum I is said to be of type 4 (see [7], § 43,
III1, p. 137, the footnote) if it has an upper semi-continnous decomposition
into tranches (for the definition of tranches see [7], § 43, IV, p.139
and also [8], p. 184 and p. 185—the notion of B-subeontinua and O -sub-
continua) such that the hyperspace of this decomposition is the unit
interval. It is known (see [7], § 43, VII, 3, p. 1563), that
(1.1)  An irreducible continwum I is of type A if and ounly if every in-

decomposable subcontinuum of I has the empty interior.

A dendroid means a continuum X such that
(1.2) Tor every two points ¢ and b of X there exists exactly one con-

tinuum I(a, d) irreducible from a to b,
(1.3) I(a,d) is an ave.

Condition (1.2) is equivalent to the hereditary unicoherence of X
(see [8], Theorem 1.1, p. 179). Condition (1.3) means arcwise connected-
ness of X. Thus a continuum X is a dendroid if and only if it is hereditarily
unicoherent and arcwise connected. ‘

Proof. B. Knaster has proposed a generalization of the mnotion of
a dendroid by replacing of condition (1.3) by the following:

(1.4) I(a,b) is of type A

He has called such continua A-dendroids. Hence A-dendroid means
a continuum X for which conditions (1.2) and (1.4) hold.

The purpose of this paper is to define and investigate some upper
semi-continuous decompositions of 4-dendroids. The decompositions are
the finest possible in certain sense. The main result (see Corollary 2)
is' patterned after the well known theorem concerning upper Semi-con-
tinnous decompositions of irreducible continua into tranches, described
by K. Kuratowski in his papers [5] as well as in [7], p. 139-142,

First of all observe the following properties of A-dendroids.

(1.5) Every A-dendroid is heveditarily decomposable.
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In fact, suppose a i-dendroid X contains an indecompogable con-
tinwum. ¥. Thus there are points ¢ and b in N such that N is irredueible
from @ to b. By condition (1.2) there is no other irreducible continuum
from « to b in X. But N is not of type 1 by (1.1) contrary to (1.4).
(1.6). Every A-dendroid is a curve, i.e. a continuum of dimension one.

For every continuum of dimension greater than one contains an
indecomposable subcontinuum (a theorem of S. Mazuarkiewicz; see [7],
§ 43, V, p. 144).

TEEOREM 1. A continuum is @ A-dendroid if and only if it is here-
ditarily unicoherent and hereditarily decomposable.

Indeed, if X is a A-dendroid, then condition (1.2) implies the hereditary

* unicoherence of X by above quoted Theorem 1.1 in [8], p. 179, and X
is hereditarily decomposable by (1.5). Invertedly, if X iy heveditarily
unicoherent and hereditarily decomposable, then (1.2) holds by the same
Theorem 1.1, and (1.4) follows from the hereditary decomposability
of X by virtue of (1.1).

It follows immediately from the definitions that every dendroid is
& 1-dendroid. Also every hereditarily uniecoherent irreducible continwum
of type 1 is a A-dendroid. Now we describe here an example of a A-den-
droid K (abe) which will be used to construct a more complicated A-den-
droid L. : '
Let o(w, y) denote the distance between points  and ¥ of the Buclidean
plane. By an oriented triangle T we mean a triangle (i.e. a 2-cell) in. which
an ordering << of vertices is distinguished. If @, b and ¢ are vertices of 7'
and this ordering is just a<b <3¢, then we wxite 7' = T(abe). Tiet
T(abc) be an arbitrary oriented equilateral triangle and let @, and ¢, be
points of the side ac of T(abe) such that o(a, @) = pla, ¢)/2n and p(a, cu)
= g(a, ¢){(2n—1) for n = 1, 2, ... Join each of points ¢, with the vertex b
by the segment be and define
@1 Flabe) = ab o | ) bey.

n=1

Thus F(abe) is a dendroid homeomorphic to the harmonic fan (see [1],
E1, p. 240). Now put in each of the triangles T'(aybe,) a homeowmorphic
image §, of the graph of the function v = sin(1/w) for 0 < » <« 1 having
the segment be, as the limit continuum, i.e. such that 8o~ B (abe) == by,
= S\S». Putting

(1.8) X (abo) = F(abe) w 1] 8,
n=]
we see that K (abe) is a A-dendroid (see Fig. 1).
Let (w,v) denote a point of the Ruclidean Plane given by its coordi-
nates v and v in a Cartesian rectangular coordinate system. Admit
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Tig. 1

»=10,0), g=(1,0) and U = pg. Consider subsets P; (1 =10,1,2) of U

' defined as follows. Let % and m be positive integers. The only point of P,

is p. The abscissae of points belonging to P, are the numbers of the form

" w = 27% The set P, consists of points (%, 0) of U for which u = 2%+ g~*+m)

and of the point ¢. Put
P=PyuP uP,.

So P is a closed, countable subset of the unit segment U with the
property that for every point y « P there exists a point # e P such that
1.9) @ epy
and that no point of P iy in the interior of the segment xy:

(1.10)

In fact, if y ¢ Py, ie. if y = p, we have = p. If y is in P, and has
the form y = (27%,0), we have @ = (2~**V 9=+ o) Finally if y ¢ P,
and the abscissa of y is % = 2"‘-%—2"(“"”, then the abscissa of the point #
which is associated with y by (1.9) and (1.10) hag the form u=2"*4 27 #+m+,

So we see that if y # p, then @ =y and that U= {my| y ¢ P}
Now lef us associate to each point y € P a point 2 = (1, v) with » > 0

ay " P=(z)u (y).

‘and such that the triangle T(wyz) is equilateral. Further, in each of the

triangles T'(wyz), where y ¢ P and # and #z are associated with y as above

Fundamenta Mathematicae, T. LXVIL 2
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(see Fig. 2), we construct the A-dendroid K (wyz) defined in the same way
as K(abc) was by (1.8). In particular if ¥y =» we have o=y =z and
thus K (wyz) = (p). Putting

(111) L= {K(zyz) y « P}
it is readily seen that L is a A-dendroid.

MmM

Fig. 2

9

Remark that if we take into consideration the (similarly defined)
sets P3, P, and 50 on, and if we define P as the union of all these Py’s
leaving further constructions without any change, we can get some more
complicated - examples of A-dendroids. Here we have stopped on P, in
the above definition of P to obtain a 1-dendroid which is not too hard to
deseribe and to image it, but also not too trivial. Another example of
& A-dendroid, more complicated than L, is given in [3].

§ 2. The canonical decomposition. Now we shall define an upper
semi-continuous decomposition of a A-dendroid X into continua (called
strata of X) such that the hyperspace of this decomposition is a dendroid.
We shall prove that the decomposition under consideration has some
nice properties, very similar to properties of the decomposition of an
irredueible continuum into tranches, described by K. Kuratowski in his
papers [5] as well as in [7], pp. 139-142,

Let X be a A-dendroid and let # be a point of X. To describe the
stratum S(z) to which & belongs, we shall define (by the transfinite in-
duction) an increasing sequence of continua A.(x) each of which containg
the point 2.

With this in view let us consider in X all irreducible continua I which
conbain the point x and take in each of them the tranche T'{=) to which »
Delongs. Put

(2.1) Aym) = T(w),

Wwhere the union in the right side runs over all irreducible continua I
such that » ¢ I C X. Now suppose sets Ag(m) are defined for § < a, and put

U{ Ls Aplwn)| limay e Ap(@)}, it a= p+1,

=\ U, a=1limg,
B<a B

<a

(22) Ao
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where, in the case a= p-1, the union is taken over all convergent se-
quences of points # ¢ X with lim @, e dy(w).
. N0

So the sets d(2) are well-defined for all « < Q. Observe that it follows
from this definition that the sequence {4.()} is inereasing, i.e. that

(2.3) @ € Ay(w) C A,(2) C ... C Afa) C ...
Indeed, e 4y(2) by (2.1). Assume
@ € Ay(2) C Ay(w) C ... C Ay(w)

for all < a. If a= f-1 then putting z, =z in (2.2) we have lim o

n—>0o
=z e dp(w) and Lis Adp(@s) = Ap(x), whence Ap(m)C A, (). The last in- -
N—>00
clusion trivially holds by (2.2) also in the case a=limf. Thus (2.3) is

f<a
true.

For example, if the 1-dendroid K (abe) (see (1.8) and (1.7)) is taken
as X, we have A, 2)= (¥) for each ordinal « and for each
z e K(abe)\I'(abe).- For o eF(abe) we have:r Ayx) = Ay(w) = F(abe) if
@ e (I'(abe)\ad) v (b); Ao(#) = () and A,(x) = ab if @ e ab\(b); and finally
Aq(w)=F(abe) for all a> 2 and all z ¢ F(abe).

As another example of X take the 1-dendroid L defined by (1.11).
Fix % = ¢. In order to describe the sets 4,(q) let us admit forn = 0,1, 2,...
2= (27 27" 0) and g, = (27, 0). Thus we see that, according
to the definition, #, € P, and y, ¢ P,. Further, denote by 2, a point (u, v)
such that » > 0 and that the triangle T'(2,+1%,2,) is equilateral. One can
verify that

A,(g) = L_J P(@swi 12 1),

Aulg) = :L_Jllf’(m::m-lzf_l) = () v U & (@y2)] y € P gog\(Yo); 5
Apinl@) = (n) v U F(2y2)] v € P ~ yug\¥a)} ,
Avalg) = {J {F(wy2)l y e P},
A g) = Aue(q) for all 5> w2,

where @ and & denote points associated with y € P as it was desceribed
in the end of the previous paragraph.
Now we shall prove the following
LevmA 1. The sels A (z) are continua.
Proof. Apply transfinite induction. If « =0, then we see that
U T'(») is connected for each 7T'(x) is a connecfed set and contains the
point @, whence A,(«) is a continuum by (2.1). Assume that Ag(x) is a con-
‘ o
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tinnpum for all § < a. To prove that A, #) is a continuum take firstly
a= f+1. Let {#,} be a convergent sequence of points of & such that

(2.4) lim s ¢ A5(@) .
Nn—>00
Since @, € Ag(w,) by (2.3), hence
(2.5) lima, € Li dg(es) # @ ,
n—>0 Nn—00

thus Ls Ag(ws) is & continuum (see [7], § 42, II, 6, p. 111). Obviously
n—oo

lime, e Ls 4(#a) by (2.5), therefore

n->o00 Nn—>00

(2.6) Ag(w) ~ L Ap(wn) # O
n—>00

by (2.4). So Apsa(w) is the union of continua Ls A(ws) each of them in-

N—>00
tersects the continuum Ag(w) which is contained in Ag.1(®) by (2.3). Thus
we conclude that Agy.(z) is connected (see [7], § 41, IT, 2, p. 82).
Now we prove that As..(#) is compaect. Since it is a subset of X,
it is ‘sufficient to prove that Az (2) is closed. Take a convergent sequence
of points pj such that

(2.7) Pr € Apya()
and put
(2.8) p ::khm D -

‘We shall prove that
2.9) P € dgiala) .

It follows from (2.7) and (2.2) that for any fixed natural % there
exists a convergent sequence of points @, ¢ X with the limit a

(2.10) o, = limay,,

such that e

(2.11) %z, € Ag(®)

and

(2.12) ’ Pre Ls Aglwpy) .
N0

Further, it follows from (2.12) that for every. fixed natural k there
exists a convergent sequence of points gy, such that

{2.13) Qrn € Ap(Trn)
and

(2.14) lim gg.n = ps -
N—>00
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The set Ag(«w) being a continuum by hypothesis, the sequence of
points @ contains a convergent subsequence {m,}, the limit of which
belongs to As(®). So putting

(2.15) @y = lim @y,
m—oo

we have

(2.16) @y € Ag(x).

Take now the double sequence of points @z, , with % ->co and m —oo,
and congider the diagonal sequence {zx,}. Thus (2.10) and (2.15) lead to
(2.17) @ = Lih @, m

m->e0

as well as (2.8) and (2.14) give

(2.18) P = lm Qpum .
M~>00
It follows from (2.13) that
(2.19) Qemn € Ap(Brp,m) 5
whence
(2.20)  pe L Ag(tinm)

by (2.18). Therefore we have proved that there exists a convergent se-

quence of points @y, , namely #p, = ®g,m, the limit point of which, namely x,

by (2.17), belongs to As(z) by (2.16) and such that p e Ls Ay(an) by (2.20).
M~+00

Thus we conclude that
pelJ{Ls Ag(an)| limay, ¢ d5(@)},
which proves (2.9) by (2.2).
Take secondly o = lim §. Each As(») being a continuum by hypoth-
B<a
esis and o belonging to Agx) for all § < a by (2.8), the union pL<J Ag(w)

is connected. Thus A.{#) is a continuum by (2.2), which completes the
proof. . )

We conclude from Lemma 1 and from (2.3) that {4d.(2)} is an in-
creasing sequence of continua. Therefore there exists a countable ordinal &
such that

(2.21) if £< np< Q, then A (o) = A,(=).

‘We define the stratum S(x) of the point 2 by
(2.22) S(x) = Ag(m) .

Thus we conclude from (2.3) and (2.21) that
(2.23) A, (z) C 8(x) for every ordinal a< .
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1% follows immediately from the. above definition of S(z) that
(2.24) If the 2-dendroid X is an irreducible continuum, then 8 () = T'(x)
for every @ e X, i.e. the notion of a stratum coincides with the
notion of a tranche.
(2.25) If the 1-dendroid X is arcwise connected (i.e. if X is a dendroid),
then S(z) = @ for every z e X.
Now we shall show some properties of sfrata.
C LmMmA 2. If lima, = «, then Ls 8(w) C S(x).

Nr00 n—>00

Proof. Let
(2.26) S(z) = As(z) and 8 (@n) = flgﬂ(mﬂ) s

where & and &, are as £ in (2.21). Obviously there exists an ordinal 1 < £
such that

(2.27) E<n and &<y forn=1,2,..
Hence we have '
(2.28) Ag(w) = Appa(w) = S(w) and  A,(wn) = S(2n)
by (2.26) and (2.21). According to (2.2)
(2.29) Apalo) = U{ Ls Afan)| Ima, e 4,(a)}
Thus
(2.30) if ,}Eﬁw" € A,(z), then nLiA,,(wn) C Aypal)
We conclude from (2.3) that z e 4,(z), which means lima, e 4,(w)
by our hypothesis & = lirgwn. Thus it follows from (2.30) tﬂ;{? Ls Ay(an)
T 2200

CAn,;l(w), i.e. Ls 8(z,) C 8(x) by (2.28).

LemuA 3. If ye S(x), then 2 € 8(y) C S{x).
Proof. Let ‘ '
(2.31) B(z) = dg(o) and  S(y) = Auly),

where & and &, are as £ in (2.21). Obviously there exists an ordinal 5 < Q'
guch that

LE<n and &<y,
Hence we have
(2.32) Ayw) =Aya(o) = S@) and A,(y) = S(y)

})y (?.31) and (2.21). According to (2.2) we see that (2.29) holds, which
implies (2.30) as previously. Taking #, = ¥ we have

(2.33) limax, =y

n->00
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and
(2.34) Ls Ay(2,) = 4,(y) .
N—>00

Thus we can rewrite our hypothesis y € §(z) in the form lim &, € 4,(»)

N0

by (2.33) and (2.32). Therefore we conclude from (2.30) and (2.34) that
Ay) CAya(2), ie. S{y) C 8(x) by (2.32). So we have shown that

(2.35) if y e 8(z), then S(y)CS(@).

To prove % e S(y) recall that S(z) = 4(x) according to (2.31) and
apply transfinite induction. If & = 0, then y e 4y (z) which is defined
by (2.1). Assume firstly that

yel)T(a).
Thus there exists an irreducible continuum I’ in X and a tranche T"(w
of the point & in I’ sueh that y e I"(z). It implies & « I"(y), where T"(z
= T'(y), whence x ¢ A,(y) according to (2.1). Since 4y(y) C S(y) by (2.23
with ¢ instead of w, hence x e S(y).
Asgume secondly that

)
)
)

yelJ TN T(@).
Thus there exist & sequence of irreducible continua I, in X, a sequence
of tranches Ty (%) of T, each of which contains the point #, and & sequence
of points ¥, such that

(2.36) yn e Tu(z) for m=1,2,..
and
(2.37) limy, =19 .

N—+00

Tt follows from (2.36) that @ e Tu(yn) for n=1,2, ..., where Ta(®)
= Ty(yn), whence @ ¢ Ay(ys) for n=1,2, .. by the Definition (2.1) of
Ayy). Thus we obviously have z e Ls 4y(ya), and, by (2.37) and (2.3),

n—-oo

limy, ¢ Aq(y). So according to the definition of A(y) (put B=0, o=y,
N—>00

Ty = ¢y in (2.2)) we conclude that @ e 4,(y), thus @ ¢ 8 () follows from (2.23)
with y instead of .

Assume now the following inductive hypothesis:
(2.38) for every f < & and for any two points &’ and ' in X, if y" e A5(e’),

then #'eS(y’).

Consider two cages. Firstly, let & = f-+1. So our assumption
YeAdpy(w) means by (2.2) that there exists a convergent sequence of
points #, such thab

(2.39) ) 1y e Lis Ag(an)

N
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and lim, e 45(w). Hence putting

n—0a

(2.40) lima, = p

we have .
(2.41) P e dp(z) .
It follows from (2.3) and (2.23) that @, ¢ S(@n), thus
(2.42) P e Ls S(an)
Nn—ro0

by (2.40). Further, we conclude from (2.39) that there exists a sequence
of points yn, € Ap(@n,) Which converges to y. Without loss of generality
we can take ¥, as ¥, assuming

(2.43) limy, =y
N—r00

and

(2.44) Yn € Ag(n) -

Observe that (2.44) and (2.38) imply @, e 8(yx), hence S (@) C S (ya)
by (2.35). It leads immediately to

(2.45) Ls S(2a) CLi 8(yn) .

Nn—+00
Lemma 2 and (2.43) give
(2.46) Ls 8(ya) C8(y) .
n—co

Thus it follows from (2.42), (2.45) and (2.46) that p e S(y), therefore
(2.47) S(p)C 8(y)

by (2.35). As a corollary from (2.41) and (2.38) we have & « §(p), whence
xe8(y) by (2.47).
Secondly, let & = %mga 8. So our hypothesis y e Ag () means by (2.2)
<&
that there exist a sequence of ordinals f, < & and a convergent sequence

of points y, such that (2.43) holds an y, e g, (w). It implies # « §(y,) for
every natural n by (2.38), whence

- (2.48) @ e Ls S(yn) .
N—~+00

Further, it follows from (2.43) and from Lemma 2 that Ls 8(ya)

C8(y), thus @ e 8(y) by (2.48), which completes the proof. o

TarorEM 2. If S(2) ~ 8(y) £ @, then §(x) = S(y).

Proof. Let ze8(2) ~8(y). Thus in particular 2 e S(z), whence
eS8z CS (m). byALemma 3. Using the same lemma once more we see
that.w € 8(z) implies S(x) C S(z). B0 S(z) = 8(x). Replacing & by y we
obtain 8(2) = S(y) and the theorem follows.
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We conclude from this theorem that for various z the strata S(®)
are either disjoint, or identical. Since they are continua by definition (2.2)

" according to Lemma 1, hence we have defined a decomposition of a 1- den-

droid X into its strata S(»). Call this decomposition canonical.

A decomposition of a continnum X into disjoint continua X; is said
to be upper semi-continuous if for every closed subset 4 of X the union
of all elements X; of this decomposition which meet 4 is cloged (see [6],
§ 19, Definition and Theorem 3, p. 185, and [7], § 39, V, p. 42). We
prove now

ToEOREM 3. The canonical decomposition of a %-dendroid X is upper
SEMi-CONLINUOUS.

Proof. Take a set A= ACX and denote by Z the union of all

" strata S(x) of X for which S(z) ~ 4 % @. Let {p,} be an arbitrary con-

vergent sequence of points of Z and put
(2.49) P = limp, .
N—00

Sinee ps ¢ Z by hypothesis, hence in view of Theorem 2 S(ps) ~ 4 # .
Let .
(2.50) - ane8(pa) VA .

The set 4 being closed, the sequence {a,} contains a convergent
subsequence {an,}. Putting

(2.51) © o =limay,

Mm—+00
we have aeA. It follows from (2.51) and from Lemma 2 that

(2.52) Ls 8 (@) C 8(a) . ®

M—+00

Since a « A and obviously a e 8(a) hence we see that S(a) n A # O,
thus

(2.58) S8(@)CZ. A

Further, we have
(2.54) S(an) = 8(pa)

by (2.50) and Theorem 2. As p = lim pu,, by (2.49) and as Pa, € S{Pan)
. M—+00
we conclude that p e Ls 8(tn,) by (2.54), whence p eZ follows by (2.52)
MnM~—+00
and (2.53).

§ 3. The hyperspace. We shall prove the following
THEOREM 4. The hyperspace of an arbitrary upper Semi-CoNtinUouUs
decomposition of a A-dendroid info continua s o A-dendroid.
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Proof. Let X be a A-dendroid and let
(3.1) X = J{X4 deD)

be an upper semi-continuous decomposition of X into continua X,

where d runs over a set D. Introduce a topology on D as the quotient .

topology (see [6], § 19, I, p. 183). Since X is a separable metric space,
hence also is D (see [9], Theorem (2.2), p. 123).
The projection of X onto D i.e. the mapping f: X —D such that

(3.2) FHd) = X4 for each deD

is continuous (see [9], (3.1), p. 125) and monotone for the sets Fa)
are continua. Thus f is a confluent mapping (see [2], pp. 213 and 214, V)
of the 1-dendroid X onto the metric space D, whence D is a A-dendroid
(see [2], XIV, p. 217).

TeEOREM 5. The hyperspace D of an wupper semi-continuous de-
composition (3.1) of a A-dendroid X into continua X is a dendroid if and
only if
(3.3) for every tramnche T of am irreducible continwum I in X

I~ Xy O implies TC X,.

Proof. Firstly we prove that if (3.3) holds, then D is a dendroid.
D being a A- dendroid according to Theorem 4, it remains to prove that D
is arcwise connected. With this in view consider the projection f: X D
described above in the proof of Theorem 4 by (3.2). Take two different
points @ and b in D and their inverse images f™(a) and £~(3) in X. Further,
take a point # ¢ f7(a) and a point y € F7(b). Let I be the unique irreducible
continuum from # to y in X, Obviously f(I) is a continuum which con-

taing @ and b. We shall prove that F(I) is the arc ab. Tt is sufficient to
show that if

(3.4) ¢ ef(I)
and
(3.5) ato£b,

then j(I)\(e) is not connected (see [9], Theorem (6.2), p. 54). In fact,

(3.4) implies that I ~f(¢) % 9, thus by the hereditary unicoherence

of X the set I~ Fe) is a subeontinuum of I which does not contain

points # or y by (3.5). Further, it follows from (3.3) that if ze I ~f(c),

then I'(z), the tranche of I which contains 2, is contained in f™*(e):
T(2) Cf(e)

beeanse f7'(¢) = X, is an element of the decomposition. Thus

T()CInfe,

icm®
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T(2) Being contained in I. It follows that the continuum I ~ f *(e) is ‘th
union of all such-tranches T'(2) of I, whence I\(I ~f (c)} is the union
of two disjoint open in I sets U and V such that #¢ U and y € 7. Thus

) =fT0) v (0w f(V),
acf(U), bef(V), fU)~fIV)=0.

Moreover the set I ~f " c)w U is of course closed, as well as
I~fYe)uV, so their images, i.e. sets {(c) w f(U) and (c) u'f(V) are
also closed. Therefore the sets f(U) and f(V) are open in f (I.). Since they
are disjoint, hence the set f(I)\(¢) is the union of two disjoint open sets
f(U) and f(V), therefore it is not connected.

Secondly we prove that if D is a dendroid, then (3.3) holds. .Let f
be, as previously, the projection of X onto D, and let I bfz an arbitrary
continuum irreducible from % to y in X. The decomposition (3.1) of X
into continua Xg, where de.D, being upper semi-continuous, the dg-
composition of I into sets I n X4, where d e f(I),. is also upper semi-
continuous, and it follows from the hereditary unicoherence of X f?at
sets I ~ X; are continua. Since for every d ef(I) we have (f|I)” (d)
=In~fYd)=1In~ Xz, hence the mapping f] I is m()'no.tone. CPhe con-
tinnum I being irreducible from » to y, its image f(I) is llrreduclble fr(fm
f(#)=a to f(y) = b (see [T], § 43, I, 3, p. 133) and_, D bf}mg a flen(l\rmd,
f(I) is the arc ab. Thus we have an upper semi-continuons linear de-
compogition of I:

I=J{I~X4deab}.

Now, for any fixed d,let T be a tranche of I such tha,.t T~ Xg @.'1.‘1104
decomposition of I into tranches is the finest pogs.lble decomposition
among all upper semi-continuous linear decompositions of I (see [71,
§ 43, IV, 3, p. 139), therefore T ~ X3 # @ leads to I'C T ~ X4, whence
T C X; which finishes the proof. ) _

Let us come back now to the canonical decomposition of a A-den-
droid X, i.e. to the decomposition of X into its strata. Denote the hyper-
space of this decomposition by 4(X) and the strata of X by Ss, where
ded(X). So we have

X=J {8zl ded(X)}.

CoROLLARY 1. The hyperspace A(X) of the canonical decomposition
of & A-dendroid X is a dendroid.

Proof. According to Theorem 5 it is sufficient to prove tl‘mt (3.3)
holds for the canonical decomposition. Indeed, if I is an irreducible con-
tinmum in X and 7' is a tranche of I such that 7'~ 8z # @ for some
deA(X), then for any point 2 eT ~ 8z we have s e T = T(2) C Ay)
C 8(») by (2.1) and (2.23), thus §(z) = 8¢ by Theorem 2, whence T C 8y.
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§ 4. The main property of the canonical decomposition. Let us go now
to the investigation of some relations between the canonical decomposition
of & 1-dendroid X and other upper semi-contintous decompositions of
X into continua for which the hyperspace are dendroids.

Take namely an arbitrary upper semi-continuous decomposition, (3.1)
of & A-dendroid X into continua Xz and assume that the hyperspace D
of this decomposition is a dendroid. Thus (3.3) holds accordiln,g to Theo-
rem 5. Recall that the sets dq(z) for a < O are defined by (2.1) and (2.2)

We shall prove the following .

Levma 4. If @ e Xz, then Ay(z)C X, Jor every a < Q.
Proof. Apply transfinite induction. If o — 0, then »e¢ X, implies

T(#) ~ Xg # O where T(z) is a tranche of a point £ in some irlreducible

contintum 7 C X. Thus we have T(2)C Xz by (3.3). This leads o

U T (#) C X4, where the union in the left side runs over all irreducible

continua I such that » « I C X. The set Xz being closed, we have {J T (@)

C Xy, which means 4,(2)C X, by (2.1)
If a> 0, assume that

(1) e Xy implies Ag(w)C X; for every f < a.

Firstly, let @ = p-+1. Consider a convergenf sequence of points x,
such that gr;mn € Ag(2). Denote hy X, a,member of the decomposition (3.1)

to which @, belongs:

(4.2) #n e Xy,
and put
(4.3) o, lmap,=1p.

Thus we have Ap(a P
sruplfos P e dp(w), and we conclude from (4.1) that o« X,

(4.4) pe X,
Using (4.1) once more we see that (4.2) leads to Ap(2,) C X 4,, whence
(4.5) Li Ag(m,) C Li X,,.
N—+C0 n-—>00

Further (4.2 . i i 7 i
er (4.2) and (4.3) give p eﬂE;Xd,,, thus X, ”nE‘LX“" # O by (4.4),

go ”I_ﬁo X4, C Xy by the upper semi-continuity of the decomposition (3.1)
(see [7], §39, V, 4, D. 45). Since (4.5) holds, we have Ls Ag(m,) C Xg,

therefore A4;.,(x) C X, by (2.2).
Secondly let o= limpg. The set Xa
B<a

and the sequence A P

being compact by hypothesis
() for f < o being increasing by (2.3), we conclude
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immediately from (4.1) and (2.2) that A, &) C X,. Thus the proof is
finished.

According to the Definition (2.22) of a stratum Lemma 4 Tleads to
the following .

THEOREM 6. If the hyperspace D of an upper semi-continuous de-
composition (3.1) of a A-dendroid X into continua Xg is a dendroid, and
if Say, where dy e A(X), means a stratum of the canonical decomposition
of X, then

Ba, n Xg # O implies S, C Xg.

Theorem 6 can be reformulated as

COoROLLARY 2. The canonical decomposition of a A-dendroid X is
the finest possible decomposition amony all upper semi-continuous decomposi-
tions of X into continua, hyperspaces of which are dendroids.

It is well known (see e.g. [9], Theorem (3.4), p.126) that it I is
a compact metric space, any upper semi-continuous decomposition of M
is equivalent to a continuous mapping defined on M, and conversely —in
the sense that, given any upper semi-continuous decomposition D of M
with hyperspace JM’, there exists a continuous mapping f of M onto M’
whose inverse sets f'(«), # € M’, are exactly the elements of D and, on
the other hand, given any continuous mapping f of M onto N, the inverse
sets f ' (») give an upper semi-continuous decomposition of M whose
hyperspace is homeomorphic to &. In particular, any monotone mapping
on a compact space M is equivalent to an upper semi-continuous de-
composition of M .into continua. Conversely, any upper semi-continuous
decomposition of M into continua with hyperspace NV is equivalent to
2 monotone mapping of M onto N (see [9], (4.1), Theorem, p. 127).

The canonical decomposition (3.1) of the A-dendroid X into strata S
being upper semi-eontinuous, it is equivalent to a monotone mapping ¢
of X onto 4(X) defined by

o~Yd) =8z for every de A(X).
Call the mapping ¢ canonical. .
Thus we have the following equivalent form of Theorem 6.
CoROLLARY 3. If ¢ is the canonical mapping of the A-dendroid X

onto the dendroid A(X), then for any monotone mapping f of X onto a den-
droid D and for every x e X we have

(4.6) @) CF(f(@) -

As another form of Corollary 3 (thus of Theorem 6) we have
THEOREM 7. If @ is the canonical mapping of the A-dendroid X onto
the dendroid A(X), then for every continuous monotone mapping f of X


GUEST


30 J.J. Charatonik

ondo a dendroid D there exisis one and only one continwous mapping g of A(X)
onto D such that the diagram
X z 4(X)
(4.7) \f\ e
rd
\ D¥

#

commutes, and g is monotone.

In fact, take an arbitrary point d e (X). It follows from (4.6) that
Flp~*(@) is a point. Denote this point by g(d). If d = p(x), then g(d) = f(z),
thus g(gp(w)) = f(z) for every xeX, ie. diagram (£.7) commutes. The
mapping ¢ being continuous and defined on a metric continunm, it is
closed (see [4], Theorem 9, p. 104). Since f is continuous, the continuity
of g follows from Theorems 1 and 3 in [6], § 13, XV, p. 119. The
uniqueness of ¢ follows from the definition. From the definition of g we
conclude also that

97 ) = olf ')

The mapping f being monotone, f(y) is a continuum, hence lp( f"l(g/))
is also a eontinuum. 8o ¢g~'(y) is, and g is monotone. Therefore we have
proved that Corollary 3 leads to Theorem 7. The opposite way is quite
obvions.

for every yeD.

COROLLARY 4. If a dendroid D is the hyperspace of an upper semi-
continuous decomposition of a A-dendroid X into continua, then it is @ mono-
tone image of the dendroid A(X).
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Irreducibly generated algebras

by
Helen Skala (Chicago, Iil.)

The study of functions involves, in a most fundamental way, the
study of the composition of functions. If 4 is a set of elemenjc-s, then any
mapping of A% (i.e., of the pth product 4 x .. x 4) into 4 is & p—p‘lace
function over 4. The composite Fo(Fy, ..., Fp) of any p +1 p-place functions
Fy, Fy, ..., By i again a p-place function defined in the usual manner:

Fo(Fyy e Tp) (@1 ooy @p) = FO(Fl(wl? cory Bp)y weey Fp(@ry ooy wn))

for (@, ..., @p) in 4. From here it easily follows that composition satisties
the superassociative law (cf. [2]), namely that

(O (FolFar oy F) (G s G) = Fo TG, ey Gy oy TGy e, G

for any p-place functions Fy, I, ..., Gy over 4. A set & of func.tl.on_s
is called an algebra of functions if  is closed with respect to composition.

Equation (1) serves as a point of departure for the sfc-udy of a more
abstract algebraic structurve. Let & be a set: of elements with a (p +1)-ary
operation, i.e., an operation which associates with each (p-+1)-tuple of
elements Sy, 8y, ..., 5 of S an element of S denoted by Sy(Sy; ..., Sp)-
If the superassociative law is valid in &, then & will be galled a p-place
Menger algebra and its operation will be called composition. Qlea.rly any
algebra of functions is a Menger algebra. That the converse Is true was
shown by Dicker (cf. [1]) -—for any Menger algebra & there exists a set 4
such that & is isomorphic to an algebra of functions over 4. o

The structure of Menger algebras in general have been studied in
[1}-{4]. This paper, however, deals with a particular type of Menger
algebra. The Menger algebra & is said to be irreducibly generated 1f‘e.ach
subset of & is also an algebra, that is, is closed with respect to composition.
Therefore, for elements S, 81, ..., Sp in &, the composite Sy(Sy, ..., Sp)
must be one of the elements Sy, Sy, ..., Sp since thg set {So, Siy ey Spf
forms an algebra. An element S, of S is constant 1.f So(B1y ey Bpy = 8y
for each sequence (S, ..., Sp) of elements from S; 8, is called & k-ih place
selector relative to a subset J of &, if Sy(Ty, ..., Tp) = T for each sequence
(T4, ..., Typ) from 3.
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